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Abstract 

The aim of study is to investigate the neural mechanisms by which experience 

influences cognitive control in native Mandarin speakers using functional Magnetic 

Resonance Imaging (fMRI) in a Simon location task. Results showed brain regions 

involved in motor control (precentral and postcentral gyri) were less activated after 

practice. In contrast, brain regions involved in selection of conflict response (left 

inferior frontal gyrus), attentional control (inferior parietal lobule) and working 

memory (inferior frontal gyrus, superior temporal gyrus and insula lobe) were more 

activated after practice. The results suggest that learning an incompatible spatial 

location mapping during practice increased demand for response inhibition. 

Furthermore, the data reveal the involvement of verbal working memory during motor 

learning in the Simon spatial location mapping task in Chinese speakers.   

 

 

Keywords: Simon effect, functional Magnetic Resonance Imaging, working 

memory, motor learning 
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Neural Correlates of Spatial Location Mapping on the Simon Effect in Mandarin 

Speakers 

Cognitive control is the uniquely human ability to direct our thoughts and 

actions based on intentions. This ability is central to many higher cognitive functions, 

such as language, reasoning, planning and problem solving (Botvinick, Braver, Barch, 

Carter & Cohen, 2001; Miller & Cohen, 2001). Cognitive control is also related to 

how we process information and how the processing of information changes with 

experience (e.g., practice). The latter question is of interest in the study of human 

performance and for understanding cognitive mechanisms necessary for rehabilitation 

after brain damage.   

     Choice-reaction tasks are numerous in experimental psychology. In such tasks, 

participants are required to respond as quickly and accurately as possible to a stimulus 

with an assigned key press (button response) (Proctor & Lu, 1999). Simon task is one 

of such choice-reaction tasks widely used to study the relationships between task 

practice and performance (e.g. Lu & Proctor, 1995; Proctor, Yamaguchi, Zhang & Vu, 

2009). Simon effect refers to the finding that it takes less time to respond to a target 

when the spatial location of the stimulus corresponds to the location of response (i.e. 

compatible condition) than when the stimulus does not correspond to the location of a 

response (i.e., incompatible condition). This effect is observed even if the location is 

not related to stimulus dimension (e.g., colour) (Nicoletti, Anzola, Rizzolatti & Umilta, 

1980). Dual-route cognitive models are the most widely accepted accounts for the 

Simon effect (Wuhr & Ansorge 2007). Such models assume two independent routes 

through which stimuli may activate responses, the controlled route and the automatic 

route. The controlled route is believed to depend on short-term associations, 

established in working memory (WM), on the basis of task instructions. The relevant 



 NEURAL CORRELATES      4 

 

 

stimuli feature (e.g. colour) activates an arbitrary response to that feature through the 

controlled route. On the other hand, the automatic route is assumed to depend on 

long-term associations. The spatial position of a stimulus activates a spatial 

corresponding response through the automatic route. If the two routes activate the 

same response (compatible condition), there is no conflict in performance. However, 

if the two associations activate different responses, there is an increase in reaction 

time because the Short-term memory (STM) association makes response selection 

slower due to conflict i.e. the Simon effect. In addition, STM or WM is assumed to be 

independent to the coding of spatial location in the Simon task in this model (Zhang, 

Zhang & Kornblum, 1990). In contrast to the dual-route model, Ansorge and Whur 

(2004) proposed that the codes represented in WM used to discriminate alternative 

response can influence the Simon effect. Similarly, Vu (2007) suggested the WM may 

contribute to the Simon effect.  

Studies investigating the neural correlates of the Simon effect (Maclin, Gratton & 

Fabiani, 2001; Peterson et al., 2002; Fan, Flombaum, McCanliss, Thomas & Posner, 

2003; Liu, Banish, Jacobson & Tanabe, 2004) reveal a fronto-parietal network is 

involved in the Simon effect. In the study of Fan et al., three tasks involving a 

cognitive conflict (colour word Stroop task, flanker task and spatial conflict task) 

were performed and fMRI was used to identify brain activations during task 

performance. Two common brain areas involved in conflict detection on the three 

tasks are the anterior cingulate cortex (ACC) and the left prefrontal cortex. Fan 

showed that the ACC, dorsolateral prefrontal cortex (DLPFC) and pre-supplementary 

motor area were both significantly activated in the incompatible condition relative to 

the compatible condition. These findings support the view that the ACC is responsible 

for monitoring conflict and response errors, while the DLPFC receives signals from 
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ACC and then modulates the processing in the posterior parietal cortex via biasing 

towards the task-relevant information (e.g. Botvinick et al., 2001). 

     A remarkable feature of the Simon effect is that it can be modulated by practice. 

Previous studies have shown that performing incompatible spatial location mapping 

tasks can eliminate the benefit for spatial correspondence in a subsequent Simon task 

(e.g. Dutta & Proctor 1992; Proctor & Lu, 1999; Fan et al. 2003; Proctor et al. 2009). 

Proctor et al. (2009) showed the Simon effect can be eliminated after 84 trials 

following practice with an incompatible mapping of left-right locations with a key 

press prior to the Simon task, or even reversed with more practice trials (i.e., faster 

response in incompatible conditions). They suggested the practice effect of 

incompatible spatial location mapping on subsequent Simon task is due to the 

formation of short-term-memory associations in WM defined for the spatial task 

remaining active in the subsequent Simon task according the dual route theory.  

There is no brain imaging research into the neural mechanisms underlying the 

influences of incompatible spatial location mapping on the Simon effect. Therefore, 

the aim of the present study is to investigate this question using fMRI. Based on prior 

studies of practice on the Simon effect, participants will be given two identical Simon 

tasks manipulating physical-location stimuli. A spatial location mapping task will be 

performed between the two Simon tasks. One Simon Task will serve as a control 

baseline, while another will serve as a transfer task to assess the effect of spatial 

location mapping. To measure the brain correlates of practice on the tasks, effective 

connectivity within a brain network that is involved in the Simon effect will be 

assessed via dynamic casual modeling (DCM) (Friston, Harrison & Penny, 2003). 

This method of fMRI data analysis will allow a comparison between brain activation 

observed in the control and transfer sessions. To test the dual route account of practice 
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in the Simon effect whereby the effect of practice is assumed to result from 

short-term-memory stimulus-response (S-R) associations that depend on 

comprehension of task instructions, individual differences in working-memory 

capacity will be correlated to the magnitude of practice effect to test predicted 

relationships between the variables.  

No study has examined the effect of practice on the Simon effect in Chinese 

speakers. Indeed, all previous research was performed with native English speakers. 

Although this is not surprising, it does limit the theoretical implications of previous 

studies as it is not yet known whether the effects of practice on the Simon effect are 

culturally determined. One reason to assume that there may be a cultural effect of 

practice on the Simon effect is the finding that adult bilingual speakers are less likely 

to produce a standard Simon effect than monolingual speakers (Bialystok, Craik, 

Klein & Viswanathan, 2004). One explanation for this finding is that bilingual 

speakers are required to monitor and to switch between languages more frequently 

and thus they develop greater cognitive control for a variety of skills. As language 

experience has an effect on performance in the Simon task, it is possible that cultural 

differences may emerge. It is therefore a valid question to ask if native Chinese 

speakers demonstrate a Simon effect and whether there is an effect of practice on 

reducing the Simon effect in such individuals. 

   The primary hypothesis is: if reduced Simon effect is due to short-term-memory 

associations defined for the spatial task remaining active in a subsequent Simon task, 

then the brain regions known to be involved in working memory tasks should be more 

active in the transfer sessions (following practice) than in the control sessions. In 

addition, it is expected that if short-term-memory associations explain the reduction in 

Simon effect, participants who achieve better scores in a working memory task will 
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demonstrate a greater reduction in the Simon effect. Indeed such individuals may 

show a reversal in the Simon effect whereby spatially congruent trials are slower than 

spatially incongruent trials after practice and transfer sessions (Proctor et al,. 

2009).The second hypothesis is that after a block of practice with the incompatible 

spatial location mapping, conflict may be present for congruent trials as the 

short-term-memory associations established in the incompatible spatial mapping task 

should interfere with the spatial codes of stimuli in a subsequent Simon task. A 

specific prediction that can be derived from this hypothesis is that the anterior 

cingulate cortex (ACC), prefrontal cortex, dorsolateral prefrontal cortex (DLPFC) and 

pre-supplementary motor area will activate more in the congruent trials compared to 

the incongruent trials in the transfer task based on previous studies (e.g. Botvinick et 

al. 1999; Botvinick et al 2001).  

Method 

Participants. 

Twenty right-handed participants aged between 20 and 35 (11 women and 9 men) 

were recruited from the University of Hong Kong. All participants were reported to 

have normal visual acuity and no history of neurological diseases or 

neuro-developmental delay. The participants were similar in educational and language 

background, each having at least 10 years of education.  

Stimuli, procedures and method. 

Language background questionnaire. The purpose of this questionnaire is to select 

native Mandarin speakers who are functionally monolingual. Participants were asked 

to fill in a language questionnaire online (appendix B). The language form addressed 

the percentage usage of first and second languages the participants use at home, 

school, with friends and for leisure activities. Participants with Mandarin as their first 
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language who are using Mandarin to communicate for more than 70% of the normal 

day were then recruited.  

Working memory test. The effect of practice on the transfer session is assumed to 

result from short-term stimulus-response associations (Tagliabue, Zorzi, Umilta & 

Bassignani, 2000). Hence, working memory was assessed to investigate the effect of 

individual differences in short-term memory capacity on the results. A modified 

operation-word span task (OSPAN) similar to that in the study of Kane, Bleckley, 

Conway and Engle (2001) was performed. Participants had to remember a list of 

unrelated words while solving a series of simple mathematical operations. One 

operation-word string was presented on screen at one time, with each set of strings 

ranging from two to six items in length. For example, a set of two strings here, 

IS (5X2)- 8 = 2?  車 

IS 7- (10/2) = 4?  跳舞 

Participants were instructed to read the operation-word pair aloud and respond using a 

key press whether or not the equation was correct. They were then asked to read aloud 

the word again. The next operation then appeared immediately. These steps were 

repeated, until visual cues appeared on screen to cue the participants to recall all of 

the words from that set only. Participants were instructed to write words in the order 

in which words had been presented. If participants failed to recall the words, they 

could make a cross to indicate the missing words. The only thing they could not do 

was to write the last word first. The OSPAN score was the sum of recalled words 

recalled in correct order. There were 15 trials for each participant in the test, in which 

there were three sets of each string length (from 2 to 6 operation-word pairs). Two 

practice trials were given. Different set sizes presented in a randomized order.  

Questionnaire of Handedness. The Edinburgh Handedness Inventory (Oldfield , 
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1971 was used to test participants’ handedness to ensure all the recruited participants 

were right-handed (appendix C). 

fMRI experiment: fMRI data were collected in the 3T MRI Unit of The 

University of Hong Kong. All MRI images were acquired with a Philips Achieva 3-T 

scanner (Best, Netherlands). A gradient echo planar imaging (EPI) sequence was used 

to acquire fMRI data with the following parameters: repetition time (TR) = 2,000 ms, 

echo time (TE) = 30 ms, field of view (FOV) = 240 mm, 32 axial slices, slice 

thickness = 3.0 mm, slice gap = 0.75 mm, in-plane resolution = 3.0  3.0 mm
2
, and 

flip angle = 90. The first 4 volumes were discarded to allow for T1 equilibration 

effects. Additional high-resolution anatomical images (voxel size = 1  1  1 mm
3
) 

were acquired using a standard T1-weighted 3-D Magnetization-Prepared Rapid 

Gradient-Echo (MP-RAGE) sequence. 

 Participants were divided into two groups: (1) the experimental group and (2) the 

control group. Each group consisted of 10 participants. All participants were assessed 

using fMRI for three sessions; (1) control, (2) practice and (3) transfer sessions. In the 

control and transfer sessions, participants performed two-choice color (red and green) 

discrimination tasks. Each trial began with a fixation cross (+) at the centre of the 

screen. Participants were instructed to look at the cross before a colored dot appeared. 

Stimuli were presented on either left or right side of the cross. Participants were asked 

to respond to one color with left key and another color with right key as fast and as 

accurately as possible. The assignment of stimuli color to the left and right response 

was counterbalanced across subjects (i.e. half of the participants in each group were 

asked to press left key for green color and the other half were asked to press leftt key 

for red color), with the condition that the same assignment was used for a given 

participant in both control and transfer sessions. This was done to avoid any 
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correlation between the color of the response key and its location. Stimuli remained 

on screen for 1000ms or until the participant's response. Two hundred and forty trials 

were presented in each session, half of which were congruent trials (stimuli presented 

on the same side as response key) and half of which were incongruent trials (stimuli 

presented on the opposite side to the response key), in a randomized order. In the 

practice session, a spatial mapping task was performed using non-colored (white) 

stimuli. For the experimental group, an incompatible spatial mapping task was 

performed. Participants were asked to press the left button when stimuli appeared on 

the right side of the screen i.e., the opposite side and vice versa. For the control group, 

a compatible spatial mapping task was performed. Participants were asked to press the 

left button when the stimuli appeared on the left side of the screen and vice versa. 

Three hundred trials were presented, as this number is required to show a reduced or 

reversed Simon effect for the incompatible mapping set (Lu & Proctor, 1995; Proctor 

et al., 2009). To make sure participants understood the instructions, 20 practice trials 

were given before each control and transfer session. Sixteen practice trials were given 

before the practice session.  

Results 

Imaging Data 

Images were analyzed using Statistical Parametric Mapping (SPM8) software 

(Wellcome Trust Centre for Neuroimaging, University College London, London). EPI 

volumes were first corrected for head movements by affine registration. After 

realignment, a high-resolution T1-weighted image of the respective subject was 

co-registered to the mean realigned image. The co-registered T1-weighted image was 

spatially normalized to the Montreal Neurological Institute (MNI) template using the 

unified segmentation approach (Ashburner & Friston, 2005). The resulting 
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deformation parameters were then applied to the individual EPI volumes. All images 

were thereby transformed into standard stereotaxic space and re-sampled at 2  2  2 

mm
3
 voxel size. The normalized images were smoothed using an 8 mm full-width at 

half-maximum (FWHM) isotropic Gaussian kernel to compensate for residual 

variability after spatial normalization across subjects. 

For the first-level individual statistical analysis, the fMRI blood-oxygen-level 

dependent (BOLD) data were analyzed in the framework of a general linear model 

(GLM). Each experimental condition was time-locked to the onset of the target color 

stimulus and was modelled using delta functions convolved with a canonical 

hemodynamic response function (HRF) and its temporal and dispersion derivatives 

(Friston et al., 1998) Low-frequency signal drifts were high-pass filtered using a 

cut-off period of 128 s. Temporal autocorrelation of fMRI volumes was modeled 

using an AR(1) process. The head movement estimates from the realignment 

procedure were entered as covariates to remove movement-related variance from the 

EPI time series. The following experimental conditions were modelled in SPM design 

matrix: (1) congruent and (2) incongruent conditions in the control session, (3) 

congruent and (4) incongruent conditions in the transfer session. In addition, the (5) 

left and (6) right stimuli in the practice session were also modeled, respectively, in the 

design matrix. For each subject, six contrast images were created for each 

experimental condition (each trial type versus baseline) and entered into the 

subsequent group analysis. 

For the second-level random-effects analysis, the parameter estimates of BOLD 

response derived from the first-level analysis were entered into a fully factorial 

ANOVA with the factors group (experimental and control groups), session (control 

and transfer sessions), and congruency (congruent and incongruent conditions), as in 
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the behavioral analysis. The statistical threshold was set at p < 0.05 (false discovery 

rate [FDR] corrected at the cluster level; p < 0.001 uncorrected at the voxel level). 

In the experimental group, the two sessions activated different brain regions (see 

Tables 1 and 2). The transfer session showed more activation in left inferior frontal 

gyrus, left superior temporal gyrus, left inferior parietal lobule and left insula lobe. In 

contrast, the control session showed more activation in right postcentral and 

precentral gyri (brain pictures refer to appendix D and E). There was no interaction 

between session and congruency. In the control group, there was no significant 

difference in brain activations for the control and transfer sessions.  

Table 1: Brain Areas activated in Experimental group (Transfer >  Control) 

Lobe Label Side x y z Max t 

Frontal Inferior Frontal Gyrus Left -48 14 8 4.23 

  -62 -34 39 3.74 

Temporal Superior Temporal 

Gyrus 

Left -48 0 0 3.57 

Frontal/temporal Insula Lobe Left -36 10 6 4.02 

 Angular Gyrus Left  -42 -58 46 4.16 

Parietal Inferior Parietal Lobule Left -36 52 38 3.37 

  -32 -68 46 3.36 

 

Table 2: Brain Areas activated for Experimental group (Control  > Transfer) 

Lobe Label Side x y z Max t 

Parietal Postcentral Gyrus Right 34 -26 51 4.36 

Frontal Precentral Gyrus Right 34 -26 59 4.09 

 



 NEURAL CORRELATES      13 

 

 

Behavioral data  

Between group analyses: Analysis of variance (ANOVA) was used to test 

differences in reaction time (RT) and error rate (ER) as a function of group, session 

and congruency. The RT data are shown in Table 3. There was a three-way interaction 

between group, session and congruency F(1,18) = 7.14, p < 0.05. The interaction 

between session and congruency was of borderline significance F(1,18) = 4.11, p = 

0.058. This shows that the magnitude of the difference between congruent and 

incongruent trials (the Simon effect) was greater in the transfer session than that in the 

control session. An interaction between congruency and group was also observed 

F(1,18) = 7.68, p < 0.05. This shows that the Simon effect in the two groups in the 

transfer session is different; the Simon effect was enhanced for the control group 

while it was reduced or even reversed for the experimental group. When comparing 

the mean reaction times, a Simon Effect was found in both experimental and control 

groups during the control session though the effect was not statistically significant 

F(1,19) = 3.12 , p = 0.085. This is probably the result of a relatively small sample 

size.  

Table 4 shows the error rates for both groups. A three-way interaction was found 

F(1,18) = 6.87, p < 0.05. There was a two-way interaction between session and group 

F(1,18) = 6.30, p < 0.05. This shows that the control group produced fewer errors in 

the control session compared to the other conditions.  

Within-Group Analysis. For the experimental group, the Simon effect was reversed 

in the transfer session F(1,9)= 6.26, p < 0.05. Participants took longer to respond to 

the congruent trials than to incongruent trials. For the control group, the difference in 

RTs between the two sessions was not statistically significant F(1,9) = -0.88, p = 0.37. 

However, the mean reaction time difference showed that the Simon effect was 
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enhanced in the transfer session for the control group (i.e. difference in reaction time 

for congruent and incongruent trials is larger in the transfer session than in the control 

session). 

Mixed two-way ANOVA was used to investigate the effects of both session and 

congruency in each group on the error rate. For the control group, the main effect of 

session was significant F(1,9)=7.2, p< 0.05. Participants made more errors in the 

transfer session than in the control session. This may be due to fatigue given the many 

hundreds of trials. No interaction was found between session and congruency F(1,9) = 

1.39, p=0.28. For the Experimental group, there was an interaction between session 

and congruency F(1,9) = 5.92, p<0.05. This shows participants in the experimental 

group make more errors for congruent trials in the transfer session while they made 

more errors for incongruent trials in the control session.  

 

Table 3: Mean (Standard deviation) Reaction Times (in millisecond) by 

Group and Session 

 Control session Transfer session 

congruent incongruent congruent incongruent 

Experimental Group 499.0 (76.2) 507.5 (70.8) 490 (90.6) 477 (80.8) 

Control Group 470 (56.8) 479 (61.1) 470 (70.1) 482 (79.3) 

Note- For the experimental group, incompatible spatial location mapping was 

calculated between control and transfer sessions. For the control group, compatible 

spatial location mapping was calculated between control and transfer sessions. 
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Table 4: Mean (Standard deviation) Error Rates by Group and Session 

  Control session Transfer session 

  congruent incongruent congruent incongruent 

Experimental 

Group 

ER 0.048 ( 0.39) 0.050 (0.034) 0.063 (0.047) 0.032 (0.046) 

Control Group ER 0.027 (0.035) 0.033 (0.024) 0.039 (0.052) 0.058 (0.036) 

 

 

 

Fig. 1: (a) Mean RTs for experimental and control group in the two sessions in 

difference congruencies. (b) Mean ERs for experimental and control group in the two 

sessions in difference congruencies. 
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Working Memory Correlation: Individual differences in working memory scores 

were correlated with the magnitude of the practice effect (i.e. the difference in Simon 

effect across each session) in experimental group. There was medium correlation 

between the working memory score and the practice effect (i.e. a reduced Simon 

Effect in transfer session from the control session), coefficient r = 0.384. The positive 

coefficient shows that the higher the WM score, the greater the practice effect. 

Discussion 

  The results lend some support to the main hypothesis i.e. reduced Simon 

effects are due to short-term-memory associations remaining active in the subsequent 

Simon task. It was expected that the brain regions known to be involved in working 

memory tasks would be more activate in the transfer sessions (following practice) 

than in the control sessions. In addition, it was expected that if short-term-memory 

associations explain reduction in the Simon effect, participants who achieve better 

scores in a working memory task will demonstrate a greater reduction in the Simon 

effect.  

 The results offer some support to the second hypothesis. The left inferior frontal 

gyrus (IFG) was more activate in the transfer session for the experimental group after 

the incompatible spatial location, which supports the second hypothesis. This brain 

region is assumed to be used for response inhibition (Swick, Ashley & Turken, 2008). 

Swick and colleagues reported an experiment on left IFG patients using a Go/NoGo 

task. It was found that the patients showed more false alarm errors (pressing the 

response key while they should not). However, the RTs for the false trials were faster 

than that of the correct trials, indicating that impulsive responding, rather than a 

failure to comply with task instructions can account for the increase in false alarm 

errors. It was concluded that left inferior frontal gyrus is responsible for inhibitory 
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control for motor response. However, only left IFG was more activate in the transfer 

session not ACC or DLPFC as expected. This may suggest that incompatible spatial 

location mapping increased the effort needed for response inhibitory control rather 

than for conflict detection. In addition, studies suggest a role for left IFG in WM 

tasks. Liu et al. (2004) proposed that this area may be responsible for storing 

information extracted from the task-relevant and task-irrelevant processing. In the 

present paradigm, after the spatial location mapping, a new STM link was formed 

(spatial location activates spatial non-corresponding response). This might interfere 

with LTM associations (spatial location activates the spatial corresponding response) 

after the STM associations are formed based on the task instructions. The information 

held in WM (and the inferior frontal region) was more activated in transfer sessions. 

The inferior frontal area is adjacent to Broca’s area, which is a considered to be part 

of a phonological loop, particularly necessary in the articulatory rehearsal component 

(Smith, Jonides, Marchuetz & Koeppe, 1998). Just and Carpenter (1992) reported 

patients with damage to Broca’s area had impaired sentence working memory spans, 

suggesting the inferior frontal lobe is necessary for verbal working memory, tasks 

supporting our hypothesis. 

 Left insula and superior temporal gyrus were also activated in transfer sessions 

compared to control. The core function of insula is to switch between neural networks 

to direct attention and WM resources and cooperating with the ACC to facilitate rapid 

access to the motor system (Tops & Boksen, 2011). Moreover, the left superior 

temporal gyrus is the auditory association area that is engaged during auditory STM 

tasks, wherein verbal materials are stored and processed (Leff et al. 2009). The 

activation in superior temporal gyrus in transfer session could therefore reflect the 

involvement of verbal WM in the Simon task. Though the location Simon task is 
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assumed to be a relatively non-verbal task, we know that task instructions modulate 

the Simon effect (Hommel, 1993). Representing spatial mappings may utilize the 

phonological loop, as the associations are easy to verbalize e.g. green stimulus-left 

press. Therefore participants may rehearse the verbal instructions in the phonological 

loop in favor of the execution of correct responses and this might account for the 

activation in inferior frontal gyrus. 

 Whur and Ansorge (2007) argued that the majority of participants used verbal 

codes instead of spatial codes for representing responses in WM as revealed by 

participants’ self rating of performance. Hence, activation in left super temporal gyrus 

may be due to phonological rehearsal of task instructions in the phonological loop. 

Recent research conducted by Zhao, Chen and West (2010) proves the involvement of 

verbal STM in Simon task. In that study, the authors tried to study the contribution of 

spatial and verbal WM to the processing of stimulus location in the Simon Task. 

Participants performed a regular Simon task, followed by a dual-task. Half of the 

participants performed a verbal WM task while the other half performed a spatial WM 

task. During the dual-task, spatial or verbal WM was occupied and the magnitude of 

the Simon effect was compared between dual-task and regular Simon task. The Simon 

effect was reduced in the verbal WM task, suggesting that the coding of stimulus 

location in the Simon task depends on verbal WM. In addition, the findings 

demonstrated that stimulus-response representation in the Simon task may be 

represented in verbal WM, rather than in spatial WM. It appears that the Simon task 

requires verbal coding in working memory. Thus it is not surprising that performance 

activates brain areas that are necessary for language processing such as observed here. 

It is therefore likely that the patterns of brain activation identified in language related 

areas during experimental conditions above reflect the use of verbal working memory.   
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 On the other hand, the behavioral data failed to support the predicted correlation 

between practice and working memory capacity. One reason may be small sample 

size. In addition, other factors such as loss of attention and fatigue may have reduced 

the practice effect. Lack of validity of the WM task may also contribute to the null 

results. In the WM test, mathematical calculation was involved. As performance (time 

used and error rate) in the mathematical component of the WM test was ignored in the 

scoring, the true WM capacity of the participants may not be revealed by the results.  

The results showed that the inferior parietal lobule was also activated in the task. 

Liu et al. (2004) suggested that this brain region is responsible for passing the 

modulatory signal to the posterior processing areas for cognitive processing. It is also 

involved in the attentional resources allocation as well as facilitating processing 

towards the task-relevant stream so that the processing of such information is 

promoted. Clearly individual differences in attention should be measured on tasks that 

measure the effects of practice on transfer in the Simon task. 

    Some of brain regions showed reduced activations after practice. Postcentral and 

precentral gyri, the premotor and motor areas, were more activated in control session. 

Reduced activation after practice may suggest involvement of motor learning. Motor 

learning refers to a set of process associated with practice or experience giving rise to 

relatively permanent changes in the capacity for producing skilled action (Brauer, 

Woolacott & Shumway-Cook, 2001). It occurs naturally during task performance 

when repetitive actions are involved. The involvement of motor learning is not 

surprising as the Simon task involved rapid repetitive movement as the response. The 

movements may easily be adapted and learned in this task. The participants might 

have habituated the motor response so less effort was needed in the subsequent 

session. Van Der Lubbe and Abrahamse (2011) investigated motor involvement in 
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their study. They suggested a premotor theory of attention (PMTA) accounts for the 

Simon effect. The Simon task involves spatial representation related to both 

attentional selection of the visual input and the selection of an action in space. 

According to PMTA, these spatial representations are partially overlapped. Spatial 

representations involved in attentional control and response generation may overlap, 

so that attentional selection of the location containing the relevant stimulus primes 

the corresponding response, leading to the Simon effect. Several 

electrocephalographic (EEG) studies (e.g. Forster and Eimer, 2005; Van Velzen, 

Eardley, Forster and Eimer, 2006) support the claim that spatial attention and 

selection of spatially defined actions like eye and hand movements are closely related. 

An overlap of spatial representations in a shared spatial map representation may 

contribute to the Simon effect. According to these studies, both attending to a location 

stimulus and preparation of relative eye or hand movement for this same location 

activated the posterior parietal components. The findings in our study may be 

consistent with the PMTA account of the Simon effect. Though the activation in 

posterior parietal region was not significant in control sessions, the primary motor 

hand areas (precentral and postcenrtal gyri) were active. This is consistent with Van 

der Lubbe et al’s suggestion that perception of stimuli location is related to selection 

of spatially defined actions like eye and hand movements. In addition, studies show 

that precentral gyrus is involved in response inhibition (Maclin et al. 2001; Nachev, 

Wydell, O’Neil, Husian & Kennard, 2007;Chen, et al, 2009). The response inhibitory 

centre has changed from precentral gyrus to inferior frontal gyrus. It is proposed that 

inferior frontal gyrus is the area for response inhibition, so in the transfer session 

where conflict interference increased, this area was more active than precentral gyrus.  

Behavioural data. 
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 The results show that after 300 trials of incompatible spatial location mapping, 

the Simon effect was reversed, as reported by Proctor et al. (2009). For the control 

group who underwent the compatible spatial mapping, the Simon effect was 

enhanced, though the increase did not reach statistical significance. These results 

suggest spatial mapping instructions establish short-term associations that continue to 

influence subsequent performance as suggested by Tagliabue et al. (2000). The 

present results extend these findings to Chinese speakers ( Zhao, et al. 2010). 

Spatial location mapping not only affected reaction time but also affected error 

rate. There was an interaction between session and congruency for the experimental 

group, such that if participants perform incompatible spatial mapping, they make 

more errors for congruent trials in the transfer session whereas they made more errors 

for incongruent trials in the control session. When comparing RT and ER graphs for 

the experimental groups in the two sessions, an interesting observation can be found. 

The incompatible mapping reduced the reaction time needed for incongruent trials 

while increasing the error rates for congruent trials. It could be hypothesized that the 

incompatible spatial location mapping enhanced links between incompatible spatial 

codes of the stimulus and the visuo-motor response. During the incongruent trials, 

mean RT reduced after the incompatible spatial location mapping task was performed. 

However, mean RT did not change for the congruent trials. Instead, ER of congruent 

trial increased. This suggests that incompatible mapping might not increase the load 

of response selection. Rather it induces a faster motor response before response 

inhibition was performed. This supports the conjecture that motor learning influences 

practice in the Simon task.  

Clinical implication. 

The results of the study help to understand how language experience can modulate 
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human cognitive function from a brain connectivity perspective. The study paradigm 

could be elaborated in future work to address questions regarding conflict processing 

in the brain and language learning. Such results are important for understanding how 

the brain changes following speech therapy and rehabilitation since cognitive control 

is necessary for maintaining language function not only in normal speech production 

but, critically, for impaired individuals including patients who are Chinese speakers. 

Limitations and direction for further research. 

    One limitation of the current study is the small sample size. It is recommended 

that future research investigate neural correlates on the Simon effect with a larger 

number of participants. Another limitation is that only physical-location stimuli were 

used, not arrows or location words that are also used in investigating the Simon effect. 

Processing of physical-location stimuli is rather automatic, but symbolic stimuli such 

as arrows and location words are not (Jonides & Irwin 1981). It takes more time to 

respond to location words and arrows and more trials of incompatible spatial location 

mapping are necessary to produce reverse Simon effects compared to a physical 

location manipulation. Jonides and Irwin proposed that the difference in performance 

is likely a consequence of translation of a semantic-spatial code into a spatial code 

taking time for response selection. Further studies could be carried out based on the 

study of Proctor et al. (2009), to compare the practice effect for combinations of 

physical-location, arrow-direction and location-word modes in practice and transfer 

sessions. It could be predicted that location-word and physical-location stimulus share 

semantic-spatial codes with arrow but not for physical-location stimulus. Therefore, it 

will be meaningful to compare the brain activation using physical location, arrows 

and location words to investigate if different regions of brain are responsible to solve 

conflict for symbols or which brain region is responsible for the semantic-spatial code 



 NEURAL CORRELATES      23 

 

 

translation. Finally, it would be of interest to compare neural correlates during spatial 

location mapping task with that of transfer in the Simon task. Neural correlates in 

stimulus-response compatibility task can be studied when the stimulus position is task 

relevant. 

Conclusion 

   This study investigated the neural correlates of the influence of spatial location 

mapping using function MRI. The results showed that left inferior frontal gyrus, left 

superior temporal gyrus and left insula lobe were activated in transfer session after 

practice. In contrast, anterior cingulated cortex, pre-central gyrus and post-central 

gyrus were less activated after practice.  
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Appendix A: 

Consent Form 

言語及聽覺科學部 

香港大學教育學院 

五樓，菲臘牙科醫院，醫院道34號，香港西營盤 

主任: 黃麗娜 博士 

講座教授: Weekes, Brendan 教授 

電話: 28590599/28590595, 傳真: 25590060 

 

同意書 

 

研究題目: “Neural correlates of the influences of spatial location mapping on the 

Simon effect” 

 

尊敬的女士們，尊敬的先生們， 

 

香港大學言語及聽覺科學部邀請您參與由莊靜敏與 Brendan Weekes 教授主理

的實驗研究。 

這是一項關於認知神經科學的學術研究，旨在探討人類如何加工視覺刺激的

空間屬性以及如何對視覺刺激的空間屬性做出反應的神經機制。這個實驗在香

港大學 3T 磁力共振掃描部進行。在實驗中，您需要完成三段基於電腦的任務，

磁力共振掃描器會同時記錄您的腦部活動。在任務中，您需要按鍵對視覺刺激

的顏色或空間位置做出反應。每段任務持續大約十五分鐘。此外，我們還將掃
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描您大腦的結構。在正式實驗前，會有一個練習讓您來熟悉實驗所用的任務。

這個研究總體持續大約一個小時。 

請您注意，如果您體內有任何金屬物體，或者您是一名正在孕期或哺乳期的

女士，您將不適合參加這個磁共振實驗。在您剛填寫的磁共振掃描申請表中，

我們列出了在強磁場中會對您的身體產生危害的物體。請再一次確認您的身體

中不存在表中列出的物體，這對我們進行一個安全的磁共振實驗非常重要。在

磁力共振掃描器工作過程中，它會發出響聲。因此，您會帶上耳塞和頭戴式耳

機，以此來減少機器響聲對您的影響。請注意，在實驗進行中，如果您感覺到

任何不適並且想停止這個實驗，您可以使用機器附帶的緊急設備來通知實驗者。

我們會立即停止機器的掃描並幫您從磁力掃描器中脫離。 

實驗結束後，您會得到 150 港元做為您參與實驗的報酬。此外，您還會得到

一張您大腦的圖片。 

是次參與純屬自願性質，您可隨時終止參與是項行動，有關決定將不會引致

任何不良後果。所收集的資料只作研究用途，個人資料將絕對保密。在測量和

存儲資料時，我們會使用一個編號而不是您的名字來存儲您的資料。有關您的

研究資料會以電子資訊的方式在我們實驗室存放十年。在這之後，我們會銷毀

有關您的所有研究資料。如您對是項研究有任何問題，請現在提出。 

 

問題和疑慮 

如日後你對是項研究有任何查詢，請與王淩博士 (804 房間，明華樓，香港大學；

電話號碼: 2241-5980；電郵地址: lingwang@hku.hk)和 Brendan Weekes 教授(808

房間，明華樓，香港大學；電話號碼: 2241-5986；電郵地址: weekes@hku.hk) 
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聯絡。如你想知道更多有關研究參與者的權益，請聯絡香港大學非臨床研究操

守委員會 (2241-5267)。 

 

如你明白以上內容，並願意參與是項研究，請在下方簽署。 

 

姓名：           

 

日期：           

Date of Preparation: 

HRECNCF Approval Expiration date: 2013年5月8日 
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Appendix B 

Questionnaire of language exposure 

語言背景問卷 Questionnaire of Language Exposure 

 

填寫問卷後, 請發郵件到: h0807358@hku.hk 

姓名:    出生日期:    性別:                              

電話: 

您的母語(L1)是: 廣東話/ 普通話/ 英文/ 其他 (請註明)-

______________________________ 

您第二常用的語言 (L2)是: 廣東話/ 普通話/ 英文/ 其他 (請註明)-

______________________________________ 

您所讀的高中,是以 那種語言授課的?   廣東話/ 普通話/ 英文/ 其他 (請註明)-

___________________________                            

請填寫您平均每天使用以上兩種語言所用的時間。 

日常活動 L1 L2 

1 電視   

2 收音機/ 音樂   

3 家庭   

4 課程   

5 同學   

6 朋友 (不包括同學)   

7 男/女朋友   

8 興趣活動   

9 閱讀   

10 寫作   

 

 

 

mailto:h0807358@hku.hk
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Appendix C: 

 Questionnaire for Handedness 

Edinburgh Handedness Inventory 

Name:     Date of Birth:     Sex: 

Please indicate your preferences in the use of hands in the following activities by 

putting ‘+’ in the appropriate column. Where the preference is so strong that you 

would never try to use the other hand unless absolutely forced to, put ‘++’. If in any 

case you are really indifferent put ‘+’ in both columns. 

Some of the activities require both hands. In these cases the part of the task, or 

object, for which hand preference is wanted is indicated in brackets. 

Please try to answer all the questions, and only leave a blank if you have no 

experience at all of the object or task. 

Task / Object Left Hand Right Hand 

1 Writing   

2 Drawing   

3 Throwing   

4 Scissors   

5 Toothbrush   

6 Knife (without fork)   

7 Spoon   

8 Broom (upper hand)   

9 Striking Match (match)   

10 Opening a Box (lid)   

I Which foot do you prefer to kick with?   

II Which eye do you use when using only one?   
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Total plus signs: LH =  RH =  

Cumulative Total CT = LH + RH =  

Difference D = RH – LH =  

Result R = (D / CT)  100 =  

Interpretation: 

(Left Handed: R < -40); (Ambidextrous: -40  R  +40) 

(Right Handed: R > +40) 

 

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh 

inventory. Neuropsychololgia, 9, 97-113. 
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Appendix D: 

Brain pictures of activation and charts of corresponding beta values in experimental 

group (transfer > control) 

 

 

 

 

Imaging results in experimental group (Transfer > Control). (a) Left inferior frontal 

gyrus activation (b) beta value of the activation in left inferior frontal gyrus (c) Left 

insula Lobe activation (d) beta value of the activation in Left insula lobe activation 
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Appendix D (Cont.) 

 

 

 

Imaging results in experimental group (Transfer > Control). (e) Left superior temporal 

gyrus activation (f) beta value of the activation in left superior temporal gyrus (g) Left 

inferior parietal lobule activation (h) beta value of the activation in left inferior 

parietal lobule 
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Appendix D (Cont.) 

 

 

 

Imaging results in experimental group (Transfer > Control). (i) Left angular gyrus 

activation (j) beta value of the activation in left angular gyrus (k) Left inferior parietal 

lobule activation (l) beta value of the activation in Left inferior parietal lobule 

activation  
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Appendix E: 

Brain pictures of activation and charts of corresponding beta values in experimental 

group (control > transfer) 

 

 

 

Imaging results in experimental group (Control > Transfer). (a)Right postcentral gyrus 

activation (b) beta value of the activation in right postcentral gyrus (c) Right 

precentral gyrus activation (d) beta value of the activation in right precentral gyrus 


