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Abstract This study aims to investigate effective slip arising from pressure-driven

flow through a slit channel bounded by lubricant-impregnated grooved surfaces. The

problem for flow over longitudinal grooves is solved analytically using the methods

of domain decomposition and eigenfunction expansion, while that for flow over trans-

verse grooves is solved numerically using the front tracking method. It is found that

the effective slip length and the lubricant flow rate can depend strongly on the geom-

etry of the microstructure, the direction of flow, as well as the lubricant viscosity. In

particular, the effective slip can be effectively enhanced by increasing the thickness

of a lubricating film atop the ribs. Under the same conditions, a flow that is parallel

to the lubricant-impregnated grooves will have a larger effective slip, but also a larger

lubricant flow rate, when compared with the case of flow normal to the grooves. It is

also shown that, in the case of transverse grooves, because of the downward displace-

ment of the interface between the working/lubricating fluids, the effective slip length

and lubricant flow rate may vary non-monotonically with the groove depth.
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1 Introduction

Slip arising from superhydrophobicity over a microstructured surface has long been

a subject of interest in interfacial science [21]. Recent advances have enabled the

realization of microstructured surfaces that can further achieve omniphobicity. In-

spired by Nepenthes pitcher plants [2], the surfaces have been known by various

names, such as slippery liquid-infused porous surface (SLIPS) [35], slippery pre-

suffused surface [8], or lubricant impregnated surface (LIS) [1]. In essence, these

kinds of surfaces are created by infusing a lubricating liquid into a functionalized

microtextured substrate. Experiments by Wong et al. [35] showed that SLIPS can be

in many aspects superior to a superhydrophobic surface on functioning as a slippery

surface. While a superhydrophobic surface provides effective slip via an air–liquid

interface, a SLIPS works by virtue of a liquid–liquid interface. In this regard, SLIPS

can repel a broader variety of liquids, such as water and hydrocarbons (i.e., it is both

hydrophobic and oleophobic, thereby omniphobic). In recent years, SLIPS or LIS

have been intensively studied, exploring its various capabilities: a low contact angle

hysteresis, self-cleaning, quick self-repairing after physical damage, ice repellency,

dropwise condensation or fog harvesting, stability under high pressure, anti-fouling,

enhanced optical transparency, and so on. See, among many others, Refs. [3–7, 9–

11, 18, 23, 24, 28, 30, 34, 36, 37] for some details about these potential capabilities

of SLIPS. Above all, it is durable, robust and inexpensive. All these characteristics

have made SLIPS or LIS a very promising material surface for many applications

where liquid/ice repellency or anti-fouling is wanted.

The laboratory study by Solomon et al. [29] has in particular shown that LIS

may generate significant drag reduction in viscous laminar flow. For a sufficiently

low lubricant to working fluid viscosity ratio, a remarkable drag reduction of 16%,

corresponding to an effective slip length of 18 microns, could be achieved. Also,

the numerical study by Rajagopal et al. [22] showed that a drag reduction as much

as 14% could be obtained using a viscoelastic liquid infused microtextured surface.

These experimental and numerical evidences, while preliminary, suggest that LIS

can be an excellent alternative to superhydrophobic surfaces, which are often used to

reduce drag for flow through a microchannel.

In terms of applications, SLIPS or LIS is still in a very early stage of develop-

ment. Much about its performance remains to be understood. Thus far, most studies

have been focused on the mobility of droplets on the surface. There virtually exist

no studies investigating in detail the hydrodynamics occurring within and outside the

surface texture under various flow conditions. Wong et al. [35] have remarked that the

liquid repellency of SLIPS is insensitive to the geometry of the underlying substrate,

as long as the texture is covered by a lubricating film. This is, however, not necessar-

ily true when SLIPS is used to achieve effective boundary slip in a pressure-driven

internal flow. For such flow, the effective slip will, on the contrary, strongly depend

on the geometry (e.g., two-dimensional ribs versus three-dimensional posts) of the

microtexture, whether or not covered by a lubricating film. This is a core issue that

needs to be addressed in order to quantify the effective slip or drag reduction that can

be derived from a SLIPS or LIS.
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The present study aims to investigate effective slip that can be accomplished us-

ing a lubricant impregnated surface in pressure-driven flow through a slit channel.

For simplicity of modeling, a channel wall that is patterned with a two-dimensional

periodic array of lubricant-impregnated grooves is considered. This will enable us to

investigate the two limiting cases, where the flow can be in a direction parallel or

normal to the wall pattern, corresponding to the upper and lower bounds of effective

slip that can be achieved with the same surface under a fixed set of flow conditions.

In addition to effective slip, we shall also look into the discharge of the lubricant

in the course of lubricating the flow of the working fluid. This drainage or discharge

of lubricant over time is one of the concerns in the use of LIS [29, 33].

Schönecker and Hardt [26, 27] and Schönecker et al. [25] have recently studied

longitudinal and transverse flow over a single cavity or a periodic array of rectangu-

lar cavities containing a second immiscible fluid. In their models, flow in the cavity

is approximated into a Navier slip boundary condition to the outer flow, where the

locally varying slip length is assumed to have an elliptic or a corresponding distribu-

tion, the peak of which can be determined heuristically from the related problems of

lid-driven flow. They have found good agreement between results generated by their

models and those by solving the Navier–Stokes equations numerically. Their models

are, however, limited in the following aspects. First, a flat (i.e., undeformed) inter-

face between the outer and cavity fluids is assumed. Second, the interface is assumed

to be located exactly at the top of the cavity. Third, a semi-infinite domain of outer

fluid is assumed. Applying the assumption of a flat interface to flow over a transverse

cavity is subject to scrutiny, since the flow field will generate a pressure that is non-

uniformly distributed along the interface, which will then be deformed following the

flow dynamics. The interfacial deformation over a cavity can be large if the cavity is

sufficiently wide. Also, in practice, there is a tendency for the interface to be posi-

tioned slightly above the top of the cavity, forming a thin lubricating film above the

structured surface. In the present study, we shall look into problems incorporating

these effects: a deformable interface between the working and lubricating fluids in

the case of transverse flow, and a thin lubricating film above the structured surface

in the case of longitudinal flow. We shall also look into effect due to a finite channel

height, or wall confinement.

Our problems for flow over longitudinal and transverse grooves are described in

further detail in Secs. 2 and 3, respectively. We shall determine for each problem the

effective slip and lubricant flow rate as functions of geometrical parameters (such as

the width and depth of the grooves, thickness of the working fluid layer, and thick-

ness of the lubricant film atop the ribs), and fluid properties (such as the viscosity of

the lubricant). The problem for longitudinal grooves, which is one dimensional, can

be solved semi-analytically using the methods of domain decomposition and eigen-

function expansion. The problem for transverse grooves, which is two dimensional

involving an undetermined interface separating the working and lubricating fluids,

can only be solved numerically. We have chosen to use the front tracking numerical

method to solve this problem of two-phase flow with a movable interface. We shall

present numerical results to reveal how the controlling parameters may have simi-

lar or dissimilar effects on the effective slip and lubricant flow rate, depending on

whether the flow is parallel or normal to the grooves.
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2 Longitudinal grooves

2.1 Problem formulation

As stated above, the present study aims to look into pressure-driven flow through a

slit channel bounded by two identical walls which are each patterned with a two-

dimensional periodic array of rectangular grooves infused with a lubricating fluid. In

this section, flow that is parallel to the grooves, which are then referred to as longi-

tudinal grooves, is considered. We shall, for simplicity of analysis, assume that the

two wall patterns are aligned in phase, and therefore by symmetry, it suffices for us

to consider flow in one half of the channel. We show in Fig. 1 a definition sketch of

the problem, where the flow is perpendicular to the plane of paper. Unless stated oth-

erwise, we shall express equations and solutions in terms of non-dimensional quanti-

ties. The lengths are normalized by L, and the velocities are normalized by KzL
2/µw,

where L is half the wall pattern period, Kz = −∂ p/∂ z is the axial pressure gradient

applied to the fluids, and µw is the dynamic viscosity of the working fluid. The ra-

tio of the viscosity of the lubricating fluid (µo) to that of the working fluid (µw) is

denoted by η = µo/µw.

To allow analytical analysis, the interfacial curvature due to differential wetting

of the solid by the two fluids is ignored. In other words, a special contact angle of

the fluids with the wall of 90◦ is assumed. As a result, the Laplace pressure differ-

ence across the interface is equal to zero. We further assume that the pressure varies

only linearly in the z-direction (due to the externally applied pressure forcing), and is

invariant in the spanwise and vertical (x and y) directions. Locally the pressure is uni-

form across the channel section. In this regard, the flow is strictly unidirectional along

the z-direction. The flow kinematics and dynamics therefore allow us to consider a

flat interface between the two fluids in the case of longitudinal flow. The problem

here is to solve the z-momentum equation for the axial velocity w(x,y). Non-wetting

effect due to chemical coating of solid surfaces or intrinsic slippage is also ignored.

Two possible configurations are shown in Fig. 1: the interface between the two

fluids can be located above or below the top of the ribs and grooves. Our primary fo-

cus is on the first case, shown in Fig. 1(a), which is normally expected of a lubricant-

impregnated surface. In this configuration, the lubricating fluid not only completely

fills the grooves, but also covers the ribs with a thin film. Here, the interface between

the working and lubricating fluids is located at a height h0 above the top of the ribs

and grooves, and each groove has a width of 2a and depth b. In this flow configura-

tion, the working fluid, which is confined to a bulk region of height 2h, is completely

lubricated as it does not have direct contact with the solid walls. We decompose the

domain of analysis, which covers one half of a wall unit (0 ≤ x ≤ 1), into three re-

gions, as shown in Fig. 1(a). For convenience, we develop solutions for the flow of

the working fluid in Region I, and that of the lubricating fluid in Regions II and III

in terms of the wall-normal coordinates y and y′, respectively. Flow is purely one di-

mensional along the z-direction, where the velocity w(x,y) may be found using the

methods of domain decomposition and eigenfunction expansion [13–15] as described

below. By symmetry, the velocity gradient ∂ w/∂ x is zero at x = 0 and x = 1.
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Fig. 1 Definition sketch of flow over longitudinal grooves, where the flow is driven by a pressure gradient

perpendicular to the plane of paper, and (a) the interface is above the top of the ribs, or (b) the interface is

below the top of the ribs.

When the lubricating fluid dwindles in volume as a result of discharge, the inter-

face between the two fluids may fall below the top of the ribs, as is shown in Fig. 1(b).

In this configuration, the domain can be decomposed into Regions I and II, which are

occupied by the working fluid, and Region III, which is occupied by the lubricating

fluid. Likewise, the problem can be solved using the methods of domain decomposi-

tion and eigenfunction expansion. We shall present results, but not the mathematical

details, for this case.
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2.2 Semi-analytical solution

Let us consider the flow depicted in Fig. 1(a). In Region I (−h ≤ y ≤ 0), which is

occupied by the working fluid, the governing equation is

∂ 2wI

∂ x2
+

∂ 2wI

∂ y2
= −1. (1)

The solution satisfying symmetry about y = 0 is given by

wI(x,y) =
1

2

(

h2 − y2
)

+A0 +
∞

∑
n=1

An cos(αnx)
cosh(αny)

cosh(αnh)
, (2)

where A0,1,··· are undetermined coefficients and

αn = nπ. (3)

In Region II (0 ≤ y′ ≤ h0) and Region III (−a ≤ x ≤ a, −b ≤ y′ ≤ 0), which are

occupied by the lubricating fluid, the governing equation is the same:

∂ 2wII,III

∂ x2
+

∂ 2wII,III

∂ y′2
= −

1

η
. (4)

The solution for Region II is expressible by

wII(x,y) = −
y′2

2η
+B0y′ +C0 +

∞

∑
n=1

cos(αnx)
[

Bn sinh(αny′)+Cn cosh(αny′)
]

, (5)

while that for Region III satisfying no-slip at y′ = −b can be written as

wIII(x,y) = −
1

2η

(

y′2 +by′
)

+
∞

∑
n=1

Dn cos(βnx)
[

eβny′ − e−βn(y′+2b)
]

+
∞

∑
n=1

En sin(γny′)
cosh(γnx)

cosh(γna)
, (6)

where B0,1,···, C0,1,···, D1,··· and E1,··· are undetermined coefficients, and

βn = (n−1/2)π/a, γn = nπ/b. (7)

The coefficients are to be determined using the matching and boundary conditions,

as detailed below. In this regard, we need to truncate the series to finite terms. Let

us truncate coefficients An, Bn, Cn each to M terms, Dn to N terms, and En to P

terms, where N ≈ Integer(aM) and P ≈ Integer(bM). We are going to develop linear

equations to be solved for these coefficients. According to previous studies [14, 32],

M ∼ 100 is sufficient to generate accurate results.

The continuity of velocity and shear stress on the interface, wI(y =−h) = wII(y
′ =

h0) and ∂ wI/∂ y|y=−h = η∂ wII/∂ y′|y′=h0
, give

A0 +
M

∑
n=1

An cos(αnx)

= −
h2

0

2η
+h0B0 +C0 +

M

∑
n=1

[Bn sinh(αnh0)+Cn cosh(αnh0)]cos(αnx), (8)
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h−
M

∑
n=1

αnAn tanh(αnh)cos(αnx)

= −h0 +ηB0 +η
M

∑
n=1

αn [Bn cosh(αnh0)+Cn sinh(αnh0)]cos(αnx). (9)

The continuity of velocity on the top of the groove together with the no-slip condition

on the top of the rib:

wII =

{

wIII 0 ≤ x < a,
0 a < x ≤ 1,

y′ = 0 (10)

gives

C0 +
M

∑
n=1

Cn cos(αnx) =

{

∑N
n=1 Dn

(

1− e−2βnb
)

cos(βnx) 0 ≤ x < a,
0 a < x ≤ 1,

. (11)

The continuity of shear stress on the top of the groove:

∂ wII

∂ y′
=

∂ wIII

∂ y′
0 ≤ x ≤ a, y′ = 0 (12)

gives

B0 +
M

∑
n=1

αnBn cos(αnx)

= −
b

2η
+

N

∑
n=1

βnDn

(

1 + e−2βnb
)

cos(βnx)+
P

∑
n=1

γnEn
cosh(γnx)

cosh(γna)
. (13)

Finally, the no-slip condition on the lateral wall of the groove, wIII(x = a,−b ≤ y′ ≤
0) = 0, gives

P

∑
n=1

En sin(γny′) =
1

2η

(

y′2 +by′
)

. (14)

On matching terms, we get from Eqs. (8) and (9)

A0 = −
h2

0

2η
+h0B0 +C0, (15)

B0 =
1

η
(h +h0) , (16)

An =
η sech(αnh0)Cn

tanh(αnh) tanh(αnh0)+η
, (17)

Bn = −
tanh(αnh)+η tanh(αnh0)

tanh(αnh) tanh(αnh0)+η
Cn. (18)

On integrating Eq. (11) with respect to x from 0 to 1, we get

C0 =
N

∑
n

Dn
(−1)n+1

βn

(

1− e−2βnb
)

. (19)
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For m = 1, · · · ,M, we multiply Eq. (11) by cos(αmx), which is then integrated with

respect to x from 1 to 0. This gives

1

2
Cm−

N

∑
n=1

Imn

(

1− e−2βnb
)

Dn = 0, (20)

where

Imn =

∫ a

0
cos(αmx)cos(βnx)dx

=

{

sin[(αm−βn)a]
2(αm−βn)

+
sin[(αm+βn)a]

2(αm+βn)
for αm 6= βn

a
2

for αm = βn

. (21)

For m = 1, · · · ,P, we multiply Eq. (14) by sin(γmy′), which is then integrated with

respect to y′ from −b to 0. This gives

Em =
2

ηγ3
mb

[

1 +(−1)m+1
]

. (22)

For m = 1, · · · ,N , we multiply Eq. (13) by cos(βmx), which is then integrated with

respect to x from 0 to a. This gives, after substituting Eqs. (18) and (22),

M

∑
n=1

αnInm

[tanh(αnh)+η tanh(αnh0)]

[tanh(αnh) tanh(αnh0)+η ]
Cn +

βma

2

[

1 + e−2βmb
]

Dm

=

(

b

2η
+B0

)

(−1)m+1

βm
−

P

∑
n=1

2βm(−1)m+1[1 +(−1)n+1]

ηγ2
n b (β 2

m + γ2
n )

. (23)

Equations (20) and (23) constitute a system of M + N linear equations that can be

solved, using a standard routine, for the coefficients C1,···,M and D1,···,N . The other

coefficients may then be determined from Eqs. (15), (17)–(19).

The volume flow rate of the working fluid per unit width of the channel is

q = 2

∫ 0

−h

∫ 1

0
wIdxdy =

2

3
h3 +2hA0. (24)

By equating this flow rate to that through a slit channel of height 2h bounded by plane

walls of slip length λ : q = 2h3/3+2h2λ , we may deduce that the effective slip length

for the longitudinal grooves is given by

λ‖ =
A0

h
=

1

2η

(

2h0 +
h2

0

h

)

+
C0

h
. (25)

Note that the effective slip length deduced this way is a macroscopic or system spe-

cific quantity; it is the boundary slip length of an equivalent uniform channel of the

same height giving rise to the same rate of flow of the working fluid under the same

pressure forcing. A positive effective slip length amounts to flow enhancement, which

has a clear meaning here. It refers to how much the flow rate is increased when com-

pared with the base case of flow through the same equivalent uniform channel but

without boundary slip.
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The flow rate of the lubricating fluid per unit width on one side of the channel is

qo =

∫ h0

0

∫ 1

0
wIIdxdy′ +

∫ 0

−b

∫ a

0
wIIIdxdy′

=
h2

0

η

(

h

2
+

h0

3

)

+h0C0 +
ab3

12η
+

N

∑
n=1

Dn(−1)n+1

β 2
n

(

1− e−βnb
)2

−
P

∑
n=1

2 tanh(γna)

ηγ5
n b

[

1 +(−1)n+1
]2

. (26)

The solution given above is valid even for the limiting case h0 = 0 (i.e., the van-

ishing of Region II). It is also of interest to consider h0 < 0, corresponding to the

case where the interface between the working/lubricating fluids falls below the top of

the ribs, and the lubricant is completely inside the grooves; see Fig. 1(b). In this case

the lubricating film above the ribs disappears, thereby causing the working fluid to be

in contact with the top portion of the ribs, possibly resulting in a smaller lubricating

effect compared with the case shown in Fig. 1(a) if the lubricant is less viscous than

the working fluid (η < 1). The solution for the problem with a negative h0 can be

deduced in a manner similar to that presented above. The effective slip length is also

derived in a similar manner, i.e., by equating the flow rate of the working fluid to that

through a slit channel of uniform height 2h and constant wall slip length λ . In the

interest of space, the details of the solution are omitted here, but the case of h0 < 0

will be included in our numerical discussion below.

2.3 Results and discussion

To demonstrate accuracy of our model, let us first compare results with those by

previous studies. We show in Fig. 2 the longitudinal slip length λ‖ as a function

of the groove area fraction a, for the limiting case h � 1 (very thick channel) and

h0 = 0 (interface at the top of the grooves), and a unity aspect ratio of the grooves

b = 2a. For η > 0, our results are found to agree very well with those presented in

Fig. 7(a) of Schönecker et al. [25], despite a different approach of modeling used

by these authors. When the lubricating fluid becomes inviscid η = 0, the problem

reduces to the classical problem studied by Philip [20] for Stokes flow over a surface

with longitudinal alternating no-shear and no-slip slots. The formula to calculate the

effective slip length for this classical problem is well known:

lim
h�1
h0=0
η=0

λ‖ =
2

π
ln

[

sec
(πa

2

)]

. (27)

Again, for η = 0, our results are found in close agreement with those computed by

the formula above. Using M = 100, we have obtained results which differ from the

analytical values by a relative difference of 10−3 or smaller.

We next show in Fig. 3 the slip length λ‖, and the lubricant flow rate qo, as func-

tions of the height of the interface above the top of the ribs (i.e., the lubricant film
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Fig. 2 For longitudinal grooves, the effective slip length λ‖ as a function of the groove area fraction a and

the viscosity ratio η , where b = 2a, h � 1 and h0 = 0. The squares (for η > 0) are from Schönecker et

al. [25], and the circles (for η = 0) are from Eq. (27).

thickness) h0, and the groove area fraction 0 < a ≤ 1. The limiting case of a = 1

corresponds to thin fins. When h0 < 0 (i.e., lubricant completely inside the grooves),

the slip length increases only mildly as the interface increases in height (more lubri-

cant filling the grooves). In sharp contrast, when h0 > 0 (i.e., the interface lies atop

the grooves and ribs), the slip length increases much more rapidly as h0 increases.

For small η , this effect becomes more pronounced for larger a. It is remarkable that

at a = 1, λ‖ can increase dramatically as h0 turns slightly from negative to positive;

see Fig. 3(c). Our results thereby confirm that the lubricant film atop the ribs indeed

plays an important role in lubricating the working fluid flow. For a sufficiently thick

lubricant film, the effective slip length increases in a nearly linear manner with the

film thickness, where the rate of increase is larger for a smaller viscosity ratio η .

A larger effective slip is, however, accompanied by a larger flow rate of the lu-

bricating fluid. Figures 3(b, d) show that qo has largely similar dependence on the

parameters a and h0 as λ‖ does. A less viscous lubricant gives rise to a higher slip

length, but also gives rise to a larger flow rate of the lubricant itself. This is because, in

this longitudinal configuration, the lubricant, although mostly stored in the grooves,

is driven by the same pressure gradient as the working fluid is. We therefore conclude

that, for longitudinal grooves, a thicker and/or a less viscous lubricant film atop the

ribs will result in a better lubricating effect, but will at the same time cause a larger

discharge rate of the lubricating fluid itself. One should note that significant lubricant

discharge occurs mainly when the ribs are covered by a relatively thick layer of lu-

bricating fluid. This means that in practice the lubricant film atop the ribs cannot be

too thick in order to maintain durability of the lubricating effect. We also remark that

in practice, the grooves may have closed ends (instead of open ends as assumed in

our model) at the channel entry and exit, and hence the actual discharge rate could

be much less than that predicted by the present model. A return current will be in-
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Fig. 3 For longitudinal grooves, the effective slip length λ‖ and lubricant flow rate qo as functions of the

lubricant film thickness h0 and groove area fraction a. The flow fields for the two cases marked by the

symbols in (c) are shown in Fig. 4.

duced by a back pressure in the case of closed grooves, which is beyond the scope

of the present work. Nevertheless, the qualitative trends revealed here should remain

the same irrespective of the end conditions.

To compare the two configurations where the interface is above or below the top

of the ribs, we show in Fig. 4 the flow fields for the two cases, which are marked by

the squares in Fig. 3(c). This figure confirms that, with a thin lubricating film atop the

ribs, the velocity of the working fluid will be materially increased across the entire

channel section. Flow enhancement is particularly significant in the region above the

ribs. As a result, the working fluid velocity is more uniformly distributed in case (a)

than in case (b). Despite different geometries, these longitudinal flow patterns look

similar to those presented by Schönecker and Hardt [26] and Schönecker et al. [25].
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Fig. 6 For longitudinal grooves, the effective slip length λ‖ and lubricant flow rate qo as functions of the

working fluid layer thickness h and the groove area fraction a. The dashed lines denote the thick-channel

limits.

From Fig. 5, we see that the slip length λ‖ and the lubricant flow rate qo both

increase monotonically with the groove depth b, but with different trends. The rate

of increase of λ‖ decreases as b increases such that λ‖ tends to a deep-groove limit

for sufficiently large b. The deep-groove limit for the slip length can be practically

attained, say, when b = 2 for η = 0.5. In sharp contrast, there is no deep-groove limit

for qo, which increases without an upper bound as b increases. From this figure, we

may infer that it is not beneficial to have excessively deep grooves. One can reason

that for too deep grooves, the rate of discharge of the lubricant can be large, while the

slip length is already upper-bounded by the deep-groove limit. We further note that at

b = 0 (i.e., zero groove depth or flat wall), the slip length and the lubricant flow rate

simplify to λ = (h0/η)(1 +h0/2h) and qo = (hh2
0/2η)(1 +2h0/3h).
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We then show in Fig. 6 how the working fluid layer thickness h may have opposite

effects on the slip length λ‖ and the lubricant flow rate qo. We first see that λ‖ de-

creases as h increases, but asymptotically tends to a thick-channel limit (the dashes)

as h gets sufficiently large. This decreasing trend of effective slip with increasing

channel height is true when the longitudinal slip patterns on the two walls are in

phase, as has been reported previously by Ng and Zhou [17] and Ng and Chen [12].

The thick-channel limit for the slip length can be practically attained when h = O(1)
for relatively small a and b (i.e., shallow and narrow grooves), but is not attained until

h ≥ O(10) for large a and b (i.e., deep and wide grooves). We then see that, in sharp

contrast, there is no upper limit for qo, which increases linearly as h increases. This

is due to the fact that the shear stress increases linearly with distance from the center-

line of the channel. Therefore, thicker the layer of the working fluid, larger the shear

stress acting on the lubricant. From this figure, we may infer that it is not desirable

either to have too thick a channel with longitudinal grooves, which may induce an

excessively large rate of discharge of the lubricant.

3 Transverse grooves

3.1 Problem formulation

We next consider flow through the same lubricant-impregnated-grooved channel, but

the grooves are now aligned normal to the principal direction of the flow. The grooves

are thereby referred to as transverse grooves. Again, in-phase alignment of grooves

on the two walls is assumed, and therefore by symmetry it suffices to consider flow

in one half of the channel. A definition sketch of the flow is shown in Fig. 7. The

two-dimensional flow, driven by a pressure gradient Kx in the x-direction, has veloc-

ity components u(x,y) and v(x,y) in the x- and y-directions. Pressure p(x,y) is also

induced as a result of the two-dimensional configuration. Owing to the vertical ve-

locity v, a flat interface is not possible; otherwise the condition of zero flux across

the interface would be violated. The interface has to deform, as dictated by the flow

kinematics, to a curved surface in order to satisfy the condition that the fluid flow ve-

locity on the interface is tangential to the interface. Essentially, the interface will be

displaced downward in a manner as shown in Fig. 7. The displacement of the inter-

face is not known a priori but has to be found as part of the solution. This causes the

problem not amenable to analytical solution methods. Instead, it has to be solved nu-

merically. The problem here is to solve the continuity, x- and y-momentum equations

for the three unknowns (u,v, p) as functions of x and y.

As in the preceding problem, we shall unless stated otherwise express equations

and solutions in terms of non-dimensional quantities. The lengths, velocities, and

pressure are, respectively, normalized by L, KxL2/µw, and KxL, where L is half the

wall pattern period, Kx = −∂ p/∂ x is the axial pressure gradient applied to the flu-

ids, and µw is the dynamic viscosity of the working fluid. The ratios of the density

and dynamic viscosity of the lubricating fluid (ρo, µo) to those of the working fluid

(ρw, µw) are denoted by γ = ρo/ρw and η = µo/µw, respectively.
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Fig. 7 Definition sketch for flow over transverse grooves, where the flow is driven by a pressure gradient

in the x-direction.

We consider a computational domain (Fig. 7) that covers one periodic unit of the

wall pattern: the inlet boundary is at x = 0 while the outlet boundary is at x = 2, both

crossing the middle of the respective ribs. Here, the problem has four geometrical

quantities as input parameters: a, b, h and h0, which are, respectively, half the groove

width, the groove depth, half the thickness of the working fluid layer at x = 0, and the

height of the interface above the top of the rib at x = 0. Note that a also represents

the groove area fraction (i.e., the fraction of wall being grooved).

To solve the present problem, which is characterized by the flow of two immis-

cible fluids separated by a sharp interface, we have developed a numerical scheme

based on the front tracking method. The essence of the method is to use a “one-fluid”

description for the two-phase flow, which is simulated using the same set of govern-

ing equations for the entire domain, where the fluid properties such as density and

viscosity may vary as functions of space.

The governing equations are the standard continuity and momentum equations

for incompressible Newtonian fluid flow:

∇ ·u = 0, (28)

ρ̄

(

∂ u

∂ t
+u ·∇u

)

= −
1

Re
∇p +

1

Re
∇ ·

[

µ̄
(

∇u+∇T u
)]

, (29)

where u = (u,v), t is time, Re is the Reynolds number (in terms of physical quanti-

ties):

Re =
ρwUL

µw

, U =
KxL2

µw

, (30)

and

ρ̄ =

{

1 for working fluid

γ for lubricating fluid
, µ̄ =

{

1 for working fluid

η for lubricating fluid
(31)
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In addition to the four geometrical parameters mentioned above, the present problem

is controlled also by the following parameters, which characterize the fluid properties

and flow dynamics: the density and viscosity ratios, (γ,η), and the Reynolds num-

ber, Re. With the computational domain depicted in Fig. 7, the problem is solved

numerically as an initial-boundary-value problem. The two fluids are initially at rest

separated by a flat interface located at a height h0 above the top of the rib/groove.

The flow is driven from t > 0 onward by a steady pressure gradient. On the outlet

x = 2, the pressure is fixed at 0, while on the inlet x = 0, the pressure is fixed at 2 in

order to impose a net unity pressure gradient on the fluids. Also, periodic conditions

are prescribed on the inlet and outlet for the velocities, and therefore ∂ u/∂ x and v

are both zero on the inlet/outlet. Symmetry is to be satisfied along the centerline of

the channel. Hence, along the top of the domain, the condition of zero shear stress is

imposed. No-slip condition is specified on the solid walls. The computation proceeds

with time until the steady state is practically achieved. In each time advancement, the

interface is kept at a fixed height of h0 atop the rib at the inlet/outlet, while between

the inlet and outlet it may move as dictated by the instantaneous flow kinematics

and dynamics. The downward movement of the interface will reduce the amount of

lubricating fluid in the system with time. When the steady state is reached, the inter-

face will become a stationary curved surface that satisfies the kinematic and dynamic

boundary conditions. The tracking of the movement of the interface is an essential

part of the numerical solution. The key features about the front tracking method that

we have used are briefly described in the appendix.

Again, the overall lubricating effect is to be represented by an effective slip length,

which can be inferred from a macroscopic relationship between flow rate and the

applied pressure gradient. As in the preceding problem, on matching with the rate of

flow through an equivalent slit channel of height 2h bounded by plane walls of slip

length λ : q = 2h3/3 + 2h2λ , we may obtain the effective slip length for transverse

grooves as follows:

λ⊥ =

(

qw −qns

qns

)

h

3
, (32)

where qns = 2h3/3 is the flow rate for the base case of no-slip walls, and

qw = 2

∫ h+h0

h0

uwdy′ at x = 0 (33)

is the flow rate of the working fluid under the lubricating effect, where y′ = y−b. The

rate of flow of the lubricating fluid is also found as follows:

qo =

∫ h0

0
uody′ at x = 0. (34)

We have used Simpson’s formula to evaluate the above integrals numerically.

3.2 Results and discussion

We have generated results based on a uniform staggered Cartesian grid with a grid

spacing of 0.02, and a time step of O(10−4). It normally takes O(105) time steps to
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reach a steady state. Our primary objective is to determine the effective slip length

λ⊥ and the lubricant flow rate qo as functions of the following parameters: a (area

fraction of the groove), b (groove depth), h0 (thickness of the lubricant film atop

the rib at x = 0), h (half the thickness of the working fluid layer at x = 0), and η
(viscosity ratio). Except for the accuracy checking of the scheme, the values of γ =
0.8 and Re = 1 have been used for the density ratio and the Reynolds number for the

numerical results presented below. We do not vary these two parameters, as the inertia

effect is not considered a significant factor in the present problem. In fact, we have

generated results for different Re, and found that the results are nearly independent

of the Reynolds number as long as Re ≤ O(1); see Table 1 for some sample results.

Table 1 Effect of Re on the working fluid flow rate qw and effective slip length λ⊥ for transverse grooves,

where a = 0.75, b = 0.22, h = 0.8, h0 = 0.06, η = 0.2.

Re 1 0.5 0.2 0.1

qw 0.7856 0.7854 0.7848 0.7839

λ⊥ 0.347084 0.346927 0.346459 0.345755

b
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Fig. 8 For transverse grooves, the effective slip length λ⊥ as a function of groove depth b and groove area

fraction a, as computed by the numerical model (lines), and by the analytical model (symbols).

Let us first check the accuracy of our numerical scheme by comparing results

for the special case of low-Reynolds-number flow of a single fluid (i.e., γ = η = 1,

Re� 1) through a channel with transverse grooves. For this special case, the problem

can be solved analytically using, again, the methods of domain decomposition and

eigenfunction expansion [13–15, 32]. The comparison, shown in Fig. 8, reveals that

the slip length λ⊥ found as a function of a and b by the numerical model agrees very
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well with that by the analytical model. The difference is less than 0.1%. This provides

a support to the accuracy of our numerical model.
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Fig. 9 For transverse grooves, the effective slip length λ⊥ and lubricant flow rate qo as functions of the

lubricant film thickness h0 and groove area fraction a.

We first show in Fig. 9 how the slip length and lubricant flow rate may change as

functions of the lubricant film thickness and the groove area fraction. The fashions in

which λ⊥ and qo increase with increasing a and h0 are qualitatively the same as those

shown earlier in Fig. 3, the counterpart for longitudinal grooves. On inspecting the

values, one will find that, with the same set of parameters, the slip length is in general

smaller for transverse grooves than for longitudinal grooves. The same statement

applies to the lubricant flow rate. This quantitative difference between longitudinal

and transverse grooves is somewhat expected. It is well known in the literature that

the effective slip for flow normal to a two-dimensional wall pattern (e.g., alternate

stick–slip slots) is smaller than that for flow parallel to the pattern; see, e.g., Refs. [16,

20, 32]. We provide in Table 2 some values of the slip length and lubricant flow rate

for the cases of longitudinal and transverse grooves, as have been shown in Figs. 3

and 9.

We next show in Fig. 10 the slip length λ⊥, the lubricant flow rate qo, as well as

the peak depression of the interface dm, as functions of the the groove depth b. De-

pending on the viscosity ratio η , the trends can be dramatically different from those

shown earlier in Fig. 5 for the case of longitudinal grooves. It is remarkable that, for

a small viscosity ratio, say η ≤ 0.1, λ⊥ and qo will vary in a non-monotonic manner

with the groove depth b. Figure 10(a) shows that, for η = 0.1, 0.05, the slip length λ⊥

first decreases as b increases, reaching a minimum before increasing to approach a

deep-groove limit at large b. One can reason that this decrease of the slip length is as-

sociated with an increased downward displacement of the interface above the groove.

Figure 10(c) shows that the peak interface depression dm, which happens at x = 1
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Table 2 Comparison of slip length λ and lubricant flow rate qo for longitudinal and transverse grooves,

where b = 0.2, h = 0.8, η = 0.5.

a h0 Longitudinal grooves Transverse grooves

λ‖ qo λ⊥ qo

0.95 0.06 0.4775 0.0486 0.3008 0.0133

0.08 0.5308 0.0581 0.3600 0.0243

0.1 0.5845 0.0686 0.4197 0.0380

0.75 0.06 0.3581 0.0332 0.2209 0.0078

0.08 0.4096 0.0405 0.2714 0.0141

0.1 0.4616 0.0488 0.3236 0.0225
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Fig. 10 For transverse grooves, the effective slip length λ⊥ , lubricant flow rate qo, and peak interface

depression dm, as functions of the groove depth b and viscosity ratio η . The flow fields for the three cases

marked by the symbols in (a) are shown in Fig. 11.
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(i.e., the center of the groove), first increases as the groove depth b increases, reach-

ing a maximum before falling off sharply to approach a deep-groove limit at large b.

A larger depression or undulation of the interface amounts to a rougher boundary as

far as the working fluid flow is concerned. This translates to a higher flow resistance,

or a smaller effective slip, for flow over a deeper transverse groove. This happens

until the groove depth attains the point where the undulation of the interface reaches

the maximum. Beyond this point, the interface undulation falls off, giving rise to a

smoother boundary (or a larger effective slip) for the working fluid flow. Figure 10(b)

shows that the corresponding qo also reaches a minimum at the point where the slip

length is the minimum. In short, we may ascribe these non-monotonic variations of

the slip length and lubricant flow rate to the extent of downward displacement of

the interface into the groove as the groove depth varies. Such non-monotonic varia-

tions are distinct features for flow over transverse grooves. For flow over longitudinal

grooves, the interface will always be flat unaffected by the groove depth.

Figures 10(a, b) also show that, for a sufficiently large viscosity ratio, say η ≥ 0.5,

the non-monotonic variations mentioned above will disappear. Both the slip length

and the lubricant flow rate will increase monotonically as the groove depth increases,

approaching some finite limits at large groove depth. This happens when the lubricant

viscosity is sufficiently high, for which the roughness effect arising from the interface

undulation is much less influential. On comparing Fig. 10 with Fig. 5, one can readily

see that the slip length and lubricant flow rate for the case of transverse grooves are

both smaller than the counterparts for the case of longitudinal grooves. We provide

in Table 3 some values of the slip length and lubricant flow rate for the cases of

longitudinal and transverse grooves, as have been shown in Figs. 5 and 10.

Table 3 Comparison of slip length λ and lubricant flow rate qo for longitudinal and transverse grooves,

where a = 0.75, h = 0.8, h0 = 0.06.

η b Longitudinal grooves Transverse grooves

λ‖ qo λ⊥ qo

0.1 0.1 1.2182 0.0677 0.5290 0.0264

0.4 1.9700 0.3079 0.4355 0.0213

1.0 2.4040 0.9650 0.8206 0.0381

0.2 0.1 0.6245 0.0352 0.3394 0.0156

0.4 1.0685 0.1706 0.3319 0.0145

1.0 1.3355 0.5286 0.4480 0.0185

For illustration, we show in Fig. 11 the flow fields for the three cases that are

marked by a symbol in Fig. 10(a), where η = 0.05. This figure clearly shows how

the interface may be displaced downward to a different extent into the groove de-

pending on the groove depth. For a relatively shallow groove, the interface may sag

so substantially at the center that it can almost reach the bottom of the groove; see

Fig. 11(a). Two isolated vortices are formed at the two corners of the groove. At the

point when the interface displacement at the center is the maximum, the interface

may penetrate as much as two-thirds of the groove depth; see Fig. 11(b). For flow

over a deeper groove, the interface will, to the contrary, be displaced less into the
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Fig. 11 Streamlines for the three cases marked by the symbols in Fig. 10(a).

groove, resulting in a smoother flow of the working fluid over the groove. This hap-

pens when the two vortices grow in size and intensity, and gradually merge to form

a single recirculating zone in the groove. As can be seen in this figure, the net flow

of the lubricant is limited to a thin layer underneath the interface. This can be called

a skimming flow of the lubricant. Much of the lubricant flow inside the groove is

in the form of a recirculating cell. Energy is extracted from the main stream flow to

maintain the vortical flow of the lubricant. This explains why the drag is higher for

flow over transverse grooves than that over longitudinal grooves.

We finally show in Fig. 12 how the working fluid layer thickness h may have

opposite effects on the slip length λ⊥ and the lubricant flow rate qo. The trends are

similar to those seen earlier in Fig. 6 for the case of longitudinal grooves. First, the

transverse effective slip length λ⊥ decreases, while the lubricant flow rate increases,

as the working fluid layer thickness h increases. Second, at sufficiently large h, λ⊥

will asymptotically tend to a thick-channel limit (not shown in the figure), while qo

may increase in a nearly linear manner without an upper bound. Third, on comparing
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Fig. 12 For transverse grooves, the effective slip length λ⊥ and lubricant flow rate qo as functions of the

working fluid layer thickness h and the groove area fraction a.

Figs. 4 and 10, it is found again that, with the same set of parameters, λ⊥ is smaller

than λ‖, and qo is also smaller for transverse grooves than for longitudinal grooves.

From Figs. 4 and 10, we may remark again that it is not desirable to use a grooved

surface to lubricate flow in a too deep channel, whether the flow is parallel or normal

to the grooves. Otherwise, the rate of discharge of the lubricating fluid can be rather

large. We provide in Table 4 some values of the slip length and lubricant flow rate for

the cases of longitudinal and transverse grooves, as have been shown in Figs. 6 and

12.

Table 4 Comparison of slip length λ and lubricant flow rate qo for longitudinal and transverse grooves,

where b = 0.2, h0 = 0.06, η = 0.5.

a h Longitudinal grooves Transverse grooves

λ‖ qo λ⊥ qo

0.95 0.5 0.5158 0.0337 0.3389 0.0093

0.8 0.4775 0.0486 0.3008 0.0133

2.0 0.4399 0.1086 0.2621 0.0311

0.75 0.5 0.3858 0.0231 0.2423 0.0053

0.8 0.3581 0.0332 0.2209 0.0078

2.0 0.3321 0.0741 0.1967 0.0184

4 Concluding remarks

We have investigated longitudinal and transverse flows through a slit channel bounded

by slippery surfaces that are microstructured with two-dimensional periodic rectan-

gular grooves infused with a lubricant. While the problem for longitudinal flow is
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solved analytically using the methods of domain decomposition and eigenfunction

expansion, the problem for transverse flow is solved numerically using the front track-

ing method in order to compute the undetermined interface between the working and

lubricating fluids.

The key findings of the present study are summarized as follows. First, for wall-

bounded pressure-driven flow, the effective slip depends strongly on the geometry of

the underlying microtextures. This is in sharp contrast to what has been found for the

mobility of droplets on LIS, which is essentially insensitive to the geometry of the un-

derlying substrate. We have shown how the effective slip may vary depending on the

width and depth of the grooves, the channel height, and the direction of flow relative

to the grooves. Second, the position of the interface, whether above or below the top

of the ribs/grooves, is particularly influential in determining the effective slip that can

be derived from the lubricant infused surface. The effective slip length can be several

times larger when the lubricant overfills the grooves to form a film atop the ribs than

when the lubricant is completely confined inside the grooves. This is consistent with

the observation made by Wong et al. [35] that liquid repellency is primarily due to the

lubricating film covering the textures. Third, lubricant-impregnated grooves that are

aligned parallel to the flow may in general give rise to higher effective slip than when

the grooves are aligned perpendicular to the flow. These two limiting alignments

should correspond to the upper and lower bounds for the effective slip obtainable

from the grooved surface. Fourth, in the case of transverse grooves, the downward

displacement of the interface above a groove may vary non-monotonically with the

groove depth. There exists a particular groove depth at which the interface undulates

with the maximum amplitude, corresponding to the roughest boundary for the work-

ing fluid flow, thereby the minimum effective slip. Fifth, for transverse grooves, the

forward flow of the lubricant is a thin layer skimming over the grooves, while much

of the flow inside the grooves is in the form of recirculating cells. As a result, the net

lubricant flow over transverse grooves is limited. In sharp contrast, for longitudinal

grooves, the entire body of the lubricant flows forward, resulting in a possibly large

discharge of the lubricant over time.

It is desirable to study in the future other effects that may also control the per-

formance of lubricant-impregnated surfaces when used to provide drag reduction in

wall-bounded flows. We may consider, for examples, advanced effects due to three-

dimensional textures (such as arrays of posts on a square lattice), thermocapillary,

high Reynolds number, and so on. In the present study, we have ignored pressure

difference across the fluid–fluid interface arising from interfacial tension. In a future

study, this assumption can be relaxed, thereby allowing the interface to deform ac-

cording to the Laplace pressure condition [33]. The problem would be challenging

as the deformation of the interface is completely unknown, and it is of fundamental

interest to find out how this will affect the effective slip length. Another issue that

deserves investigation is the possible hydrodynamic instability of the lubricant film

atop the structured surface.
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Appendix: Numerical scheme based on the front tracking method

In this appendix, we provide some basic details about the front tracking method that

we have adopted to solve the present problem. For further details about the method,

see Tryggvason et al. [31].

The method is essentially to solve the governing equations by the finite vol-

ume approach. Accordingly, we discretize the computational domain into sufficiently

small regular control volumes, and approximate the variables such as velocity, pres-

sure, and density using their average values over each control volume. As in standard

finite volume methods, a staggered mesh is used, where the scalar variables includ-

ing pressure, density, and dynamic viscosity are stored in the cell center of the control

volume while the velocities are located on the respective cell faces. The projection

method is used to solve the momentum equation. We first compute the velocity field

without considering the pressure, and get a temporary non-divergence-free velocity

field u∗:

ρ̄n

(

u∗−un

∆ t
+un ·∇un

)

=
1

Re
∇ ·

[

µ̄n
(

∇un +∇T un
)]

, (A1)

where n denotes the old time level. The pressure pn is then added, which will update

the velocity to the new time level:

ρ̄n

(

un+1 −u∗

∆ t

)

= −
1

Re
∇pn. (A2)

Using the requirement that the velocity is divergence-free at the new time level: ∇ ·
un+1 = 0, we may take the divergence of the equation above and get the following

governing equation for pn:

∇ ·

(

1

ρ̄n
∇pn

)

=
Re

∆ t
∇ ·u∗. (A3)

Since the density ratio in our computation does not deviate much from 1, this Poisson

equation for the pressure can be solved efficiently using the successive over relaxation

(SOR) method.

In the present problem, where the Reynolds number is not too large, the advec-

tion and diffusion terms can be accurately computed using the centered differencing

scheme. For high Reynolds numbers, we may use either the QUICK (Quadratic Up-

stream Interpolation for Convective Kinematics) or ENO (Essentially Non-Oscillating)

schemes to compute the advection terms.

To keep track of the movement of the interface, the front tracking method is used.

The interface between the working and lubricating fluids is represented by a set of

linked points. The lines between two adjacent points are called elements. As these

front points do not necessarily coincide with the fixed grid points, we need to deter-

mine the position relationship between these two sets of points. Since the fixed grid
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points are positioned on a regular lattice, we may readily find the grid point that is

closest to a front point and establish the position relationship. The use of the position

relationship is discussed in detail below.

The solutions to the continuity and momentum equations are sought at discrete

points that make up the fixed grid. This makes it necessary to pass on the value of

a quantity on the front points to the fixed grid points. On passing on the value, it is

important to maintain the conservation of the quantity. In two-dimensional problems,

we may use φ f to denote the value of a quantity on the interface in units per length,

and φi, j to represent the value of the quantity at the fixed grid point (i, j) in units per

control volume. For any conserved quantity φ , we have
∫

∆V
φi, jdV =

∫

∆ s
φ f (s)ds, (A4)

where ∆s is the length of the interface that is smoothed to the fixed grid area ∆V . The

discrete form of the grid value is therefore

φi, j = ∑
l

φ l
f wl

i, j

∆sl

∆x∆y
, (A5)

where ∆sl is the length of the element l and ∆x and ∆y are the grid spacings. The

weighting function wl
i, j represents the fraction each grid point gets from the front and

the sum of the weighting functions for every element is 1. In two dimensions, the

weighting for a fixed grid point (x,y) from a front point x f = (x f ,y f ) can be written

as

wl
i, j

(

x f

)

= d
(

x f − i∆x
)

d(y f − j∆y). (A6)

In our numerical model, we use equal grid spacings ∆x = ∆y, and we may apply the

Peskin weighting function [19] as follows:

d(r) =

{

[

1 + cos
(

πr
2∆ x

)]

/(4∆x) |r| < 2∆x

0 |r| ≥ 2∆x
. (A7)

The movement of the interface requires a reconstruction of the fields of density

and other fluid properties. In our method, density is taken to be a marker function.

At each time step, we first reconstruct the density field, and then use the density to

deduce the values of other properties. The density can be expressed as

ρ̄ = H+(1−H)γ, (A8)

where H is the Heaviside step function which equals 1 at points occupied by the

working fluid and equals 0 at points occupied by the lubricant. In the front tracking

method, the interface can mark the density jump. We translate the sharp density jump

across the interface into a steep gradient on the fixed grid. The density gradient can

be related to the jump as below:

∇ρ̄ = (1− γ)∇H = ∆ρ δ (n)n, (A9)

where ∆ρ = 1− γ is the density jump across the interface, δ is the Dirac delta func-

tion, and n is the unit normal to the interface (pointing toward the working fluid).
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Here, use has been made of the relation ∇H = δ (n)n. The front is now represented

by a δ -function. Accordingly, we can smooth the density jump by assigning values

on the fixed grid. Using the above equation, we can get the density gradient equation

∫

V
∇ρ̄ dV =

∫

SI

∆ρnds, (A10)

where V represents the control volume, and SI is the front length in the control vol-

ume.

For the density value at (i, j), once we have obtained the density gradient on

the staggered grid, we can integrate the density gradient from the surrounding four

points and average the value to get a relatively accurate density field. Other fluid

property fields can then be reconstructed easily using a linear mapping between the

fluid property and the density. All the updating of the fluid properties are limited to

points near the interface in our numerical method.

Since points on the interface move with different velocities, the interface will

deform as time advances. As a result, after some time, the distribution of points be-

comes sparse on some parts of the interface, but crowded on other parts. To accurately

represent the interface, we have to check, and adjust, if needed, the location of the

front points at the end of each time step. In two-dimensional problems, we define

a maximum and a minimum distance. Then we compare the distance between two

arbitrary adjacent front points with the pre-defined maximum and minimum value. If

the distance is larger than the maximum value, we add a new point between these two

points. In a similar way, if the distance is smaller than the minimum value, we delete a

point and continue computing the distance between the undeleted point and the point

next to the deleted point. By adding and deleting points, we can maintain relatively

accurate distribution of points on the interface. In general, three to four front points

per control volume is sufficient for a good representation of the interface.

The boundary conditions are imposed on the grid as follows. As the velocities are

stored on the respective cell faces, we can directly set the normal velocity equal to

what it should be on the boundary. In order to specify the tangential velocities easily,

we add one row of ghost cells immediately outside the boundary. Then the tangential

velocities can be obtained using a linear interpolation between the velocities inside

the wall and the ghost velocities. In addition, periodic boundary conditions for the

velocities are to be satisfied on the inlet and outlet. Suppose the whole domain is

discretized by N cells in the x direction. Taking the ghost points into consideration,

we have N +2 points in one row. Then we can easily implement the periodic boundary

using the following equations:

u(1, j) = u(N +1, j) and u(N +2, j) = u(2, j). (A11)
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