Title	On the Zariski closure of a germ of totally geodesic complex submanifold on an arithmetic variety
Author（s）	Mok，N
Citation	International Workshop on Several Complex Variables and Complex Geometry，Academia Sinica，Taipei，Taiwan，9－13 July 2012
Issued Date	2012
URL	http：／／hdl．handle．net／10722／237804
Rights	This work is licensed under a Creative Commons Attribution－ NonCommercial－NoDerivatives 4．0 International License．

On the Zariski closure of a germ of totally geodesic complex submanifold on an arithmetic variety

Ngaiming Mok
July 9-13, 2012
Department of Mathematics, The University of Hong Kong
Hong Kong
E-mail:nmok@hku.hk

Abstract

Let Ω be a bounded symmetric domain, $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsion-free lattice, $X:=\Omega / \Gamma$. Let $Z \subset X$ be an irreducible quasi-projective variety such that Z is the Zariski closure of the germ of a totally geodesic complex submanifold $S \subset Z$ at some point $p \in Z$. Under certain non-degeneracy conditions one expects Z to be also totally geodesic, so that Z is in particular again uniformized by a bounded symmetric domain.

We explain first of all how this can be established in the special case of the complex unit ball. In this case, Z is proven to be totally geodesic without any additional hypothesis. Writing $\operatorname{dim}_{\mathbb{C}}(S)=d$, the idea is to generate an s-dimensional holomorphic family \mathcal{A} of d-dimensional totally geodesic complex submanifolds $S_{\alpha}, \alpha \in \mathcal{A}$, on the universal covering ball \mathbb{B}^{n}, so that the $(s+d)$-dimensional set Σ swept out by \mathcal{A} contains an open subset of an irreducible component \widetilde{Z} of $\pi^{-1}(Z), \pi: \mathbb{B}^{n} \rightarrow X$ being the universal covering map, and such that Σ can be extended holomorphically across $\partial \mathbb{B}^{n}$ at some boundary point $b \in \partial \mathbb{B}^{n} \cap \bar{\Sigma}$. Properties of Z are then derived from the asymptotic behavior of Σ as points approach b. A strengthening of the argument solves the problem in special cases such as the case where Ω is any bounded symmetric domain and Z is a complex surface.

