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Coordinate Descent with Arbitrary Sampling II:

Expected Separable Overapproximation∗

Zheng Qu † Peter Richtárik ‡

May 29, 2015

Abstract

The design and complexity analysis of randomized coordinate descent methods, and in par-
ticular of variants which update a random subset (sampling) of coordinates in each iteration,
depends on the notion of expected separable overapproximation (ESO). This refers to an in-
equality involving the objective function and the sampling, capturing in a compact way certain
smoothness properties of the function in a random subspace spanned by the sampled coordi-
nates. ESO inequalities were previously established for special classes of samplings only, almost
invariably for uniform samplings. In this paper we develop a systematic technique for deriving
these inequalities for a large class of functions and for arbitrary samplings. We demonstrate that
one can recover existing ESO results using our general approach, which is based on the study
of eigenvalues associated with samplings and the data describing the function.

1 Introduction

Coordinate descent methods have been popular with practitioners for many decades due to their
inherent conceptual simplicity and ease with which one can produce a working code. However, up
to a few exceptions [31, 14], they have been largely ignored in the optimization community until
recently when a renewed interest in coordinate descent was sparked by several reports of their re-
markable success in certain applications [2, 32, 22]. Additional and perhaps more significant reason
behind the recent flurry of research activity in the area of coordinate descent comes from break-
throughs in our theoretical understanding of these methods through the introduction of randomiza-
tion in the iterative process [16, 25, 23, 24, 27, 28, 30, 29, 6, 20, 4, 15, 13, 9, 5, 3, 10, 12, 11, 18, 17, 7].
Traditional variants of coordinate descent rely on cyclic or greedy rules for the selection of the next
coordinate to be updated.

1.1 Expected Separable Overapproximation

It has recently become increasingly clear that the design and complexity analysis of randomized
coordinate descent methods is intimately linked with and can be better understood through the

∗The authors acknowledge support from the EPSRC Grant EP/K02325X/1, Accelerated Coordinate Descent Meth-

ods for Big Data Optimization. Most of the material of this paper was obtained by the authors in Spring 2014, and
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and Optimization” in Grenoble, France [19]; http://www.maths.ed.ac.uk/%7Eprichtar/docs/cdm-talk.pdf.
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notion of expected separable overapproximation (ESO) [24, 28, 6, 29, 20, 5, 4, 21, 18] and [17]. This
refers to an inequality involving the objective function and the sampling (a random set valued map-
ping describing the law with which subsets of coordinates are selected at each iteration), capturing
in a compact way certain smoothness properties of the function in a random subspace spanned by
the sampled coordinates.

A (coordinate) sampling Ŝ is a random set-valued mapping with values being subsets of [n]
def
=

{1, 2, . . . , n}. It will be useful to write

pi
def
= P(i ∈ Ŝ), i ∈ [n]. (1)

Definition 1.1 (Expected Separable Overapproximation). Let f : R
n → R be a differentiable

function and Ŝ a sampling. We say that f admits an expected separable overapproximation (ESO)
with respect to sampling Ŝ with parameters v = (v1, . . . , vn) > 0 if the following inequality holds1

for all x, h ∈ R
n:

E



f



x+
∑

i∈Ŝ

hiei







 6 f(x) +
n
∑

i=1

pi(∇if(x))
⊤hi +

1

2

n
∑

i=1

pivih
2
i . (2)

We will compactly write (f, Ŝ) ∼ ESO(v).

In this definition, ei is the i-th unit coordinate vector in R
n and ∇if(x) = (∇f(x))⊤ei is the

i-th partial derivative of f at x. In the context of block coordinate descent, the above definition
refers to the case when all blocks correspond to coordinates. For simplicity of exposition, we focus
on this case. However, all our results can be extended to the more general block setup.

Instead of the above general definition, it will be useful to the reader to instead think about
the form of this inequality in the simple case when f(x) = ‖Ax‖2, where ‖ · ‖ is the L2 norm, and
x = 0. Letting A = [A1, . . . , An], in this case inequality (2) takes the form

E





∥

∥

∥

∥

∥

∥

∑

i∈Ŝ

Aihi

∥

∥

∥

∥

∥

∥

2

 6 h⊤Diag(p ◦ v)h,

where p ◦ v denotes the Hadamard product of vectors p = (p1, . . . , pn) and v = (v1, . . . , vn); that is
p◦v = (p1v1, . . . , pnvn) ∈ R

n, and Diag(p◦v) is the n-by-n diagonal matrix with vector p◦v on the
diagonal. The term on the left hand side is a convex quadratic function of h, and so is the term on
the right hand side – however, the latter function has a diagonal Hessian. Hence, for quadratics,
finding the ESO parameter v reduces to an eigenvalue problem.

The ESO inequality is of key importance for randomized coordinate descent methods for several
reasons:

• The parameters v = (v1, . . . , vn) for which ESO holds are needed2 to run coordinate descent.
Indeed, they are used to set the stepsizes to a suitable value.

1This definition can in a straightforward way be extended the case when coordinates are replaced by blocks of
coordinates [24]. In such a case, hi would be a allowed to be a vector of size larger than one, ei would be replaced by
a column submatrix of the identity matrix (usually denoted Ui i n the literature) and h2

i would be replaced by the
squared norm of hi (it is often useful to design this norm based on properties of f).

2All existing parallel coordinate coordinate descent methods for which a complexity analysis has been performed
are designed with fixed stepsizes. Designing a line-search procedure in such a setup is a nontrivial task, and to the
best of our knowledge, only a single paper in the literature deals with this issue [7]. Certainly, properly designed line
search has the potential to improve the practical performance of these methods.
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Setup Complexity Method / Paper / Year

Strongly convex
Smooth

max
i

(

vi
piλ

)

× log

(

1

ǫ

)

NSync [21], 10/2013

Strongly convex
nonsmooth

(Primal-dual)
max

i

(

1

pi
+

vi
piλn

)

× log

(

1

ǫ

)

QUARTZ [18], 11/2014

Convex
smooth

√

√

√

√2
n
∑

i=1

vi(x
0
i − x∗i )

2

p2i
× 1√

ǫ
ALPHA [17], 12/2014

Table 1: Complexity of randomized coordinate descent methods which were analyzed for an ar-
bitrary sampling (λ is a strong convexity constant, x0 is the starting point and x∗ the optimal
point.

• The size of these parameters directly influences the complexity of the method (see Table 1).

• There are problems for which updating more coordinates in each iteration, as opposed to
updating just one, may not lead to fewer iterations [24] (which suggests that perhaps the
resources should be instead utilized in some other way). Whether this happens or not can be
understood through a careful study of the complexity result and its dependence, through the
vectors p and v, on the number of coordinates updated in each iteration [24, 28, 20, 4, 6, 18].

• The ESO assumption is generic in the sense that as soon as function f and sampling Ŝ
satisfy it, the complexity result follows. This leads to a natural dichotomy in the study
of coordinate descent: i) the search for new variants of coordinate descent (e.g., parallel,
accelerated, distributed) and study of their complexity under the ESO assumption, and ii)
the search for pairs (f, Ŝ) for which one can compute v such that (f, Ŝ) ∼ ESO(v). Our
current study follows this dichotomy: in [17] we deal with the algorithmic and complexity
aspects, and in this paper we deal with the ESO aspect.

1.2 Complexity of coordinate descent

As mentioned above, complexity of coordinate descent methods depends in a crucial way on the
optimization problem, sampling employed, and on the ESO parameters v = (v1, . . . , vn). In Table 1
we summarize all known complexity results3 which hold for an arbitrary sampling. Note that in all
cases, vectors p and v appear in the complexity bound. The bounds are not directly comparable
as they apply to different optimization problems.

For instance, the NSync bound4 in Table 1 applies to the problem of unconstrained minimization
of a smooth strongly convex function. It was in [21] where the general form of the ESO inequality

3We exclude from the table some earlier results [23], where an arbitrary serial sampling was analyzed; i.e., sampling
Ŝ for which P(|Ŝ| = 1) = 1. The situation is much simpler for serial samplings.

4Complexity of NSync depends on the initial (x0) and optimal (x∗) points, but have hidden this dependence. The
full bound is obtained by replacing log(1/ǫ) by log((f(x0)− f(x∗))/ǫ), where f is the objective function.
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used in this paper was first mentioned and used to derive a complexity result for a coordinate
descent method with arbitrary sampling.

The Quartz algorithm [18], on the other hand, applies to a much more serious problem – a
problem of key importance in machine learning. In particular, it applies to the regularized empirical
risk minimization problem, where the loss functions are convex and have Lipschitz gradients and
the regularizer is strongly convex and possibly nonsmooth. Coordinate ascent is applied to the dual
of this problem, and the bound appearing in Table 1 applies to the duality gap5.

The APPROX method was first proposed in [5] and then generalized to an arbitrary sampling
(among other things) in [17]. In its accelerated variant it enjoys a O(1/

√
ǫ) rate, whereas it’s

non-accelerated variant has a slower O(1/ǫ) rate. Again, the complexity of the method explicitly
depends on the vector of probabilities p and the ESO parameter v.

1.3 Historical remarks

The ESO relation (2) was first introduced by Richtárik and Takáč [24] in the special case
of uniform samplings, i.e., samplings for which P(i ∈ Ŝ) = P(j ∈ Ŝ) for all coordinates i, j ∈
{1, 2, . . . , n}. The uniformity condition is satisfied for a large variety of samplings, we refer the
reader to [24] for a basic classification of uniform samplings (including overlapping, non-overlapping,
doubly uniform, binomial, nice, serial and parallel samplings) and to [20, 4, 18] for further examples
(e.g., “distributed sampling”). The study of non-uniform samplings has until recently been confined
to serial sampling only, i.e., to samplings which only pick a single coordinate at a time. In [21]
the authors propose a particular example of a parallel nonuniform sampling, where “parallel”
refers to samplings for which P(|Ŝ| > 1) > 0, and “non-uniform” simply means not uniform.
Further, they derive an ESO inequality for their sampling and a partially separable function. The
proposed sampling is easy to generate (note that in general a sampling is described by assigning
distinct probabilities to all 2n subsets of [n], and hence most samplings will necessarily be hard to
generate), and leads to strong ESO bounds which predict nearly linear speedup for NSync for sparse
problems. A further example of a non-uniform sampling was given in [18]—the so-called “product
sampling”—and an associated ESO inequality derived. Intuitively speaking, this sampling samples
sets of “independent” coordinates, which leads to complexity scaling linearly with the size of the
sampled sets. To the best of our knowledge, this is the state of the art – no further non-uniform
samplings were proposed nor associated ESO inequalities derived.

1.4 Contributions

We now briefly list the contributions of this work.

1. ESO inequalities were previously established for special classes of samplings only, almost
invariably for uniform samplings [24, 20, 6, 4, 5], and often using seemingly disparate ap-
proaches. We give the first systematic study of ESO inequalities for arbitrary samplings.

2. We recover existing ESO results by applying our general technique.

5Complexity of Quartz depends on an initial pair of primal and dual vectors; we have omitted this dependence
from the table. The full complexity result is obtained by replacing log(1/ǫ) by log(∆0/ǫ), where ∆0 is the difference
between the primal and dual function values for a pair of (primal and dual) starting points.
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3. Our approach to deriving ESO inequalities is via the study of random principal submatrices
of a positive semidefinite matrix. In particular, we give bounds on the largest eigenvalue of
the mean of the random submatrix. This may be of independent interest.

1.5 Outline of the paper

Our paper is organized as follows. In Section 2 we describe the class of functions (f) we
consider in this paper and briefly establish some basic terminology related to samplings (Ŝ). In
Section 3 we study probability matrices associated with samplings (P(Ŝ)), in Section 4 we study
eigenvalues of these probability matrices (λ(P(Ŝ)) and λ′(P(Ŝ))) and in Section 5 we design a
general technique for computing parameter v = (v1, . . . , vn) for which the ESO inequality holds
(i.e., for which (f, Ŝ) ∼ ESO(v)). We illustrate the use of these techniques in Section 5.4 and
conclude with Section 7.

2 Functions and samplings

Recall that in the paper we are concerned with establishing inequality (2) which we succinctly
write as (f, Ŝ) ∼ ESO(v). In Section 2.1 we describe the class of functions f we consider in this
paper and in Section 2.2 we briefly review several elementary facts related to samplings.

2.1 Functions

We assume in this paper that f : Rn → R is differentiable and that it satisfies the following
assumption (however, the first time we will again talk about functions is in Section 5).

Assumption 2.1. There is an m-by-n matrix A such that for all x, h ∈ R
n,

f(x+ h) 6 f(x) + 〈∇f(x), h〉 + 1

2
h⊤A⊤Ah. (3)

In the subsequent text, we shall often refer to the set of columns of A for which the entry in
the j-th row of A is nonzero:

Jj
def
= {i ∈ [n] : Aji 6= 0}. (4)

Assumption 2.1 holds for many functions of interest in optimization and machine learning.
Coordinate descent methods for functions f explicitly required to satisfy Assumption 2.1 were
studied in [1, 20, 4].

The following simple observation will help us relate the above assumption with standing as-
sumptions considered in various papers on randomized coordinate descent methods.

Proposition 2.1. Assume f is of the form

f(x) =

s
∑

j=1

φj(Mjx), (5)

where for each j, Mj ∈ R
d×n and function φj : R

d → R has γj-Lipschitz continuous gradient (with
respect to the L2 norm). Then f satisfies Assumption 2.1 for matrix A given by

A⊤A =

s
∑

j=1

γjM
⊤
j Mj .
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Proof. Pick x, h ∈ R
n and let fj(x)

def
= φj(Mjx). Then since φj is γj-smooth, we have

fj(x+ h) = φj (Mjx+Mjh) 6 φj (Mjx) + 〈∇φj (Mjx) ,Mjh〉+ γj
2 ‖Mjh‖2

= fj(x) + 〈∇fj(x), h〉 + γj
2 h

TM⊤
j Mjh.

It remains to add these inequalities for j = 1, . . . , s.

By I we denote the n-by-n identity matrix and for S ⊆ [n] we will use the notation I[S] for the
n-by-n matrix obtained from I by retaining elements Iii for which i ∈ S and zeroing out all other
elements.

We now apply Proposition 2.1 to several special cases:

1. Partial separability. Let d = n and Mj = I[Cj ], where for each j, Cj ⊆ [n]. Then f is of
the form

f(x) =

s
∑

j=1

φj(I[Cj ]x). (6)

That is, φj depends on coordinates of x belonging to set Cj only. By Proposition 2.1, f
satisfies (3), where A is the n-by-n diagonal matrix given by

Aii =

√

∑

j:i∈Cj

γj, i ∈ [n].

Functions of the form (6) (i.e., partially separable functions) were considered in the context
of parallel coordinate descent methods in [24]. However, in [24] the authors only assume the
sum f to have a Lipschitz gradient (which is more general, but somewhat complicates the
analysis), whereas we assume that all component functions {φj}j have Lipschitz gradient.

2. Linear transformation of variables. Let s = 1. Then f is of the form

f(x) = φ1(M1x). (7)

By Proposition 2.1, f satisfies (3), where A is given by

A =
√
γ1M1.

A functions of the form (7) appears in the dual problem of the standard primal-dual formu-
lation to which stochastic dual coordinate ascent methods are applied [27, ?, 33, 10, 18].

3. Sum of scalar functions depending on x through an inner product. Let d = 1 and
Mj = eTj M, where M ∈ R

m×n and ej is the j-th unit coordinate vector in R
m. Then f is of

the form

f(x) =
m
∑

j=1

φj(e
⊤
j Mx). (8)

By Proposition 2.1, f satisfies (3), with A given by

A = Diag(
√
γ1, . . . ,

√
γm)M.

Functions of the form (8) play an important role in the design of efficiently implementable
accelerated coordinate descent methods [5, 17]. These functions also appear in the primal
problem of the standard primal-dual formulation to which stochastic dual coordinate ascent
methods are applied.
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2.2 Samplings

As defined in the introduction, by sampling we mean a random set-valued mapping with values
in 2[n] (the set of subsets of [n]).

Classification of samplings. Following the terminology established in [24], we say that sampling
Ŝ is proper if pi = P(i ∈ Ŝ) > 0 for all i ∈ [n]. We shall focus our attention on proper samplings as
otherwise there is a coordinate which is never chosen (and hence never updated by the coordinate
descent method). We say that Ŝ is nil if P(Ŝ = ∅) = 1.

Of key importance in this paper are elementary samplings, defined next.

Definition 2.1 (Elementary samplings). Elementary sampling associated with S ⊆ [n] is sampling
which selects set S with probability one. We will denote it by ÊS: P(ÊS = S) = 1.

By image of sampling Ŝ we mean the collection of sets which are chosen with positive probability:
Im(Ŝ) = {S ⊆ [n] : P(Ŝ = S) > 0}. We say that Ŝ is nonoverlapping, if no two sets in its image
intersect. We say that the sampling is uniform if P(i ∈ Ŝ) = P(j ∈ Ŝ) for all i, j ∈ [n]. The class of
uniform samplings is large, for examples (and properties) of notable subclasses, we refer the reader
to [24] and [20].

We say that sampling Ŝ is doubly uniform if it satisfies the following condition: if |S1| =
|S2|, then P(Ŝ = S1) = P(Ŝ = S2). Necessarily, every doubly uniform sampling is uniform [24].
The definition postulates an additional “uniformity” property (“equal cardinality implies equal
probability”), whence the name. As described in [24], doubly uniform samplings are special in the
sense that “good” ESO results can be proved for them. A notable subclass of the class of doubly
uniform samplings are the τ -nice samplings for 1 6 τ 6 n. The τ -nice sampling is obtained by
picking (all) subsets of cardinality τ , uniformly at random (we give a precise definition below).
This sampling is by far the most common in stochastic optimization, and refers to standard mini-
batching. The τ -nice sampling arises as a special case of the (c, τ)-distributed sampling (which, as
its name suggests, can be used to design distributed variants of coordinate descent [20, 4]), which
we define next:

Definition 2.2 ((c, τ)-distributed sampling; [20, 4, 18]). Let P1, . . . ,Pc be a partition of {1, 2, . . . , n}
such that |Pl| = s for all l. That is, sc = n. Now let Ŝ1, . . . , Ŝc be independent τ -nice samplings
from P1, . . . ,Pc, respectively. Then the sampling

Ŝ
def
=

c
⋃

l=1

Ŝl, (9)

is called (c, τ)-distributed sampling.

The τ -nice sampling arises as a special case of the (c, τ)-distributed sampling (for c = 1) which
we define next.

Definition 2.3 (τ -nice sampling; [24, 28, 29, 6, 5]). Sampling Ŝ is called τ -nice if it picks only
subsets of [n] of cardinality τ , uniformly at random. More formally, it is defined by

P(Ŝ = S) =

{

1/
(

n
τ

)

, |S| = τ,

0, otherwise.
(10)
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Operations with samplings. We now define several basic operations with samplings (convex
combination, intersection and restriction).

Definition 2.4 (Convex combination of samplings; [24]). Let Ŝ1, . . . , Ŝk be samplings and let
q1, . . . , qk be nonnegative scalars summing to 1. By

∑k
t=1 qtŜt we denote the sampling obtained

as follows: we first pick t ∈ {1, . . . , k}, with probability qt, and then sample according to Ŝt. More
formally, Ŝ is defined as follows:

P(Ŝ = S) =

k
∑

t=1

qtP(Ŝt = S), S ⊆ [n]. (11)

Note that (11) indeed defines a sampling, since

∑

S⊆[n]

P(Ŝ = S) =
∑

S⊆[n]

k
∑

t=1

qtP(Ŝt = S) =
k
∑

t=1

qt
∑

S⊆[n]

P(Ŝt = S) =
k
∑

t=1

qt = 1.

Each sampling is a convex combination of elementary samplings. Indeed, for each Ŝ we have

Ŝ =
∑

S⊆[n]

P(Ŝ = S)ÊS . (12)

We now show that each doubly uniform sampling arises as a convex combination of τ -nice
samplings.

Proposition 2.2. Let Ŝ be a doubly uniform sampling and let Ŝτ be the τ -nice sampling, for
τ = 0, 1, . . . , n. Then

Ŝ =

n
∑

τ=0

P(|Ŝ| = τ)Ŝτ .

Proof. Fix any S ⊆ [n] and let qτ = P(|Ŝ| = τ). Note that

P(Ŝ = S) =
n
∑

τ=0

P(Ŝ = S & |Ŝ| = τ) =
n
∑

τ=0

qτP(Ŝ = S | |Ŝ| = τ) =
n
∑

τ=0

qτP(Ŝτ = S),

where the last equality follows from the definition of doubly uniform and τ -nice samplings. The
statement then follows from (11) (i.e., by definition of convex combination of samplings).

It will be useful to define two more operations with samplings; intersection and restriction.

Definition 2.5 (Intersection of samplings). For two samplings Ŝ1 and Ŝ2 we define the intersection

Ŝ
def
= Ŝ1 ∩ Ŝ2 as the sampling for which:

P(Ŝ = S) = P(Ŝ1 ∩ Ŝ2 = S), S ⊆ [n].

Definition 2.6 (Restriction of a sampling). Let Ŝ be a sampling and J ⊆ [n]. By restriction of Ŝ
to J we mean the sampling ÊJ ∩ Ŝ. By abuse of notation we will also write this sampling as J ∩ Ŝ.

8



Graph sampling. Let G = (V,E) be an undirected graph with |V | = n vertex and (i, i′) be an
edge in E if and only if there is j ∈ [m] such that {i, i′} ⊆ Jj . If S is an independent set of graph
G, then necessarily

max
j∈[m]

|Jj ∩ S| = 1.

Denote by T the collection of all independent sets of the graph G. We now define the graph
sampling as follows:

Definition 2.7 (Graph sampling). Graph sampling associated with graph G is any sampling Ŝ for
which P(Ŝ = S) = 0 if S /∈ T . In other words, a graph sampling can only assign positive weights
to independent sets of G.

Let Ŝ be a graph sampling. In view of (12), for some nonnegative constants qS adding up to 1:

Ŝ =
∑

S∈T

qSÊS

Note that, necessarily, qS = P(Ŝ = S) for all S ∈ T .
Definition 2.8 (Product sampling). Let X1, . . . ,Xτ be a partition of [n], i.e.,

X1 ∪ . . . Xτ = [n]; Xi ∩Xj = ∅, ∀1 6 i < j 6 n.

Define:

S def
= X1 × · · · ×Xτ .

The product sampling Ŝ is obtained by choosing S ∈ S, uniformly at random; that is, via:

P(Ŝ = S) =
1

|S| =
1

∏τ
l=1 |Xl|

, S ∈ S. (13)

A similar sampling was first considered in [18, Section 3.3] with an additional group separability
assumption on the partition X1, . . . ,Xτ , which can be equivalently stated as:

max
j∈m
|Jj ∩ S| = 1, ∀S ∈ S.

In other words, it is both a product sampling and graph sampling. Note that in Definition 2.8
we do not make any assumption on the partition. Also, the product sampling is a nonuniform
sampling as long as all the sets Xl do not have the same cardinality, which occurs necessarily if τ ,
representing the number of processors, is not divisible by n.

3 Probability matrix associated with a sampling

In this section we define the notion of a probability matrix associated with a sampling. As
we shall see in later sections, this matrix encodes all information about Ŝ which is relevant for
development of ESO inequality.

Definition 3.1 (Probability matrix). With each sampling Ŝ we associate an n-by-n “probability
matrix” P = P(Ŝ) defined by

Pij = P({i, j} ⊆ Ŝ), i, j ∈ [n].

9



We shall write P(Ŝ) when it is important to indicate which sampling is behind the probability
matrix, otherwise we simply write P.

For two matrices M1 and M2 of the same size, we denote by M1 ◦M2 their Hadamard (i.e.,
elementwise) product. We use the same notation for Hadamard product of vectors. For arbitrary
matrix M ∈ R

n×n and S ⊆ [n] we will use the notation M[S] for the n-by-n matrix obtained from
M by retaining elements Mij for which both i ∈ S and j ∈ S and zeroing out all other elements. In
what follows, by E we denote the n-by-n matrix of all ones and by I we denote the n-by-n identity
matrix. For any h = (h1, . . . , hn) ∈ R

n and S ⊆ [n] we will write

h[S]
def
=
∑

i∈S

hiei = I[S]h, (14)

where e1, . . . , en are the standard basis vectors in R
n. Also note that

M[S] = E[S] ◦M = I[S]MI[S]. (15)

Using the notation we have just established, probability matrices of elementary samplings are
given by

P(ÊS) = E[S] = e[S]e
⊤
[S], (16)

where e ∈ R
n is the vector of all ones. In particular, the matrix is rank-one and positive semidefinite.

3.1 Representation of probability matrices

We now establish a simple but particularly insightful result, leading to many useful identities.

Theorem 3.1. For each sampling Ŝ we have

P(Ŝ) = E

[

E[Ŝ]

]

=
∑

S⊆[n]

P(Ŝ = S)E[S]. (17)

In particular:

(i) The set of probability matrices is the convex hull of the probability matrices corresponding to
elementary samplings.

(ii) P(Ŝ) < 0 for each Ŝ.

Proof. The (i, j) element of the matrix on the right hand side is E
[

(E[Ŝ])ij

]

. Since (E[Ŝ])ij = 1 if

{i, j} ⊆ Ŝ and (E[Ŝ])ij = 0 otherwise, we have E

[

(E[Ŝ])ij

]

= P({i, j} ⊆ Ŝ) = (P(Ŝ))ij . Claim (i)

follows from (17) since E[S] = P(ÊS). Claim (ii) follows from (17) since E[S] < 0 for all S ⊆ [n].

We have the following useful corollary:6

6Identities (20)–(23) were already established in [24], in a different way without relying on Theorem 3.1, which is
new. However, in this paper a key role is played by identities (18)–(19), which are also new. It was while proving
these identities that we realized the fundamental nature of Theorem 3.1, as a vehicle for obtaining all identities in
Corollary 3.1 as a consequence. The identities will be needed in further development. For illustration of a different
proof technique, here is an alternative proof of (19):

E

[

hT

[Ŝ]
Mh[Ŝ]

]

= E

[

∑

(i,i′)∈Ŝ×Ŝ
Mii′hi′hi

]

=
∑

(i,i′)∈[n]×[n] P(i ∈ Ŝ, i′ ∈ Ŝ)Mii′hi′hi = hT (P ◦M)h

.
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Corollary 3.1. Let Ŝ be any sampling, P = P(Ŝ), M ∈ R
n×n be an arbitrary matrix and h ∈ R

n.
Then the following identities hold:

P ◦M = E

[

M[Ŝ]

]

(18)

h⊤ (P ◦M)h = E

[

h⊤M[Ŝ]h
]

= E

[

h⊤
[Ŝ]
Mh[Ŝ]

]

(19)

h⊤Ph = E





(

∑

i∈Ŝ

hi

)2



 (20)

n
∑

i=1

Piihi = E





∑

i∈Ŝ

hi



 (21)

eTPe = E

[

|Ŝ|2
]

(22)

Tr (P) = E

[

|Ŝ|
]

(23)

Proof. Since multiplying a matrix in the Hadamard sense by a fixed matrix is a linear operation,

P ◦M (17)
= E

[

E[Ŝ]

]

◦M = E

[

E[Ŝ] ◦M
]

(15)
= E

[

M[Ŝ]

]

.

Next, identity (19) follows from (18):

h⊤(P ◦M)h = h⊤E
[

M[Ŝ]

]

h = E

[

h⊤M[Ŝ]h
]

(15)
= E

[

h⊤I[Ŝ]MI[Ŝ]h
]

(14)
= E

[

h⊤
[Ŝ]

Mh[Ŝ]

]

.

Identity (20) follows from (19) by setting M = E:

E

[

h⊤
[Ŝ]
Eh[Ŝ]

]

= E





∑

i,j∈Ŝ

hihj



 = E





(

∑

i∈Ŝ

hi

)2



 .

Identity (21) holds since

∑

i

Piihi =
∑

i

∑

S:i∈S

P(Ŝ = S)hi =
∑

S⊆[n]

P(Ŝ = S)
∑

i∈S

hi = E





∑

i∈Ŝ

hi



 .

Finally, (22) (resp. (23)) follows from (20) (resp. (21)) by setting h = e.

If Ŝ is a uniform sampling (i.e., if P(i ∈ Ŝ) = P(j ∈ Ŝ) for all i, j ∈ [n]), then from (23) we
deduce that for all i ∈ [n]:

pi ≡ P(i ∈ Ŝ) ≡ Pii =
E[|Ŝ|]
n

. (24)

3.2 Operations with samplings

We now give formulae for the probability matrix of the sampling arising as a convex combination,
intersection or a restriction, in terms of the probability matrices of the constituent samplings.
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Convex combination of samplings. We have seen in (12) that each sampling is a convex
combination of elementary samplings. In view of Theorem 3.1, the probability matrices of the
samplings are related the same way:

P(Ŝ) =
∑

S⊆[n]

P(Ŝ = S)P(ÊS). (25)

More generally, as formalized in the following lemma, the probability matrix of a convex com-
bination of samplings is equal to the convex combination of the probability matrices of these
samplings.

Lemma 3.1. Let Ŝ1, . . . , Ŝk be samplings and q1, . . . , qk be non-negative scalars summing up to 1.
Then

P

(

k
∑

t=1

qtŜt

)

=

k
∑

t=1

qtP(Ŝt). (26)

Proof. Let Ŝ be the convex combination of samplings Ŝ1, . . . , Ŝk and fix any i, j ∈ [n]. By definition,

(P(Ŝ))ij = P({i, j} ⊆ Ŝ) =
∑

S⊆[n] : {i,j}⊆S

P(Ŝ = S)

(11)
=

∑

S⊆[n] : {i,j}⊆S

k
∑

t=1

qtP(Ŝt = S) =
k
∑

t=1

qt
∑

S⊆[n] : {i,j}⊆S

P(Ŝt = S)

=

k
∑

t=1

qtP({i, j} ⊆ Ŝt) =

k
∑

t=1

qt(P(Ŝt))ij =

(

k
∑

t=1

qtP(Ŝt)

)

ij

.

Intersection of samplings. The probability matrix of the intersection of two independent sam-
plings is equal to the Hadamard product of the probability matrices of these samplings. This is
formalized in the following lemma.

Lemma 3.2. Let Ŝ1, Ŝ2 be independent samplings. Then

P(Ŝ1 ∩ Ŝ2) = P(Ŝ1) ◦P(Ŝ2).

Proof. [P(Ŝ1 ∩ Ŝ2)]ij = P({i, j} ⊆ Ŝ1 ∩ Ŝ2) = P({i, j} ⊆ Ŝ1)P({i, j} ⊆ Ŝ2) = [P(Ŝ1)]ij [P(Ŝ2)]ij .

Restriction. By Lemma 3.2, the probability matrix of the restriction of arbitrary sampling Ŝ to
J ⊆ [n] is given by (we give several alternative ways of writing the result):

P(J ∩ Ŝ) = P(ÊJ ) ◦P(Ŝ)
(16)
= E[J ] ◦P(Ŝ) = I[J ]P(Ŝ)I[J ]. (27)

Note that P(J ∩ Ŝ) is the matrix obtained from P(Ŝ) by keeping only elements i, j ∈ J and zeroing
out all the rest. Furthermore, by combining the formulae derived above, we get

P

(

J ∩
k
∑

t=1

qtŜt

)

(27)+(26)
= E[J ] ◦

(

k
∑

t=1

qtP(Ŝt)

)

=

k
∑

t=1

qt

(

E[J ] ◦P(Ŝt)
)

(27)
=

k
∑

t=1

qtP(J ∩ Ŝt). (28)

12



3.3 Probability matrix of special samplings

The probability matrix of the (c, τ)-distributed samplings is computed in the following lemma.

Lemma 3.3. Let Ŝ be the (c, τ)-distributed sampling associated with the partition {P1, . . . ,Pc} of
[n] such that s = |Pl| for l ∈ [c] (see Definition 2.2). Then

P(Ŝ) =
τ

s
[α1I+ α2E+ α3(E−B)] , (29)

where

α1 = 1− τ − 1

s1
, α2 =

τ − 1

s1
, α3 =

τ

s
− τ − 1

s1
,

s1 = max(s − 1, 1) and

B =

c
∑

l=1

P(ÊPl
). (30)

Note that B is the 0-1 matrix with Bij = 1 if and only if i, j belong to the same partition.

Proof. Let P = P(Ŝ). It is easy to see that

Pij =











τ
s if i = j
τ(τ−1)
ss1

if i 6= j and i, j ∈ Pl for some l ∈ [c]
τ2

s2
otherwise

Hence,

P =
τ

s
I+

τ(τ − 1)

ss1
(B− I) +

τ2

s2
(E −B) =

τ

s
[α1I+ α2E+ α3(E−B)].

As a corollary of the above in the c = 1 case we obtain the probability matrix of the τ -nice
sampling:

Lemma 3.4. Fix 1 6 τ 6 n and let Ŝ be the τ -nice sampling. Then

P(Ŝ) =
τ

n
((1− β)I + βE) , (31)

where β = (τ − 1)/max(n− 1, 1). If τ = 0, then P(Ŝ) is the zero matrix.

Proof. For τ > 1 this follows from Lemma 3.3 in the special case when c = 1 (note that P1 =
[n], s = n and B = E).

Finally, we compute the probability matrix of a doubly uniform sampling.

Lemma 3.5. Let Ŝ be a doubly uniform sampling and assume it is not nil (i.e., assume that
P(Ŝ = ∅) 6= 1). Then

P(Ŝ) =
E[|Ŝ|]
n

((1− β)I + βE) , (32)

where
β =

(

E[|Ŝ|2]

E[|Ŝ|]
− 1
)

/max(n− 1, 1). (33)
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Proof. Letting qτ = P(|Ŝ| = τ), by Proposition 2.2 we can write Ŝ =
∑n

τ=0 qτ Ŝτ , where Ŝτ is
the τ -nice sampling. It only remains to combine Lemma 3.1 and Lemma 3.4 and rearrange the
result.

Note that Lemma 3.4 is a special case of Lemma 3.5 (covering the case when P(|Ŝ| = τ) = 1
for some τ).

4 Largest eigenvalues of the probability matrix

For an n× n positive semidefinite matrix M we denote by λ(M) the largest eigenvalue of M:

λ(M)
def
= max

h∈Rn
{h⊤Mh : h⊤h 6 1}. (34)

For a vector v ∈ R
n, let Diag(v) be the diagonal matrix with v on the diagonal. For an n-by-n

matrix M, Diag(M) denotes the diagonal matrix containing the diagonal of M. By λ′(M) we shall
denote the “normalized” largest eigenvalue of M:

λ′(M)
def
= max

h∈Rn
{h⊤Mh : h⊤ Diag(M)h 6 1}. (35)

Note that 1 6 λ′(M) 6 n.
In this section we study (standard and normalized) largest eigenvalue of the probability matrix

associated with a sampling:

λ(Ŝ)
def
= λ(P(Ŝ))

(34)
= max

h∈Rn
{h⊤P(Ŝ)h : h⊤h 6 1} (36)

and

λ′(Ŝ)
def
= λ′(P(Ŝ))

(35)
= max

h∈Rn
{h⊤P(Ŝ)h : h⊤ Diag(P(Ŝ))h 6 1}. (37)

Recall that by Theorem 3.1, P(Ŝ) is positive semidefinite for each sampling Ŝ. For convenience,
we write λ(Ŝ) (resp. λ′(Ŝ)) instead of λ(P(Ŝ)) (resp. λ′(P(Ŝ))). We study these quantities since,
as we will show in later sections, they are useful in computing parameter v = (v1, . . . , vn) for which
ESO holds.

If Ŝ is a uniform sampling (i.e., if P(i ∈ Ŝ) = P(j ∈ Ŝ) for all i, j ∈ [n]), then since Tr(P(Ŝ)) =

E[|Ŝ|] (see (24)), we have Diag(P(Ŝ)) = E[|Ŝ|]
n I, from which we obtain (assuming that Ŝ is not nil):

λ′(Ŝ) =
n

E[|Ŝ|]
λ(Ŝ). (38)

4.1 Elementary samplings

In the case of elementary samplings the situation is simple. Indeed, for any J ⊆ [n], we have

λ′(ÊJ) = λ(ÊJ)
(16)
= λ(e[J ]e

⊤
[J ]) = e⊤[J ]e[J ] = |J |. (39)
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This can, in fact, be seen as a consequence of a more general identity7 for arbitrary symmetric rank
one matrices: for any x ∈ R

n, we have

λ′(xx⊤) = ‖x‖0 def
= |{i : xi 6= 0}|. (40)

Since P(ÊJ ) = E[J ] and Diag(E[J ]) = I[J ], (39) can equivalently be written as

E[J ] 4 |J |I[J ], (41)

and adding that the bound is tight.

4.2 Bounds for arbitrary samplings

In the first result of this section we give sharp bounds for λ′(Ŝ) for arbitrary sampling Ŝ.

Theorem 4.1. Let Ŝ be an arbitrary sampling.

(i) Lower bound. If Ŝ is not nil (i.e., if P(Ŝ 6= ∅) > 0), then

1 6
E[|Ŝ|2]
E[|Ŝ|]

6 λ′(Ŝ).

(ii) Upper bound. If τ is a constant such that |Ŝ| 6 τ with probability 1, then λ′(Ŝ) 6 τ.

(iii) Identity. If |Ŝ| = τ with probability 1, then λ′(Ŝ) = τ .

Proof. (i) For simplicity, let P = P(Ŝ). If e ∈ R
n is the vector of all ones, then we get

λ′(Ŝ)
(37)

>
e⊤Pe

e⊤Diag(P)e
=

e⊤Pe

Tr(P)
> 1,

where the last inequality holds since Tr(P) is upper bounded by the sum of all elements of
P. It remains to apply identities (22) and (23).

(ii) In view of (12), we can represent Ŝ as a convex combination of elementary samplings:

Ŝ =
∑

S⊆[n]

qSÊS ,

where qS = P(Ŝ = S). Since |Ŝ| 6 τ with probability 1, we have |S| 6 τ whenever qS > 0.
Thus we have

P(Ŝ) =
∑

S⊆[n]

qSP(ÊS)
(39)

4
∑

S⊆[n]

qS |S|Diag(P(ÊS)) 4 τ
∑

S⊆[n]

qS Diag(P(ÊS))
(25)
= τ Diag(P(Ŝ)).

(iii) The result follows by combining the upper and lower bounds.

7The proof is immediate: fixing x, for any h ∈ R
n we have (h⊤x)2 = ((h ◦ x)⊤e)2 = ((h ◦ x)⊤e[S])

2, where e is the
vector of all ones, S = {i : xi 6= 0} and the entries of e[S] are 1 for i ∈ S and 0 otherwise. It only remains to apply
the Cauchy-Schwartz inequality, which is attained, whence the identity.
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In the next result we study the quantity λ(Ŝ).

Theorem 4.2. The following statements hold:

(i) Lower and upper bounds. For any sampling Ŝ we have

E[|Ŝ|2]
n

6 λ(Ŝ) 6 E[|Ŝ|]. (42)

(i) Sharper upper bound. If Ŝ is uniform and |Ŝ| 6 τ with probability one, then the upper
bound can be improved to

λ(Ŝ) 6
E[|Ŝ|]τ

n
.

(iii) Identity. If Ŝ is uniform and |Ŝ| = τ with probability one, then

λ(Ŝ) =
τ2

n
.

Proof. (i) The upper bound holds since λ(Ŝ) is the maximal eigenvalue of P(Ŝ) and by (24),
E[|Ŝ|] = Tr(P(Ŝ)). The lower bound follows from:

λ(Ŝ) = λ(P(Ŝ)) >
e⊤P(Ŝ)e

e⊤e

(22)
=

E[|Ŝ|2]
n

.

(ii) By combining (38) and Theorem 4.1 (ii) we obtain:

λ(Ŝ)
(38)
=

E[|Ŝ|]
n

λ′(Ŝ)
Thm 4.1

6
E[|Ŝ|]τ

n
.

(iii) The result follows by combining the lower bound from (i) with the upper bound in (ii).

A natural lower bound for λ(Ŝ) (largest eigenvalue of P(Ŝ)) is E[|Ŝ|]/n (the average of the
eigenvalues of P(Ŝ)). Notice that the lower bound in (42) is better than this. Moreover, observe
that both bounds in (42) are tight. Indeed, in view of (39), the upper bound is achieved for any
elementary sampling. The lower bound is also tight – in view of part (iii) of the theorem.

4.3 Bounds for restrictions of selected samplings

In this part we study the normalized eigenvalue associated with the restriction of a few selected
samplings (or families of samplings). In particular, we first give a (necessarily rough) bound that
holds for arbitrary samplings, followed by a bound for the (c, τ)-distributed sampling and the τ -nice
sampling (both are specific uniform samplings). Finally, we give a bound for the family of doubly
uniform samplings.

Proposition 4.1. Let Ŝ be an arbitrary sampling and let τ be such that |Ŝ| 6 τ with probability 1.
Then for all ∅ 6= J ⊆ [n], we have

λ′(J ∩ Ŝ) 6 min{|J |, τ}. (43)
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Proof. 8 Note that |J ∩ Ŝ| 6 min{|J |, τ} with probability 1. We only need to apply the upper
bound in Theorem 4.1 to the restriction sampling J ∩ Ŝ.

We now proceed to the (c, τ)-distributed sampling (recall Definition 2.2).

Proposition 4.2. Let Ŝ be the (c, τ)-distributed sampling associated with a partition {P1, . . . ,Pc}
of [n] such that s = |Pl| for l ∈ [c]. Fix arbitrary ∅ 6= J ⊆ [n] and let ω′ be the number of sets Pl
which have a nonempty intersection with J ; that is, let ω′ def= |{l : J ∩ Pl 6= ∅}|. Then

λ′(J ∩ Ŝ) 6 1 +
(|J | − 1)(τ − 1)

s1
+ |J |

(

τ

s
− τ − 1

s1

)

ω′ − 1

ω′
, (44)

where s1 = max(s− 1, 1).

Proof. By applying Lemma 3.2 and Lemma 3.3, we get

P(J ∩ Ŝ)
(27)
= P(ÊJ ) ◦P(Ŝ)

(29)
=

τ

s

[

α1P(ÊJ ) ◦ I+ α2P(ÊJ ) ◦E+ α3P(ÊJ ) ◦ (E−B)
]

=
τ

s

[

α1 Diag(P(ÊJ )) + α2P(ÊJ ) + α3P(ÊJ )− α3P(ÊJ ) ◦B
]

. (45)

For any h ∈ R
n,

h⊤P(ÊJ )h =

(

∑

i∈J

hi

)2

=





c
∑

l=1

∑

i∈Pl∩J

hi





2

6 ω′
c
∑

l=1





∑

i∈Pl∩J

hi





2

= ω′
c
∑

l=1

h⊤P(ÊJ∩Pl
)h, (46)

where the inequality is an application of the Cauchy-Schwartz inequality. It follows that

P(ÊJ ) ◦B
(30)
=

c
∑

l=1

P(ÊJ ) ◦P(ÊPl
) =

c
∑

l=1

P(ÊJ∩Pl
)
(46)

<
1

ω′
P(ÊJ ) . (47)

Plugging (47) into (45) we get:

P(J ∩ Ŝ) 4
τ

s

[

α1Diag(P(ÊJ )) +

(

α2 + α3

(

1− 1

ω′

))

P(ÊJ )

]

(39)

4
τ

s

[

α1 +

(

α2 + α3

(

1− 1

ω′

))

|J |
]

Diag(P(ÊJ ))

=

[

1 +
(|J | − 1)(τ − 1)

s1
+ |J |

(

τ

s
− τ − 1

s1

)

ω′ − 1

ω′

]

Diag(P(ÊJ )) ◦Diag(P(Ŝ)).

Finally, note that Diag(P(ÊJ )) ◦Diag(P(Ŝ)) = Diag(P(ÊJ ) ◦P(Ŝ))
(27)
= Diag(P(J ∩ Ŝ)).

We now specialize the above result to the c = 1 case, obtaining a formula for λ′(J ∩ Ŝ) in the
case when Ŝ is the τ -nice sampling (recall Definition 2.3).

8This simple result can alternatively be proved by applying (54) (which we mention in a later section) together
with (27), (39) and the upper bound in Theorem 4.1.
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Proposition 4.3. Let Ŝ be the τ -nice sampling. Then for all ∅ 6= J ⊆ [n],

λ′(J ∩ Ŝ) = 1 +
(|J | − 1)(τ − 1)

max(n− 1, 1)
. (48)

Proof. Let ∅ 6= J ⊆ [n]. Since τ -nice sampling is the (1, τ)-distributed sampling, by applying
Proposition 4.2 we get:

λ′(J ∩ Ŝ) 6 1 +
(|J | − 1)(τ − 1)

max(n− 1, 1)
.

Next, by direct calculation we can verify that

E[|J ∩ Ŝ|2] = |J |τ
n

(

1 +
(|J | − 1)(τ − 1)

max(n− 1, 1)

)

and E[|J ∩ Ŝ|] = |J |τ
n

,

which together with the lower bound established in Theorem 4.1 yields:

λ′(J ∩ Ŝ) >
E[|J ∩ Ŝ|2]
E[|J ∩ Ŝ|]

= 1 +
(|J | − 1)(τ − 1)

max(n− 1, 1)
.

Note that (48) is much better (i.e., smaller) than the right hand side in (43). This is to be
expected as the bound (43) applies to all samplings (which have size at most τ with probability 1).

Finally, we give a bound on the normalized largest eigenvalue of the restriction of a doubly
uniform sampling.

Proposition 4.4. Let Ŝ be a doubly uniform sampling which is not nil (i.e., P(Ŝ = ∅) 6= 1). Then
for all ∅ 6= J ⊆ [n],

λ′(J ∩ Ŝ) 6 1 +
(|J | − 1)

(

E[|Ŝ|2]

E[|Ŝ|]
− 1
)

max(n− 1, 1)
. (49)

Proof. Combining (27) and (32), we get

P(J ∩ Ŝ)
(27)
= P(ÊJ ) ◦P(Ŝ)

(32)
= E[J ] ◦

(

E[|Ŝ|]
n

((1− β)I+ βE)

)

=
E[|Ŝ|]
n

(

(1− β)I[J ] + βE[J ]

)

(41)

4
E[|Ŝ|]
n

(1− β + β|J |) I[J ] = (1 + (|J | − 1)β) Diag(P(J ∩ Ŝ)),

where β is as in (33).

5 Expected Separable Overapproximation

In this section we develop a general technique for computing parameters v = (v1, . . . , vn) for
which the ESO inequality (2) holds.
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5.1 General technique

We will write M1 < M2 to indicate that M1−M2 is positive semidefinite: h⊤(M1−M2)h > 0
for all h ∈ R

n. It is a well known fact [8, Theorem 5.2.1] that the Hadamard product of two positive
semidefinite matrices is positive semidefinite:

M1 < 0 & M2 < 0 ⇒ M1 ◦M2 < 0. (50)

The reason for defining and studying probability matrices P(Ŝ) is motivated by the following
result, which for functions satisfying Assumption 2.1 reduces the ESO Assumption (f, Ŝ) ∼ ESO(v)
to the problem of bounding the Hadamard product of the probability matrix P(Ŝ) and the data
matrix A⊤A from above by a diagonal matrix. Note that because P(Ŝ) < 0, in view of (50),the
Hadamard product P(Ŝ) ◦A⊤A is positive semidefinite.

Lemma 5.1. If f satisfies Assumption 2.1 and

P(Ŝ) ◦ (A⊤A) 4 Diag(v ◦ p), (51)

for some vector v ∈ R
n
++, where p is the vector of probabilities defined in (1), then

(f, Ŝ) ∼ ESO(v).

Proof. Let us substitute h← h[Ŝ] into (3) and take expectation in Ŝ of both sides. Applying (19),
we obtain:

E[f(x+ h[Ŝ])] 6 f(x) + 〈Diag(P(Ŝ))∇f(x), h〉 + 1

2
h⊤(P(Ŝ) ◦ (A⊤A))h, ∀x, h ∈ R

n. (52)

It remains to apply assumption (51).

We next focus on the problem of finding vector v for which (51) holds. The following direct
consequence of (50) will be helpful in this regard:

(0 4 M1 & M2 4 M3) ⇒ M1 ◦M2 4 M1 ◦M3. (53)

In particular, (53) can be used to establish the first part of the following useful lemma.

Lemma 5.2. If M1 < 0 and M2 < 0, then

λ′(M1 ◦M2) 6 min{λ′(M1), λ
′(M2)}, (54)

λ′(M1 +M2) 6 max{λ′(M1), λ
′(M2)}. (55)

Proof. By definition, M2 4 λ′(M2)Diag(M2), which together with (53) implies:

M1 ◦M2 4 λ′(M2) (M1 ◦Diag(M2)) = λ′(M2)Diag(M1 ◦M2).

Applying the same reasoning to the matrix M1 we obtain: M1 ◦M2 4 λ′(M1)Diag(M1 ◦M2).
Combining the two results, we obtain (54). Inequality (55) follows from:

M1 +M2 4 λ′(M1)Diag(M1) + λ′(M2)Diag(M2)

6 max{λ′(M1), λ
′(M2)}(Diag(M1) + Diag(M2))

= max{λ′(M1), λ
′(M2)}Diag(M1 +M2).
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5.2 ESO I: no coupling between the sampling and data

By applying Lemma 5.2, Eq (54), to M1 = P(Ŝ) and M2 = A⊤A, we obtain a formula for v
satisfying (51).

Theorem 5.1 (ESO without coupling between sampling and data). Let f satisfy Assumption 2.1
and let Ŝ be an arbitrary sampling. Then (f, Ŝ) ∼ ESO(v) for v = (v1, . . . , vn) defined by

vi = min{λ′(P(Ŝ)), λ′(A⊤A)}
m
∑

j=1

A2
ji, i ∈ [n]. (56)

Proof. Let P = P(Ŝ). To establish the main statement, it is sufficient to apply Lemma 5.1 and
Lemma 5.2 and note that for v defined by (56), Diag(v ◦ p) = min(λ′(P), λ′(A⊤A))Diag(P ◦
A⊤A).

If for some τ , |Ŝ| 6 τ with probability 1, then in view of Theorem 4.1, we have λ′(P(Ŝ)) 6 τ .
Furthermore,

λ′(A⊤A) = λ′





m
∑

j=1

A⊤
j:Aj:





(55)

6 max
j

λ′(A⊤
j:Aj:)

(40)
= max

j
‖Aj:‖0 = max

j
|Jj |.

Hence, in view of Lemma 5.1, we can pick the ESO parameter conservatively as follows:

vi 6 min{τ,max
j
|Jj |}

m
∑

j=1

A2
ji, i ∈ [n]. (57)

An ESO inequality with vi similar to (57) was established in [24], but for a different class of functions
(ω-partially separable functions: functions expressed as a sum of functions each of which depends
on at most ω coordinates) and uniform samplings only. Indeed, the bound established therein for
arbitrary uniform samplings uses vi = min{τ, ω}Li, where ω is the degree of separability of f and
Li is the Lipschitz constant of ∇f associated with coordinate i. In our setting, ω = maxj |Jj | and
Li corresponds to

∑

j A
2
ji. Hence, (57) could be seen as a generalization of the ESO bound in [24]

to arbitrary samplings.
Note that computation of the normalized eigenvalue λ′(A⊤A) could be time-consuming, and

would require a number of passes through the data prior to running a coordinate descent method,
which may be prohibitive. In the next section we follow a different approach, one in which this
issue is avoided. The main idea is to decompose A⊤A as a sum of the rank one matrices A⊤

j:Aj:

and then bound each term P(Ŝ) ◦A⊤
j:Aj: separately.

5.3 ESO II: coupling the sampling with data

In this section we use a different strategy for satisfying (51). We first write

P(Ŝ) ◦A⊤A = P(Ŝ) ◦
m
∑

j=1

A⊤
j:Aj: =

m
∑

j=1

P(Ŝ) ◦A⊤
j:Aj:,

where Aj: denote the jth row vector of matrix A and then bound each term in the last sum
individually. Recall the definition of set Jj from (4): Jj = {i ∈ [n] : Aji 6= 0}.
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Theorem 5.2 (ESO with coupling between sampling and data). Let Ŝ be an arbitrary sampling
and v = (v1, . . . , vn) be defined by:

vi =
m
∑

j=1

λ′(Jj ∩ Ŝ)A2
ji, i = 1, 2, . . . , n. (58)

Then (f, Ŝ) ∼ ESO(v).

Proof. Let j ∈ [m] and Aj: denote the jth row vector of matrix A. By the definition of Jj ,

A⊤
j:Aj: = (e[Jj ]e

⊤
[Jj ]

) ◦ (A⊤
j:Aj:) = P(ÊJj ) ◦ (A⊤

j:Aj:).

Thus, P(Ŝ)◦(A⊤
j:Aj:) = P(Ŝ)◦P(ÊJj )◦(A⊤

j:Aj:) = P(Jj∩ Ŝ)◦(A⊤
j:Aj:). We now apply Lemma 5.2

to the sampling Jj ∩ Ŝ and the matrix Aj: and obtain:

P(Ŝ) ◦ (A⊤
j:Aj:) 4 min{λ′(Jj ∩ Ŝ), λ′(A⊤

j:Aj:)}Diag(P(Ŝ) ◦ (A⊤
j:Aj:))

4 λ′(Jj ∩ Ŝ)Diag(P(Ŝ) ◦ (A⊤
j:Aj:)).

(59)

Therefore,

P(Ŝ) ◦A⊤A =

m
∑

j=1

P(Ŝ) ◦ (A⊤
j:Aj:) 4

m
∑

j=1

λ′(Jj ∩ Ŝ)Diag(P(Ŝ) ◦ (A⊤
j:Aj:))

= Diag(P(Ŝ)) ◦
m
∑

j=1

λ′(Jj ∩ Ŝ)Diag(A⊤
j:Aj:) = Diag(p) ◦Diag(v),

where p = (p1, . . . , pn) is the vector of probability defined in (1) and v = (v1, . . . , vn) is defined
in (58). For completeness, let us show that the second inequality in (59) can be replaced by equality.
Indeed, from (40) and the fact that |Jj | = ‖Aj:‖0, we obtain λ′(A⊤

j:Aj:) = |Jj |. Finally, using the

upper bound in Theorem 4.1, we know that λ′(Jj ∩ Ŝ) 6 |Jj |. Hence, min{λ′(Jj ∩ Ŝ), λ′(A⊤
j:Aj:)} =

λ′(Jj ∩ Ŝ).

The benefit of this approach is twofold: First, if the data matrix A is sparse, the sets Jj
have small cardinality, and from Proposition 4.1 (or other results in Section 4.3, depending on the
sampling Ŝ used) we conclude that λ′(Jj ∩ Ŝ) is small. Hence, the parameters vi obtained through
(58) get better (i.e., smaller) with sparser data. Second, the formula for vi does not involve the
need to compute an eigenvalue associated with the data matrix. On the other hand, instead of
having to compute λ′(Ŝ) (which, as we have seen, is equal to τ if |Ŝ| = τ with probability 1), we
now need to compute the normalized largest eigenvalue of m restrictions of Ŝ, λ′(Jj ∩ Ŝ) for all
j = 1, 2, . . . ,m. However, for this there is a good upper bound available through Proposition 4.1
for an arbitrary sampling, and refined bounds can be derived for specific samplings (for examples,
see Section 4.3).

5.4 ESO without eigenvalues

In this section we illustrate the use of the techniques developed in the preceding sections to
derive ESO inequalities, for selected samplings, which do not depend on any eigenvalues, and lead
to easily computable ESO parameters v = (v1, . . . , vn). The techniques can be used to derive similar
ESO inequalities for other samplings as well.
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Proposition 5.1. Let f satisfy Assumption 2.1 and let sets J1, . . . , Jm be defined as in (4). Then
(f, Ŝ) ∼ ESO(v) provided that the sampling Ŝ and vector v are chosen in any of the following ways:

(i) Ŝ is an arbitrary sampling such that |Ŝ| 6 τ with probability 1, and

vi =

m
∑

j=1

min{|Jj |, τ}A2
ji, i = 1, 2, . . . , n. (60)

(ii) Ŝ is the (c, τ)-distributed sampling and

vi =
m
∑

j=1

[

1 +
(|Jj | − 1)(τ − 1)

s1
+ |Jj |

(

τ

s
− τ − 1

s1

)

ω′
j − 1

ω′
j

]

A2
ji, i = 1, 2, . . . , n, (61)

where ω′
j
def
= |{l : Pl ∩ Jj 6= 0}| for j ∈ [m].

(iii) Ŝ is the τ -nice sampling (for τ > 1) and

vi =
m
∑

j=1

[

1 +
(|Jj | − 1)(τ − 1)

max(n− 1, 1)

]

A2
ji, i = 1, 2, . . . , n, (62)

(iv) Ŝ is a doubly uniform sampling (which is not nil) and

vi =
m
∑

j=1






1 +

(|Jj | − 1)
(

E[|Ŝ|2]

E[|Ŝ|]
− 1
)

max(n− 1, 1)






A2

ji, i = 1, 2, . . . , n, (63)

(v) Ŝ is a graph sampling and

vi =
m
∑

j=1

A2
ji, i = 1, 2, . . . , n. (64)

(vi) Ŝ is a serial sampling (i.e., a sampling for which |Ŝ| = 1 with probability 1) and v =
(v1, . . . , vn) is defined as in (64).

Proof. (i) A direct consequence of Theorem 5.2 and Proposition 4.1.

(ii) A direct consequence of Theorem 5.2 and Proposition 4.2.

(iii) This is a special case of part (ii) for c = 1.

(iv) A direct consequence of Theorem 5.2 and Proposition 4.4.

(v) For a graph sampling it is clear that |Jj ∩ Ŝ| 6 1 with probability 1 for all j ∈ [m]. The result
then follows from Theorem 5.2.

(vi) A special case of (v). Indeed, a single vertex is an independent set of a graph.
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Remarks: Note that part (i) of Proposition 5.1 is a strict improvement on (57). Also, this
is strict improvement, both in the quality of the bound and in generality of the sampling, on the
result in [24], which was proved for uniform samplings only and where the bound involved maxj |Jj |
instead of |Jj |. Part (ii) should be compared with the results obtained in [4] and part (iii) with
those in [5, 24].

6 Discussion

6.1 Trade-off between preprocessing time and iteration complexity

As stressed before, smaller parameter v = (v1, . . . , vn) leads to better convergence result (see
Table 1) but computing the smallest admissible v would require too large computational effort.
Nevertheless, using a cheaply computed parameter v = (v1, . . . , vn) would lead to large iteration
complexity and slow convergence. The trade-off between the preprocessing time for computing the
parameter v = (v1, . . . , vn) and the iteration complexity of the algorithm shall be discussed next.

For specific samplings such as τ -nice sampling and (c, τ)-distributed sampling, admissible v can
be computed using dedicated formulae 61 and 62, which appeared respectively in [4] and [5]. For
arbitrary sampling Ŝ, admissible parameter v can be computed according to 57, 58 or 60, which
are given for the first time. While 58 requires computing the largest eigenvalue for m matrices of
sizes {J1, . . . , Jm}, both 57 and 60 can be computed in at most two passes over the data. In return,
58 provides a smaller parameter v which improves the iteration complexity.

For approximating λ′(Jj ∩ Ŝ), one can apply power method on the positive semidefinite matrix
P(Jj ∩ Ŝ). The number of operations needed in one iteration of the power method is |Jj |2 and if we
apply T iterations of power method9, then the total number of operations needed for computing v
using 58 is

O(T
m
∑

j=1

|Jj |2) 6 O(T max
j
|Jj |nnz(A)),

where the big O notation hides constants independent of the data matrix A.
Recall from Table 1 how the iteration complexity of different methods depends on the parameter

v = (v1, . . . , vn). Let us consider the strongly convex smooth objective function setup and assume
that the random sampling Ŝ has cardinality τ with probability 1. Then the computational time of
one epoch (n iterations) is of the same order as τ passes over the data. Therefore, given a parameter
v = (v1, . . . , vn), the number of passes over the data is bounded by:

O(
1

λ
max

i

viτ

pin
log(

1

ǫ
)),

where ǫ is the target accuracy and λ is the strong convexity parameter of the problem.
The comparison of the three formulae in terms of overall complexity is reported in Table 2,

where the big O notation hides constants independent of the data matrix A. It is clear from the
table that the trade-off between the preprocessing and the iteration complexity mainly depends on

the proportion between
T
∑m

j=1 |Jj |
2

nnz(A) and 1
λ maxi

viτ
pin

. In Table 3 we report the actual computing time

9 Note that as the matrix P(Jj ∩ Ŝ) is positive semidefinite, the power method always converges to the largest
eigenvalue even if it is not a dominant eigenvalue. We defer the study on the convergence rate of power method for
different matrices P(Jj ∩ Ŝ) to a future work.
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v = (v1, . . . , vn) Number of passes over the data

57 O(1 +
1

λ
max

i

viτ

pin
log(

1

ǫ
))

58 O(
T
∑m

j=1 |Jj |2
nnz(A)

+
1

λ
max

i

viτ

pin
log(

1

ǫ
))

60 O(1 +
1

λ
max

i

viτ

pin
log(

1

ǫ
))

Table 2: Total number of passes over data for three different admissible parameters v.

of v using different formulae and the corresponding value of maxi
viτ
pin

, for two real data matrices
w8a and dorothea. To facilitate the comparison we normalized the two data sets so that the
diagonal elements of A⊤A are all one. The samplings Ŝ that we used in the experiments are
all product sampling (Definition 2.8) with respect to some random partition of the set [n]. The
number of iterations T for the power method is fixed to 10 and we multiply the obtained value by
1.01. Because of the comparable processing time, Formula 60 is clearly better than Formula 57.
From Table 3 we also see that Formula 58 requires significant computational effort for computing v
comparing to the other two but also reduces the value of maxi

viτ
pin

by order of magnitude in most of
the regimes. Let us take the example of dorothea with τ = 256, then the overall number of passes
over data is O(1.52 + 256.91

λ log(1ǫ )) if v is computed using Formula 60 and O(8715.8 + 16.68
λ log(1ǫ ))

if v is computed using Formula 58. Hence for small enough strong convexity parameter λ, it is
worth to spend more time in computing a good parameter v using Formula 58, which will then be
compensated by a smaller iteration complexity.

6.2 Optimal sampling

Proposition 5.1 should be understood in the context of complexity results for randomized coor-
dinate descent, such as those in Table 1. For instance, in view of (60) for an arbitrary sampling Ŝ
such that |Ŝ| 6 τ with probability 1, the accelerated coordinate descent method developed in [17]
has complexity

√

√

√

√2

n
∑

i=1

vi(x0i − x∗i )
2

p2i
× 1√

ǫ
=

√

√

√

√2

n
∑

i=1

∑m
j=1min{|Jj |, τ}A2

ji(x
0
i − x∗i )

2

p2i
× 1√

ǫ
. (65)

Naturally, the bound improves if we use a specialized sampling, such as the τ -nice sampling (since
the constants vi become smaller).

Sometimes, one can find a sampling which minimizes the complexity bound. For instance, if we
restrict our attention to serial samplings only (samplings picking a single coordinate at a time), then
one can find probabilities p1, . . . , pn, which uniquely define a sampling, minimizing the complexity
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Data τ
time of computing v

time of one pass over data maxi
viτ
pin

Form. 57 Form. 60 Form. 58 Form. 57 Form. 60 Form. 58

1 1 1 1 1 1 1
w8a 8 1 1.9 382.5 8.11 8.11 1.92

n = 300 16 1 1.8 380.3 17.07 17.10 3.03
m = 49749 24 1 2.0 377.2 24.96 24.97 3.98
nnz
nm ≃ 3.8% 128 1 1.8 331.4 145.92 50.45 20.80

256 1 1.8 313.2 194.56 67.13 50.54

1 1 1 1 1 1 1
dorothea 8 1 3.2 8057.1 8.01 8.01 1.44

n = 100000 16 1 1.52 8442.4 16.01 16.01 1.93
m = 800 24 1 1.52 8546.5 24.01 24.01 2.42

nnz
nm ≃ 0.91% 128 1 1.52 8686.6 128.13 128.13 8.79

256 1 1.52 8715.8 256.91 256.91 16.68
1024 1 1.53 8724.1 1038.1 1038.1 64.5

Table 3: Comparison of Formula 57, Formula 58 and Formula 60.

bound:

pi =

(

wi(x
0
i − x∗i )

2
)1/3

∑n
i=1

(

wi(x0i − x∗i )
2
)1/3

, i ∈ [n], (66)

where wi =
∑

j A
2
ji. Note that if the ith coordinate is optimal at the starting point (i.e., if x0i = x∗i ),

then the prediction is to choose pi = 0 (i.e., to never update coordinate i) – this is what one would
expect. Using the serial sampling defined by (66), the complexity (65) takes the form

Copt =
√
2

(

n
∑

i=1

w
1/3
i (x0i − x∗i )

2/3

)3/2

× 1√
ǫ
=

√
2‖d‖32√

ǫ
,

where d ∈ R
n with di = w

1/6
i (x0i − x∗i )

1/3 and ‖d‖q = (
∑n

i=1 d
q
i )

1/q. However, if the uniform serial
sampling is used instead (each coordinate is chosen with probability pi = 1/n), then the complexity
(65) has the form

Cunif =
√
2n

(

n
∑

i=1

wi(x
0
i − x∗i )

2

)1/2

× 1√
ǫ
=

√
2n‖d‖36√

ǫ
.

While ‖d‖6 6 ‖d‖2 for all d, these quantities can be equal, in which case Copt is n times better
than Cunif .

7 Conclusion

We have conducted a systematic study of ESO inequalities for a large class of functions (those
satisfying Assumption 2.1) and arbitrary samplings. These inequalities are crucial in the design
and complexity analysis of randomized coordinate descent methods. This led us to study standard
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and normalized largest eigenvalue of the Hadamard product of the probability matrix associated
with a sampling and a certain positive semidefinite matrix containing the data defining the func-
tion. Using our approach we have established new ESO results and also re-derived ESO results
already established in the literature (in the case of uniform samplings) via different techniques.
Our approach can be used to derive further bounds for specific samplings and can potentially be
of interest outside the domain of randomized coordinate descent.
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[3] Olivier Fercoq, Zheng Qu, and Peter Richtárik. Accelerated, parallel and proximal coordinate
descent for strongly convex functions. Technical report, The University of Edinburgh, 2014.
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[5] Olivier Fercoq and Peter Richtárik. Accelerated, parallel and proximal coordinate descent.
SIAM Journal on Optimization (after minor revision), arXiv:1312.5799, 2013.
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A Frequently used notation

Samplings

P Probability
E Expectation

S, J subsets of [n]
def
= {1, 2, . . . , n}

Ŝ sampling, i.e., a random subset of [n] Sec 1.1,2.2

ÊS elementary sampling associated with set S ⊆ [n] Def 2.1

Ŝ1 ∩ Ŝ2 intersection of samplings Ŝ1 and Ŝ2 Def 2.5

J ∩ Ŝ restriction of sampling Ŝ to set J (=ÊS ∩ Ŝ) Def 2.6

P = P(Ŝ) n-by-n probability matrix: Pij = P({i, j} ⊆ Ŝ) Sec 3

pi pi = Pii = P(i ∈ Ŝ) (1)
p p = (p1, . . . , pn)

⊤ ∈ R
n (1)

Matrices and vectors

e the n-by-1 vector of all ones
ei the i-th unit coordinate vector in R

n

h[S] for h ∈ R
n and S ⊆ [n], this is defined by h[S] =

∑

i∈S hiei
A m-by-n data matrix defining f (3)
Jj the set of i ∈ [n] for which Aij 6= 0 (4)
I n-by-n identity matrix
E n-by-n matrix of all ones

Diag outputs a diagonal matrix based on its argument (matrix or vector)
◦ Hadamard (elementwise) product of two matrices or vectors

M[S] restriction of matrix M ∈ R
n×n to rows and columns indexed by S (15)

λ(M) maximal eigenvalue of n-by-n matrix M Sec 4; (34)
λ′(M) normalized maximal eigenvalue of n-by-n matrix M Sec 4; (35)

λ′(Ŝ) shorthand notation for λ′(P(Ŝ))

Table 4: Notation appearing frequently in the paper.
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