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 Abstract 

This study compared the vocal tract configuration, including the length and volume, 

of alaryngeal and laryngeal speakers. Thirty alaryngeal speakers and 30 laryngeal 

speakers were recruited for the study. Pharyngometry, which is an acoustic reflection 

technology (ART), was used to measure the vocal tract parameters of the participants. 

Results showed that there was no significant difference in the length and volume of 

the vocal tract of the alaryngeal and laryngeal speakers. The finding suggested that the 

difference in the formant frequency during vowel production by alaryngeal and 

laryngeal speakers may be due to factors other than vocal tract configuration. The 

finding also suggested that the independence of the source and the filter (Fant, 1960; 

Pickett, 1999) may not be applicable to alaryngeal speakers. 
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 Introduction 

Total laryngectomy involves the surgical removal of a pathological larynx, 

usually for patients with terminal laryngeal cancer, especially after chemo- or 

radiotherapy fails to work. During the surgery, the entire laryngeal mechanism 

including the vocal folds, the laryngeal soft tissues, and sometimes even the hyoid 

bone will be removed. After total laryngectomy, patients lose their ability to phonate. 

According to the source-filter theory, all speech sounds are produced with a sound 

source (vocal folds) and a filter (vocal tract) (Pickett, 1999). With the vocal tract 

usually retained, the laryngectomees need to learn to speak with an alternative 

phonation method using a replacement sound source in order to regain verbal 

communication. The four types of alaryngeal speech currently available to alaryngeal 

speakers in Hong Kong include the standard esophageal (SE), tracheoesophageal (TE), 

electrolaryngeal (EL) and pneumatic artificial (PA) speech (Ng, Kwok, & Chow, 

1997). 

The source-filter theory assumes the independence relationship between 

laryngeal sound source and supralaryngeal filter (Fant, 1960; Pickett, 1999). Removal 

of vocal folds during total laryngectomy should, in theory, not cause any change to the 

resonance characteristics of the vocal tract. As vocal tract’s filtering property can be 

acoustically reflected by the formant pattern associated with the vowels being 

produced (Johnson, 2003), it follows that alaryngeal speakers should exhibit similar 
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vowel format patterns as laryngeal speakers, despite the use of a new sound source for 

phonation. A number of studies have documented findings that support this notion. 

Keazi et al. (2007) investigated the formant frequncies in alaryngeal and laryngeal 

speakers, and reported similar formant frequencies in female alaryngeal and laryngeal 

speakers, although signifcant difference was found for the male speakers.  

Luchsinger (1952, p. 143 as cited in Van As, van Ravensteijn, van Beinum, Hilgers, & 

Pols, 1997) reported little difference in the formant frequencies produced by laryngeal 

and superior esophageal speakers. 

However, a review of the literature revealed other studies reported 

contradictory findings. Ng and Liu (2009) investigated the vowels produced by 

Mandarin esophageal speakers and found significantly higher formant frequencies in 

esophageal than laryngeal speakers of Mandarin. Ng and Chu (2009) compared the 

Cantonese vowels of alaryngeal and laryngeal speakers by using spectral analysis, and 

reported significantly higher formant frequencies in alaryngeal speakers. Similar 

findings were also reported in a study of Spanish vowels produced by alaryngeal 

speakers (Cervera, Miralles, & González-À lvarez, 2001). Alaryngeal speakers were 

associated with higher formant frequencies, indicating a shortened vocal tract 

post-operatively . According the above discussion, studies appear to suggest a 

discrepancy in vocal tract filter configuration between alaryngeal and laryngeal 

speakers. It follows that there is a lack of independence between the laryngeal source 
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and the supralaryngeal filter. 

That said, vocal tract configuration of alaryngeal speakers was studied only to 

a limited extent, possibly due to technological limitations. Diedrich and Youngstrom 

(1966) investigated the vocal tract length of a patient before and after laryngectomy 

by using cinefluoroscopy and found shortened vocal tract post-operatively. Koo et al.  

(1998) studied vocal tract length of alaryngeal and laryngeal speakers using magnetic 

resonance imaging (MRI) during the production of Korean vowels. They found 

shorter but insignificant vocal tract length in alaryngeal speakers when compared with 

laryngeal speakers.  

Yet, the existence of potential radioactive hazard associated with 

cinerfluoroscopic studies greatly limited further research of vocal tract configuration 

pre and post laryngectomy. MRI studies, on the other hand, are also restricted because 

of its high cost, long operation time, and potential danger due to the effect of powerful 

magnetic field on any ferromegnetic metal present on the patient. In order to confirm 

the lack of independence between laryngeal source and supralaryngeal filter, the 

present study aimed to reveal whether there is difference in vocal tract configuration 

between alaryngeal and laryngeal speakers by using Acoustic Reflection Technology 

(ART). Also known as pharyngometry, ART is an advanced technology that makes 

use of acoustic echoes to derive the relevant volumetric information including length, 

cross-sectional area, and volume of the vocal tract. It delineates the vocal tract 
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configuration, from the incisors to the glottis, as an area-distance curve, which allows 

us to obtain volumetric information of different sections of the vocal tract separately. 

Compared to cinefluoroscopy and MRI, ART is non-invasive, fast, radiation-free and 

it requires little cooperation from the subject (Kamal, 2004). It has been commonly 

used in measuring airway of children and adults who suffer from obstructive sleep 

apnea (OSA) (Gelardi et al., 2007; Gozal & Burnside, 2004; Kamal, 2004). A number 

of studies (Jung, Cho, Grunstein, & Yee, 2004; Kamal, 2004; Viviano, 2002) have 

demonstrated the reliability and validity of pharyngometry in quantifying the airway 

of individuals with OSA as well as healthy individuals. 

As mentioned previously, a large number of studies revealed significant 

difference in vowel formants associated with alaryngeal and laryngeal speakers 

(Cervera et al., 2001; Liu & Ng, 2009; Ng & Chu, 2009), with alaryngeal speakers 

consistently demonstrated higher first and the second formants than laryngeal 

speakers. As formant frequency is generally inversely proportional to vocal tract 

length (Fant, 1960), it was hypothesized that the vocal tract is shortened after 

laryngectomy, leading to elevated formant values. To date, only limited research 

directly provided objective and first-hand measurements of the vocal tract of 

laryngectomees (Diedrich & Youngstrom, 1966; Koo et al., 1998). Numeric data 

describing vocal tract configuration after laryngectomy are scarce. Others relied on 

indirect measures such as formant frequencies (Cervera et al., 2001; Liu & Ng, 2009; 
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Ng & Chu, 2009). In the attempt to verify the hypothesis, the present study compared 

volumetric data of vocal tracts of alaryngeal and laryngeal speakers, including vocal 

tract length, cross-sectional area and volume data.  

To further our understanding of alaryngeal speech production 

post-laryngectomy, the present study aimed to: (1) quantify vocal tract configuration 

of alaryngeal speakers; (2) verify the assumption of the source-filter theory - the 

independence relationship between larygeal source and supralaryngeal vocal tract; 

and (3) confirm the hypothesis that the vocal tract of alaryngeal speakers is shorter 

than that of laryngeal speakers. 

 

Methods 

Participants 

Thirty male alaryngeal speakers of Cantonese were recruited from the New 

Voice Club of Hong Kong. The age range of the participants was between 50-90 years 

old. Thirty age-matched male laryngeal speakers were also recruited from two local 

Neighborhood Elderly Centres and served as the controls. All participants were 

screened using a tailor-made questionnaire and the selection criteria included the 

absence of hearing impairment, upper respiratory infections, as well as neurological 

and respiratory system abnormalities except those related to laryngectomy for the 

alaryngeal speakers. The demographic information of the participants is summarized 
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in Table 1. Mann Whitney U tests showed no significant differences in the age [U = 

375, p = -1.000], height [U = 380, p = -1.140] and weight [U = 377, p = -1.009] 

between the alaryngeal and laryngeal group.  

 

Table 1. Mean, standard deviations, range of age, height and weight of participants and 

statistical results of the alaryngeal and laryngeal groups. 

  Alaryngeal speakers  

(n=30) 

Laryngeal speakers  

(n=30) 

U p 

Age (years) Mean  69.5 69.7 U = 375 -1.000 

 SD 10.47 10.17   

 Range 

 

50-89 50-89   

Height (cm) Mean 170.87 170.47 U = 380 -1.140 

 SD 5.41 6.83   

 Range 

 

160-181 159-183   

Weight (kg) Mean 71.87 69.20 U = 377  -1.009 

 SD 8.27 9.94   

 Range 56-86 53-86   

 

Instrumentation 

An Eccovision Acoustic Pharyngometer (Hood Laboratories, USA) was used to 

measure vocal tract configuration of the participants. The apparatus consists of a 

wavetube for generating and receiving acoustic pulses, a microcomputer for 

converting the analog signal transmitted from the wavetube to digital signal and a 

monitor for real-time display of the volumetric information. When taking a 

measurement, short audible acoustic pulses were emitted by a generator and the 
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acoustic energy was transmitted to the vocal tract of the participant through a 

disposable mouthpiece. For laryngeal speakers, the acoustic pulse travels from the 

oral cavity to the glottis at the vocal folds. As the alaryngeal speakers had their vocal 

folds removed and trachea detached from the esophagus, the acoustic wave would 

travel to the pharyngoesophageal (PE) segment at the end of hypopharynx instead of 

the glottis for the alaryngeal speakers. As the acoustic pulse travels along the vocal 

tract, the sensor of the wavetube detects the acoustic energy that is reflected back to 

the wavetube at points of constriction, for example, at the oral-pharyngeal junction 

(OPJ) at the uvula, at the PE segment for alaryngeal speakers and at the glottis for 

laryngeal speakers. The reflected acoustic energy is then recorded and the volumetric 

information was analyzed from the arrival time and amplitude of the reflected signal. 

A graph, named pharyngogram, with the cross-sectional area against the distance 

along the vocal tract to the glottis (or PE segment for alaryngeal speakers) is then 

plotted and displayed. 

 

Procedures 

During the ART measurement, the participant sat upright, with the wavetube, 

held by the clinician and parallel to the floor, placed at the mouth of the participant 

through a sterilized mouthpiece to prevent sound leakage during the measurement. 

The participant was then instructed to produce the vowel /a/ silently to achieve a 
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stable and neutral position of the tongue. A total of four measurements were taken. 

The first measurement required the participant to hold his/her breath. The purpose of 

taking this measurement was to locate the position of OPJ, which is defined as the 

boundary between the oral and pharyngeal cavities, on the pharyngogram for 

reference for later analyses. When the participant stopped the breathing, the 

velopharyngeal (VP) port was opened, leading to the narrowing of the OPJ. The 

decrease in the cross-sectional area at the OPJ would help identify the location of OPJ 

on the pharyngogram as shown as a trough. The remaining three measurements were 

used for analysis of vocal tract configuration. The participant was guided to slowly 

breathe through the mouth. The purpose of maintaining mouth breathing was to 

ensure the closure of the VP port, preventing inclusion of the nasal cavity in the 

measurement (Gelardi et al., 2007). For alaryngeal speakers, as mouth-breathing 

cannot be achieved due to the detachment of the trachea from the pharynx, the 

participants were asked to imitate the action mentally. Depending on the extent that 

the position of OPJ on the pharyngogram matched with that in the first measurement, 

one of the three measurements was chosen for analysis.  

 

Data analysis 

In the present study, six volumetric parameters of the vocal tract between the 

alaryngeal and laryngeal group, including the length (in centimeters) and the volume 
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(in milliliters) of the oral cavity, the pharyngeal cavity and the whole vocal tract were 

obtained. The section of vocal tract analyzed was selected manually on the 

pharyngogram displayed on the screen of the pharyngometer. After the appropriate 

sections were marked, the system automatically generated the distance and volume 

data of the corresponding section. According to the operation manual of the 

pharyngometer (E. Benson Hood Laboratories, 1998), the section representing the 

oral cavity starts from the incisor (at the distance 0.0 cm) and ends at the trough 

representing the OPJ, while that of the pharyngeal cavity starts at the OPJ and ends at 

trough corresponding to the PE segment and the glottis for alaryngeal and laryngeal 

speakers respectively. 

The mean and standard deviation of the length and volume of the oral cavity, 

the pharyngeal cavity and the whole vocal tract for alaryngeal and laryngeal speakers 

were calculated. Normality and homogeneity were tested at a significance level of 

0.05 for each volumetric measurement for the alaryngeal and laryngeal groups. Each 

of the six outcome measures were compared between the alaryngeal and laryngeal 

group of speakers by using independent samples t-tests or Mann Whitney U tests 

using a preset significance level of 0.05. To ensure reliability, each vocal tract 

dimensional data was re-analyzed by the same investigator and a second examiner. 

The inter- and intra-examiner reliability were analyzed by using Spearman rho preset 

at a significance level of 0.05. 
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Results 

The mean and standard deviation values of the six vocal tract configuration 

parameters, including length and volume of oral cavity, pharyngeal cavity and the 

entire vocal tract, are presented in Table 2. As normality was lacking (according to 

results of Shapiro-Wilk test) for oral length, pharyngeal length and pharyngeal 

volume of both the alaryngeal and laryngeal groups, Mann-Whitney U tests were 

carried out. Independent-samples t-tests were used for the remaining parameters, 

namely oral volume, total length and total volume. Statistical results are summarized 

in Table 2. According to Table 2, no significant difference was found for all vocal tract 

parameters between the alaryngeal and laryngeal groups. Though not statistically 

significant, the alaryngeal speakers seemed to have longer oral length and larger oral 

volume, but shorter length and smaller volume of the pharyngeal cavity and the entire 

vocal tract than the laryngeal group (see Figures 1 and 2).
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Table 2. Means, and standard deviation values, and statistical results of vocal tract parameters for alaryngeal 

and laryngeal speakers. 

 Alaryngeal speakers Laryngeal speakers 
T or U p 

Mean SD Mean SD 

Oral cavity Length (cm) 9.5 1.76 9.3 1.42 U = 382.0 -1.014 

Volume (ml) 50.3 12.33 48.1 11.77 t(58) = 0.708 0.482 

Pharyngeal 

cavity 

Length (cm) 8.6 1.65 9.1 2.17 U = 382.5 -1.000 

Volume (ml) 22.4 9.34 25.3 11.23 U = 373.0 -1.138 

Entire 

vocal tract 

Length (cm) 18.2 1.44 18.4 1.44 t(58) = -0.568 0.572 

Volume (ml) 72.7 13.41 73.4 13.79 t(58) = -0.189 0.851 
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Figure 1. Mean oral length, pharyngeal length and total vocal tract length of 

alaryngeal and laryngeal speakers. 

 

 

 

Figure 2. Mean oral volume, pharyngeal volume and total vocal tract volume of 

alaryngeal and laryngeal speakers. 

 

Inter-rater and intra-rater correlation coefficients for the six vocal tract 

parameters for both the alaryngeal and laryngeal group are summarized in Tables 3. 
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Significant correlation (p < 0.01) was obtained for all the analysis. 

 

Table 3. Inter- and intra-rater reliability coefficient for vocal tract parameters of the 

alaryngeal and laryngeal group. 

Inter-rater reliability 

 Alaryngeal speakers Laryngeal speakers 

Spearman’s rho p Spearman’s rho p 

Oral cavity Length (cm) 0.715 0.000 9.3 1.42 

Volume (ml) 0.702 0.000 48.1 11.77 

Pharyngeal 

cavity 

Length (cm) 0.496 0.005 9.1 2.17 

Volume (ml) 0.782 0.000 25.3 11.23 

Entire vocal tract Length (cm) 0.766 0.000 18.4 1.44 

Volume (ml) 0.547 0.002 73.4 13.79 

Intra-rater reliability 

 Alaryngeal speakers Laryngeal speakers 

Spearman’s rho p Spearman’s rho p 

Oral cavity Length (cm) 0.934 0.000 0.784 0.000 

Volume (ml) 0.795 0.000 0.877 0.000 

Pharyngeal 

cavity 

Length (cm) 0.784 0.000 0.812 0.000 

Volume (ml) 0.892 0.000 0.887 0.000 

Entire vocal tract Length (cm) 0.771 0.000 0.878 0.000 

Volume (ml) 0.878 0.000 0.912 0.000 

 

Discussion 

The present study investigated the possible effect of total laryngectomy on the 

vocal tract volumetric configuration, by establishing direct rudimentary data on the 

vocal tract configuration of alaryngeal speakers (see Table 2). No significant 

difference in the vocal tract parameters of the alaryngeal and laryngeal speakers, 

including the length and volume measures of the oral cavity, pharyngeal cavity and 
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the entire vocal tract, was reviewed. Such finding might shed light on the 

independence of the source and filter in the source-filter theory and the verification of 

the hypothesis that vocal tract of alaryngeal speakers is shorter than that of laryngeal 

speakers. 

A large number of studies consistently showed that the formant pattern in 

vowel production was different between alaryngeal and laryngeal speakers (Cervera et 

al., 2001; Liu & Ng, 2009; Ng & Chu, 2009). As the filtering properties of the vocal 

tract can be reflected by the formant frequencies in vowel production (Johnson, 2003), 

these findings have led to a hypothesis that the vocal tract configuration of alaryngeal 

and laryngeal speakers are different. This hypothesis is commonly considered true 

because, in theory, the surgical procedure of total laryngectomy greatly alters the head 

and neck anatomy by, for example, removing the hyoid bone together with the larynx 

and attaching the end of hypopharynx to the upper esophagus (Evans, 1990). However, 

this study revealed results that appear contradictory to the hypothesis. The vocal tract 

length and volume of alaryngeal and laryngeal speakers did not differ significantly.  

Based on the findings, it is suggested that there may be contributing factors 

other than vocal tract configuration explaining the difference in formant frequencies 

associated with the two speaker groups. One contributing factor may be related to the 

inherent difference of the phonatory mechanism between alaryngeal and laryngeal 

speech production. There are four common types of alaryngeal speech, including the 
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SE, TE, EL and PA speech and their working mechanism are different. In laryngeal 

speech production, sound waves originated from the vibration of the vocal folds 

propagate directly from the pharyngeal cavity to the oral cavity. However, in 

alaryngeal speech production, propagation of the sound wave is more complicated. 

For example, in PA speech, the source of vibration is a rubber reed located inside the 

artificial larynx external to the human body. When the sound wave generated from the 

rubber reed travels through the external mouth tube into the oral cavity, the wave 

propagated in two directions (Ng & Chu, 2009). One direction is the forward 

propagation to the mouth and the other one is the backward propagation into the 

pharyngeal cavity. The wave in backward propagation is then reflected back to the 

mouth upon the pharyngeal wall. The overlapping pathway of sound propagation 

might lead to the interference of sound waves, resulting in a resonance pattern more 

complicated than that of laryngeal speech. The difference in the pathway of sound 

wave propagation within the vocal tract between the PA and laryngeal speech may 

have contributed to their difference of formant frequency. Moreover, the possible 

effect of the sound wave interference in PA speech within the vocal tract on the 

resultant formant frequency is unknown.  

Results of the present study may also imply that, in contrast to laryngeal 

phonation, the source-filter theory may not be applicable to alaryngeal phonation. For 

example, in EL speech, the sound is generated by the vibration of the diaphragm of 
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the electrolarynx placed at the neck anterolaterally, near to the floor of the mouth (Ng 

& Chu, 2009). The muscles at that portion of the neck act as a secondary source for 

vibration and transmit the wave to the oral cavity. At the same time, it is likely that the 

sound wave is filtered through the muscles (Ng, Liu, Zhao, & Lam, 2009). As the 

speech production process by electrolarynx involves the muscles as both the source 

and the filter, it is questionable whether the independence of the source and filter in 

the source-filter theory (Fant, 1960; Pickett, 1999) can be applied to EL speech 

production. Moreover, the process of transmission and filtering of sound waves 

through the muscles may have caused changes to the formant frequencies. 

One of the objectives of this study is to testify whether vocal tract length of 

alaryngeal speakers is shorter than that of laryngeal speakers. Although the results of 

this study show that there are no significant different in the vocal tract length between 

the two groups, the results may be limited by the experimental procedures of the 

pharyngometer. One of the limitations of the pharyngometer is that it does not allow 

phonation during the measurement process. It is possible that the vocal tract length 

may differ during phonation and the results could not reflect the true vocal tract length 

during vowel production. For example, during TE speech production, the vibratory 

source, which is the PE segment, is found to be at the level of the 3th to 4th cervical 

vertebra (C3-C4) by videofluoroscopy (van As, Op de Coul, van den Hoogen, 

Koopmans-van Beinum, & Hilgers, 2001). However, when the PE segment is at rest, 
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it is lowered to C4-C5. Therefore, the vocal tract length could be regarded as 

shortened during TE speech production. 

The present study provides volumetric information on the vocal tract 

configuration of alaryngeal and laryngeal speakers by using ART. Yet, data are 

preliminary and more investigations are suggested to further the understanding of the 

vocal tract configuration of alaryngeal speakers. A comparative study on the vocal 

tract configuration within individuals before and after the laryngectomy operation can 

be carried out to confirm the results of this study. To clarify the relationship between 

vocal tract length and formant frequency in vowel production, vocal tract dimensions 

during phonation instead of during solely mouth breathing can be studied using 

instruments other than pharyngometer to reveal possible difference in vocal tract 

length between alaryngeal and laryngeal speakers during vowel production. Besides, 

as this is a pioneering study that applies ART on laryngectomees, it is suggested that 

reliability and validity of the use of pharyngometry on laryngectomees be evaluated to 

support the further use of ART on this aspect. 

 

Conclusions 

Pharyngometry revealed no significant difference in the vocal tract dimensions, 

including the length and volume of the oral cavity, pharyngeal cavity and the entire 

vocal tract, of alaryngeal and laryngeal speakers. The finding suggested that the 
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difference in the formant frequency during vowel production by alaryngeal and 

laryngeal speakers may be due to factors other than vocal tract configuration, for 

example, the difference in phonatory mechanism of alaryngeal and laryngeal speakers. 

The finding also suggested that the independence of the source and the filter in the 

source-filter theory (Fant, 1960; Pickett, 1999) may not be applicable to alaryngeal 

speakers. Further investigation of the vocal tract configuration of alaryngeal speakers 

is suggested to confirm the results of this study. The evaluation of reliability and 

validity of the use of pharyngometry on laryngeal speakers is recommended. 
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