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MIXED PRODUCT POISSON STRUCTURES ASSOCIATED TO POISSON LIE

GROUPS AND LIE BIALGEBRAS

JIANG-HUA LU AND VICTOR MOUQUIN

Abstract. We introduce and study some mixed product Poisson structures on product manifolds as-
sociated to Poisson Lie groups and Lie bialgebras. For quasitriangular Lie bialgebras, our construction
is equivalent to that of fusion products of quasi-Poisson G-manifolds introduced by Alekseev, Kosmann-

Schwarzbach, and Meinrenken. Our primary examples include four series of holomorphic Poisson struc-
tures on products of flag varieties and related spaces of complex semi-simple Lie groups.

1. Introduction and outlines of main results

1.1. Introduction. This paper is the first of a series of papers devoted to a detailed study of some nat-

urally defined holomorphic Poisson structures on products of flag varieties and related spaces of complex

semi-simple Lie groups (see §1.3 and §8.6 for the definitions of these Poisson structures). Aspects of the

Poisson structures to be investigated include calculations in coordinates, symplectic groupoids over (ex-

tended) Bruhat cells, orbits of symplectic leaves under the action of a maximal torus T of G, also called

the T -leaves, log-moment maps for the T -action, cluster structures on the T -leaves, and quantization.

This paper sets up the general framework, namely that of mixed product Poisson structures and Poisson

structures defined by quasitriangular r-matrices, in which the above mentioned aspects of the Poisson

structures will be studied in forthcoming papers. Although we are motivated by particular examples,

the theory developed in the paper is applicable to much wider classes of Poisson structures and is of

independent interest.

Definition 1.1. Given two manifolds Y1 and Y2, by a mixed product Poisson structure on the product

manifold Y1 × Y2 we mean a Poisson bi-vector field π on Y1 × Y2 that projects to well-defined Poisson

structures on Y1 and Y2. Given Yi, 1 ≤ i ≤ n, where n ≥ 2, a Poisson structure π on the product

manifold Y = Y1× · · · × Yn is said to be a mixed product if the projection of π to Yi × Yj is a well-defined

mixed product Poisson structure on Yi × Yj for any 1 ≤ i < j ≤ n, and in this case, we also call the pair

(Y1 × · · · × Yn, π) a mixed product Poisson manifold.

Mixed product Poisson manifolds are semiclassical analogs of locally factored algebras introduced by P.

Etingof and D. Kazhdan in [16]. When each Yj is a finite dimensional vector space, linear mixed product

Poisson structures on the direct sum vector space Y = Y1⊕· · ·⊕Yn are in one-to-one correspondence with

Lie algebra structures on its dual space Y ∗ ∼= Y ∗
1 ⊕ · · · ⊕ Y ∗

n such that each Y ∗
i →֒ Y ∗ is a Lie subalgebra

and [Y ∗
i , Y

∗
j ] ⊂ Y ∗

i ⊕ Y ∗
j for each pair i 6= j. In this paper, we study a class of mixed product Poisson

structures in the category of Poisson manifolds with Poisson actions by Lie bialgebras.

The constructions in this paper are all special cases of twists of Lie bialgebras and Poisson actions

thereof as introduced by Drinfeld [11] in the context of quasi-Hopf algebras. More specifically, given Lie

bialgebras (gj , δgj ), 1 ≤ j ≤ n, we introduce (§3.1) the notion of mixed twists of their direct product Lie

bialgebra, which are twists by mixed twisting elements of the direct product Lie bialgebra structure on

g = g1 ⊕ · · · ⊕ gn. If (Yj , πj , λj) is a (gj , δgj )-Poisson space for each 1 ≤ j ≤ n (see Definition 2.12), a

mixed twisting element t is used to obtain a mixed product Poisson structure πY on the product manifold

Y = Y1 × · · · × Yn with the properties 1) the projection of πY to each Yj is πj , and 2) the direct product
1
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action of g on (Y, πY ) is now a Poisson action of the twist by t of the direct product Lie bialgebra structure

on g (see Proposition 3.4).

As our first example of mixed twists of direct product Lie bialgebras, we introduce in §5.1 the notion

of polyubles of an arbitrary Lie bialgebra, generalizing that of the Drinfeld double of a Lie bialgebra. We

then construct mixed product Poisson structures (§4 and §5) that have Poisson actions by polyuble Lie

bialgebras or their duals (Proposition 5.7 and Remark 5.8). Polyubles for factorizable Lie bialgebras have

been previously constructed by V. Fock and A. Rosly [19, 20], from whom we have borrowed the term.

Polyubles of Lie bialgebras are special cases of a more general construction: if r ∈ g ⊗ g is a quasi-

triangular r-matrix on a Lie algebra g, we construct in §6.1, for each n ≥ 2, a quasitriangular r-matrix

r(n) on the direct product Lie algebra gn, which is a certain alternating sum of r plus a mixed twisting

element of the n-fold direct product of the quasitriangular Lie bialgebra (g, r) with itself. The dual of

the quasitriangular Lie bialgebra (gn, r(n)) is precisely the locally factored Lie bialgebra with equal com-

ponents constructed from (g, r) by P. Etingof and D. Kazhdan in [16, Proposition 1.9]. If (Yj , πj , λj) is a

(g, r)-Poisson space for each 1 ≤ j ≤ n (see Definition 2.12), one then obtains a mixed product Poisson

structure on the product manifold Y = Y1 × · · · × Yn such that the direct product action of gn on Y

is a Poisson action for the quasitriangular Lie bialgebra (gn, r(n)) (see Theorem 6.8). In particular, we

are naturally lead to the notion of fusion products of Poisson spaces of a quasitriangular Lie bialgebra

(Definition 6.9), which, under twisting, is equivalent to that of fusion products of quasi-Poisson spaces

introduced by Alekseev, Kosmann-Schwarzbach, and Meinrenken [2] (see §6.3).

Another emphasis of our paper is on Poisson structures defined by quasitriangular r-matrices, i.e.,

Poisson structures on a manifold Y of the form λ(r), where r is a quasitriangular r-matrix on a Lie

algebra g and λ is a Lie algebra action of g on Y (see §1.2 and §2.6). §7 and §8 are devoted to our

primary examples, which are mixed product Poisson structures arising from quotients of product Poisson

Lie groups, which, at the same time, are defined by quasitriangular r-matrices of the form r(n) (Theorem

7.8 and Theorem 8.2). This class of examples includes the four series of holomorphic Poisson structures

on products of flag varieties and related spaces of complex semi-simple Lie groups (see §1.3).

We also give in §2 a somewhat detailed review on Lie bialgebras. A partial purpose of the review is to

fix our conventions on signs and constants that are to be used in this and subsequent papers.

1.2. Poisson structures defined by quasitriangular r-matrices. It is a simple observation, see

Proposition 2.18 (see also [27, Section 2.1]), that given a quasitriangular r-matrix r =
∑

i xi ⊗ yi ∈ g⊗ g

on a Lie algebra g and a left Lie algebra action λ of g on a manifold Y , the 2-tensor field

λ(r) :=
∑

i

λ(xi)⊗ λ(yi)

on Y is Poisson as long as it is skew-symmetric. In this case, (Y,−λ(r), λ) is a left (g, r)-Poisson space,

and we say that the Poisson structure −λ(r) is defined by the action λ and the quasitriangular r-matrix

r. An equivalent condition for λ(r) to be skew-symmetric is that the stabilizer subalgebra of g at each

point of Y be coisotropic with respect to the symmetric part of r (see §2.6).

1.3. Primary Examples. For a Lie group G and an integer n ≥ 1, let Gn act on itself from the right by

(1.1) (g1, g2, . . . , gn) · (h1, h2, . . . , hn) = (g1h1, h
−1
1 g2h2, . . . , h

−1
n−1gnhn), gi, hi ∈ G.

If Q1, . . . , Qn are closed subgroups of G, let

(1.2) Z = G×Q1 · · · ×Qn−1 G/Qn
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be the quotient manifold of Gn by the action of Q1 × · · · × Qn ⊂ Gn given in (1.1). Assume now that

(G, πG) is a Poisson Lie group and that Q1, . . . , Qn are closed Poisson Lie subgroups of (G, πG). Then (see

Lemma-Definition 7.2) the direct product Poisson structure πn
G on Gn projects to a well-defined Poisson

structure πZ = ̟Z(π
n
G
) on Z, where ̟Z : Gn → Z is the quotient map, and we refer to (Z, πZ) as a

quotient Poisson manifold of the product Poisson Lie group (Gn, πn
G
).

When (G, πst) is a standard complex semi-simple Poisson Lie group, defined by the choice of the triple

(B,B−,〈 , 〉g), where (B,B−) is a pair of opposite Borel subgroups of the connected complex semi-simple

Lie group G and 〈 , 〉g a fixed symmetric non-degenerate invariant bilinear form on the Lie algebra of g

(see §8.6), both B and B− are Poisson Lie subgroups of (G, πst). For each integer n ≥ 1, one thus has

the quotient Poisson manifolds (Fn, πn) and (F̃n, π̃n), where

Fn = G×B · · · ×B G/B and F̃n = G×B · · · ×B G

are both quotients of Gn, and πn = πFn
and π̃n = πF̃n are the respective projections of πn

st to Fn and F̃n.

Associated to (G, πst) is its Drinfeld double Poisson Lie group (G×G,Πst), where G×G has the product

Lie group structure, and B × B− is a Poisson Lie subgroup of (G ×G,Πst). For each integer n ≥ 1, one

also has the quotient Poisson manifolds (Fn,Πn) and (F̃n, Π̃n), where

Fn = (G×G)×(B×B−) · · · ×(B×B−) (G×G)/(B ×B−),

F̃n = (G×G)×(B×B−) · · · ×(B×B−) (G×G)

are both quotients of (G ×G)n, and Πn = πFn and Π̃n = πF̃n
are the respective projections of Πn

st to Fn

and F̃n. These four series of Poisson manifolds are the focus of study in this and forthcoming papers.

Returning to the quotient Poisson manifold (Z, πZ) in (1.2) for an arbitrary Poisson Lie group (G, πG)

and closed Poisson Lie subgroups Q1, . . . , Qn, note that the manifold Z is diffeomorphic to the product

manifold (G/Q1)× · · · × (G/Qn) via the diffeomorphism JZ : Z → (G/Q1)× · · · × (G/Qn) given by

JZ(̟Z(g1, g2, . . . , gn)) = (g1Q1, g1g2Q2, . . . , g1g2 · · · gnQn), g1, . . . , gn ∈ G.

We study πZ via the Poisson structure JZ(πZ) on the product manifold (G/Q1)×· · ·× (G/Qn). The main

results (Theorem 7.8 and Theorem 8.2) on the Poisson structure JZ(πZ) are summarized as follows.

Theorem 1.2. 1) As Poisson structures on the product manifold (G/Q1)× · · · × (G/Qn),

JZ(πZ) = −σ
(
r
(n)
d

)
,

where rd is the quasitriangular r-matrix on the double Lie algebra of the Lie bialgebra (g, δg) of (G, πG),

and σ is the direct product action of dn on (G/Q1)× · · ·× (G/Qn) of naturally defined (see (7.3)) actions

of d on each factor G/Qj;

2) If (g, δg) has a quasitriangular structure r ∈ g ⊗ g (see Definition 2.3) and if Q1 = · · · = Qn = Q,

where the Lie algebra q of Q satisfies Im(r+) ⊂ q (see (2.14)), then

JZ(πZ) = −λ(r
(n)),

where λ is the direct product action of gn on (G/Q)n induced by left translation.

Theorem 1.2 applies directly to the Poisson manifolds (Fn, πn) and (Fn,Πn). We can thus identify

both πn and Πn as mixed product Poisson structures, respectively on (G/B)n and ((G×G)/(B×B−))
n,

that are also defined by quasitriangular r-matrices. Similar results holds for the Poisson structures π̃n

and Π̃n by adjusting the quasitriangular r-matrices (see §8.2).

Let T = B ∩ B−, a maximal torus of G. Then T acts on G by left translation and on G × G by

left translation via T ∼= {(t, t) : t ∈ T }. The actions of T on Z ∈ {Fn, F̃n, Fn, F̃n}, induced by the
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T -actions on the first factors of Gn and (G ×G)n, preserve the Poisson structures πZ. In [30], a sequel

to the present paper, we describe the T -leaves and compute the ranks of all the symplectic leaves in

(Z, πZ) for Z ∈ {Fn, F̃n, Fn, F̃n} by first developing a general theory on torus orbits of symplectic leaves

for Poisson structures defined by quasitriangular r-matrices. Our descriptions of the T -leaves of these

Poisson manifolds are in terms of extended Bruhat cells, extended Richardson varieties, and extended

Double Bruhat cells associated to conjugacy classes (see [30] for detail). In [14], the induced Poisson

structures on extended Bruhat cells are computed explicitly in the so-called Bott-Samelson coordinates

in terms of root strings and the structure constants of the Lie algebra g, and they are shown to give rise

to polynomial Poisson algebras that are symmetric nilpotent semi-quadratic Poisson-Ore extensions of C

in the sense of [21, Definition 4]. Symplectic groupoids of extended Bruhat cells in terms of extended

double Bruhat cells will be studied in another paper.

We would like to point out that some examples of Poisson structures defined by quasitriangular r-

matrices and Lie algebra actions, together with their quantizations, have been studied by several authors

(see, for example, [8, 15, 17, 42]). Our paper gives new classes of such Poisson structures, and it would

be very interesting to study their quantizations.

1.4. Acknowledgments. The authors wish to thank Anton Alekseev, David Li-Bland, and Xiaomeng

Xu for helpful comments. This work was partially supported by a University of Hong Kong Post-graduate

Studentship and by the Research Grants Council of the Hong Kong SAR, China (GRF HKU 704310 and

703712).

1.5. Notation. Throughout the paper, vector spaces are understood to be over k = R or C. The non-

degenerate bilinear pairing between a finite dimensional vector space V and its dual space V ∗ will always

be denoted by 〈 , 〉. The annihilator of a vector subspace U of V is, by definition, U0 = {ξ ∈ V ∗ : 〈ξ, U〉 =

0} ⊂ V ∗. For each integer k ≥ 1, we identify the tensor product V ⊗k with the space of multi-linear maps

from V ∗ × · · · × V ∗ (k-times) to k, so that

(v1 ⊗ v2 ⊗ · · · ⊗ vk)(ξ1, ξ2, . . . , ξk) = 〈v1, ξ1〉〈v2, ξ〉 · · · 〈vk, ξk〉, vj ∈ V, ξj ∈ V ∗.

Let ∧kV be the subspace of skew-symmetric elements in V ⊗k, and define, for v1, . . . , vk ∈ V ,

(1.3) v1 ∧ v2 ∧ · · · ∧ vk =
∑

σ∈Sk

sign(σ)vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(k) ∈ ∧
kV ⊂ V ⊗k.

If 〈 , 〉(V ,W ) is a bilinear pairing between V and another vector space W , for each integer k ≥ 1, we extend

〈 , 〉(V ,W ) to a bilinear pairing between ∧kV and ∧kW , also denoted as 〈 , 〉(V ,W ), via

〈x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yk〉(V ,W ) = det((〈xi, yj〉(V ,W ))i,j=1,...,k), xj ∈ V, yj ∈W.

In particular, we identify ∧k(V ∗) with (∧kV )∗ via the bilinear pairing between ∧kV and ∧k(V ∗) which

is the extension of the pairing 〈 , 〉 between V and V ∗. For any element r =
∑

i ui ⊗ vi ∈ V ⊗ V , define

(1.4) r# : V ∗ −→ V, r#(ξ) =
∑

i

〈ξ, ui〉vi, ξ ∈ V ∗.

If Λ =
∑

i ui ∧ vi ∈ ∧
2V , then Λ# : V ∗ → V is given by Λ#(ξ) =

∑
i〈ξ, ui〉vi − 〈ξ, vi〉ui, or

(1.5) 〈Λ#(ξ), η〉 = Λ(ξ, η) = 〈Λ, ξ ∧ η〉, ξ, η ∈ V ∗.

If σ : V →W is a linear map, denote also by σ the linear map V ⊗k →W⊗k given by σ(v1 ⊗ · · · ⊗ vk) =

σ(v1) ⊗ · · · ⊗ σ(vk). If V = V1 ⊕ · · · ⊕ Vn is a direct sum of vector spaces, and if Aj ∈ V ⊗k
j , 1 ≤ j ≤ n,
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denote by (0, . . . , Aj , . . . , 0) ∈ V ⊗k the image of Aj under the embedding of Vj into V , and let

(A1, . . . , An) =

n∑

j=1

(0, . . . , Aj , . . . , 0) ∈ V ⊗k.

We will work in the category of finite dimensional smooth real or complex manifolds. If Y is a real or

complex manifold, for an integer k ≥ 1, Vk(Y ) denotes the space of k-vector fields on Y , i.e., smooth or

holomorphic sections of ∧kTY , where TY is the smooth or holomorphic tangent bundle of Y . One has

the Schouten bracket [ , ] : Vk(Y ) × V l(Y ) → Vk+l−1(Y ) which restricts to the Lie brackets on V1(Y )

and satisfies [A, f ] = A(f) for A ∈ V1(Y ), f ∈ V0(Y ), and

[A, B ∧C] = [A,B] ∧ C + (−1)(k−1)lB ∧ [A,C], A ∈ Vk(Y ), B ∈ V l(Y ), C ∈ Vm(Y ),

[A,B] = −(−1)(k−1)(l−1)[B,A], A ∈ Vk(Y ), B ∈ V l(Y ).

A real (resp. complex) Poisson manifold is a pair (Y, πY ), where Y is a real (resp. complex) manifold and

πY is a smooth (resp. holomorphic) bi-vector field on Y such that [πY , πY ] = 0. Given Poisson manifolds

(Yj , πY j
), 1 ≤ j ≤ n, the direct product Poisson structure on the product manifold Y1 × · · · × Yn is

(πY 1 , . . . , πY n), also denoted by πY 1 × · · · × πY n . The n-fold product of a Poisson manifold (Y, πY ) with

itself is denoted by (Y n, πn
Y
).

Let G be a Lie group with Lie algebra g. Identifying ∧g with the space of left invariant multivector

fields on G, one has the Schouten bracket on ∧g which is also denoted by [ , ]. In particular, for Λ ∈ ∧2g

and using our convention in (1.3), [Λ,Λ] ∈ ∧3g is given by

(1.6)
1

2
[Λ,Λ](ξ, η, ζ) = 〈ξ, [Λ#(η), Λ#(ζ)]〉+ 〈η, [Λ#(ζ), Λ#(ξ)]〉 + 〈ζ, [Λ#(ξ), Λ#(η)]〉,

for ξ, η, ζ ∈ g∗. A left action of g on a manifold Y is a Lie algebra anti-homomorphism λ : g → V1(Y ),

while a right action of g on Y is a Lie algebra homomorphism ρ : g→ V1(Y ). If λ : G×Y → Y, (g, y) 7→ gy

is a left action of G on Y , one has the induced left action of g on Y , also denoted by λ, given by

λ : g −→ V1(Y ), λ(x)(y) =
d

dt
|t=0 exp(tx)y, x ∈ g, y ∈ Y.

Similarly, a right Lie group action ρ : Y ×G→ Y, (y, g)→ yg induces a right Lie algebra action

ρ : g −→ V1(Y ), ρ(x)(y) =
d

dt
|t=0y exp(tx), x ∈ g, y ∈ Y.

2. Review on Poisson Lie groups, Lie bialgebras, and Poisson actions

In this section, we set up our conventions (on signs and constants) and review some facts on Lie

bialgebras that will be used in this paper and in subsequent papers. Except for that in §2.6, all materials

are standard and well-known, and we refer to [5, 9, 10, 18, 24, 25, 31, 36, 37, 38, 39] for more details. All

Lie bialgebras in this paper are assumed to be finite dimensional.

2.1. Lie bialgebras. A Lie bialgebra is a pair (g, δg) where g is a Lie algebra and δg : g → ∧2g a linear

map, called the co-bracket, such that 1) the dual map δ∗g : ∧2g∗ → g∗ of δg is a Lie bracket on the dual

space g∗ of g, and 2) δg satisfies the 1-cocycle condition

(2.1) δg[x, y] = [x, δg(y)] + [δg(x), y], x, y ∈ g.

A Lie bialgebra homomorphism from one Lie bialgebra (g1, δg1) to another (g2, δg2) is a Lie algebra

homomorphism φ : g1 → g2 such that φ(δg1 (x)) = δg2(φ(x)) for all x ∈ g1.

If (g, δg) is a Lie bialgebra, so is (g∗, δg∗), where the Lie bracket on g∗ is given by δ∗g : ∧2g∗ → g∗, the

dual map of δg, and δg∗ : g∗ → ∧2g∗ is the dual map of the Lie bracket on g. The Lie bialgebra (g∗, δg∗)
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is called the dual Lie bialgebra of (g, δg). If (g
′, δg′) is a Lie bialgebra isomorphic to the dual Lie bialgebra

(g∗, δg∗), we will call (g, δg) and (g′, δg′) a dual pair of Lie bialgebras.

A sub-Lie bialgebra of a Lie bialgebra (g, δg) is a Lie bialgebra (p, δp) with an injective Lie bialgebra

homomorphism (p, δp) → (g, δg). A quotient Lie bialgebra of (g, δg) is a Lie bialgebra (q, δq) with a

surjective Lie bialgebra homomorphism (g, δg)→ (q, δq).

2.2. The Double Lie (bi)algebra of a Lie bialgebra. Recall that a quadratic Lie algebra is a pair

(d, 〈 , 〉d), where d is a Lie algebra and 〈 , 〉d is a non-degenerate symmetric ad-invariant bilinear form on

d. Let (g, δg) be a Lie bialgebra and let (g∗, δg∗) be its dual Lie bialgebra. Consider the direct sum vector

space d = g⊕ g∗ and denote its elements by x+ ξ, where x ∈ g and ξ ∈ g∗. Then d carries the symmetric

bilinear form

〈x+ ξ, y + η〉d = 〈x, η〉 + 〈ξ, y〉, x, y ∈ g, ξ, η ∈ g∗,

and a unique Lie bracket [ , ] extending those on g and g∗ such that 〈 , 〉d is ad-invariant. Namely

(2.2) [x+ ξ, y + η] = [x, y] + ad∗ξ y − ad∗η x+ [ξ, η] + ad∗x η − ad∗y ξ, x, y ∈ g, ξ, η ∈ g∗,

where ad∗ denotes both the coadjoint action of g on g∗ and of g∗ on g, i.e.,

〈ad∗x ξ, y〉 = 〈ξ, [y, x]〉, 〈ad∗ξ x, η〉 = 〈x, [η, ξ]〉, x, y ∈ g, ξ ∈ g∗.

The quadratic Lie algebra (d, 〈 , 〉d) is called the (Drinfeld) double Lie algebra of the Lie bialgebra (g, δg).

Definition 2.1. Assume that (d, 〈 , 〉d) is an even dimensional quadratic Lie algebra. By a Lagrangian

subalgebra of (d, 〈 , 〉d) we mean a Lie subalgebra g of d which is also a Lagrangian, i.e., maximal isotropic,

with respect to 〈 , 〉d. A decomposition d = g + g′ of vector spaces, where both g and g′ are Lagrangian

subalgebras of (d, 〈 , 〉d), is called a Lagrangian splitting of (d, 〈 , 〉d), and in this case ((d, 〈 , 〉d), g, g
′) is

also called a Manin triple. Given a Lagrangian splitting d = g + g′, by identifying g and g′ as the dual

spaces of each other using 〈 , 〉d, one obtains δg : g → ∧2g and δg′ : g′ → ∧2g′, the dual maps of the Lie

brackets on g′ and on g respectively, and one has the dual pair of Lie bialgebras (g, δg) and (g′, δg′). Their

double Lie algebra is clearly isomorphic to (d, 〈 , 〉d). The notion of Lie bialgebras is therefore equivalent

to that of even-dimensional quadratic Lie algebras with Lagrangian splittings.

Let (g, δg) be a Lie bialgebra, with dual Lie bialgebra (g∗, δg∗) and double Lie algebra (d, 〈 , 〉d).

Consider the direct product Lie algebra d2 = d⊕ d and denote its elements by (a, b), where a, b ∈ d. Let

〈 , 〉d2 be the bilinear form on d2 given by

(2.3) 〈(a1, a2), (a
′
1, a

′
2)〉d2 = 〈a1, a

′
1〉d − 〈a2, a

′
2〉d, a1, a2, a

′
1, a

′
2 ∈ d.

The quadratic Lie algebra (d2, 〈 , 〉d2) has the Lagrangian splitting d2 = ddiag + d′, where

ddiag = {(a, a) : a ∈ d} and d′ = g∗ ⊕ g = {(ξ, x) : ξ ∈ g∗, x ∈ g}.

Identifying d ∼= ddiag via a 7→ (a, a), one obtains the dual pair of Lie bialgebras (d, δd) and (d′, δd′). The

Lie bialgebra (d, δd) is called the (Drinfeld) double Lie bialgebra of the Lie bialgebra (g, δg). Note that

the non-degenerate pairing between d ∼= ddiag and d′ induced by 〈 , 〉d2 is given by

(2.4) 〈a, (ξ, x)〉(d,d′) = 〈ξ − x, a〉d, a ∈ d, (ξ, x) ∈ d′.

It is straightforward to check (see also [18, §4.2] and [41, §1.1]) that

(2.5) δd|g = δg : g −→ ∧2g and δd|g∗ = −δg∗ : g∗ −→ ∧2g∗.

In particular, both (g, δg) and (g∗,−δg∗) are sub-Lie bialgebras of (d, δd).
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Example 2.2. Let (g, δg) be a Lie bialgebra and (p, δp) a sub-Lie bialgebra of (g, δg). The double Lie

bialgebra (dp, δdp
) of (p, δp) can be identified with a “sub-quotient” of the double Lie bialgebra (d, δd) of

(g, δg): indeed, (p+g∗, δd|(p+g∗)) is a sub-Lie bialgebra of (d, δd), and the map p+g∗ → dp : x+ξ 7→ x+ξ|p,

x ∈ p, ξ ∈ g∗, is a surjective Lie bialgebra homomorphism from (p+ g∗, δd|(p+g∗)) to (dp, δdp
). ⋄

2.3. Quasitriangular r-matrices. Let g be any Lie algebra. For r =
∑

i xi ⊗ yi ∈ g⊗ g, define

(2.6) δr : g −→ g⊗ g, δr(x) = adx r =
∑

i

([x, xi]⊗ yi + xi ⊗ [x, yi]), x ∈ g.

An element r ∈ g⊗g is called a classical r-matrix (or simply an r-matrix) on g if (g, δr) is a Lie bialgebra.

Writing r as r = Λ + s with Λ ∈ ∧2g and s ∈ S2g, it follows from the definition that r is a classical

r-matrix on g if and only if s ∈ (S2g)g and [Λ,Λ] ∈ (∧3g)g, where (S2g)g and (∧3g)g denote respectively

the ad-invariant subspaces of S2g and ∧3g, and [ , ] is the Schouten bracket on ∧g (see §1.5 and (1.6)).

In this paper, we will refer to classical r-matrices simply as r-matrices. Given a Lie bialgebra (g, δg), an

element r ∈ g⊗ g such that δg = δr is called an r-matrix for (g, δg). A Lie bialgebra (g, δg) is said to be

co-boundary if it has an r-matrix.

Recall [10] the classical Yang-Baxter operator CYB : g⊗ g→ g⊗ g⊗ g given by

(2.7) CYB(r) = [r12, r13] + [r12, r23] + [r13, r23] ∈ g⊗ g⊗ g ⊂ U(g)⊗3, r ∈ g⊗ g,

where U(g) is the universal enveloping algebra of g, [ , ] on the right hand side denotes the commutator

bracket in U(g)⊗3, and r12, r13, r23 ∈ U(g)⊗3 are respectively given by

r12 =
∑

i

xi ⊗ yi ⊗ 1, r23 =
∑

i

1⊗ xi ⊗ yi, r13 =
∑

i

xi ⊗ 1⊗ yi

if r =
∑

i xi ⊗ yi ∈ g⊗ g. One checks directly [9, 24] (note our convention in §1.5 and (1.4)) that

CYB(Λ) =
1

2
[Λ, Λ] ∈ ∧3g if Λ ∈ ∧2g;(2.8)

CYB(s) ∈ (∧3g)g and CYB(s)(ξ, η, ζ) = 〈ξ, [s#(η), s#(ζ)]〉, ξ, η, ζ ∈ g∗, if s ∈ (S2g)g;(2.9)

CYB(r) = CYB(Λ) + CYB(s) ∈ ∧3g if r = Λ+ s with Λ ∈ ∧2g and s ∈ (S2g)g.(2.10)

An element r ∈ g⊗ g is called a quasitriangular r-matrix on g if the symmetric part of r is ad-invariant

and if r satisfies the Classical Yang Baxter Equation CYB(r) = 0. By (2.8) - (2.10), a quasitriangular

r-matrix on g is indeed an r-matrix on g (see also [10, 24, 33]). Let

r21 =
∑

i

yi ⊗ xi if r =
∑

i

xi ⊗ yi,

It is clear that r ∈ g⊗ g is a quasitriangular r-matrix on g if and only if r21 is.

Definition 2.3. 1) A quasitriangular r-matrix for a Lie bialgebra (g, δg) is also called a quasitriangular

structure of (g, δg). If r is a quasitriangular r-matrix on g, we call the pair (g, r) a quasitriangular Lie

bialgebra (with δr : g→ ∧2g as its co-bracket). A quasitriangular r-matrix r on g is said to be factorizable

if its symmetric part is non-degenerate, and in this case we call (g, r) a factorizable Lie bialgebra;

2) Given two quasitriangular Lie bialgebras (g1, r1) and (g2, r2), we say φ : (g1, r1) → (g2, r2) is a

morphism of quasitriangular Lie bialgebras if φ : g1 → g2 is a Lie algebra homomorphism and φ(r1) = r2.

Remark 2.4. A quasitriangular Lie bialgebra is thus the Lie bialgebra together with a quasitriangular

quasitriangular structure. A morphism φ : (g1, r1) → (g2, r2) of quasitriangular Lie bialgebras induces a

morphism φ : (g1, δr1) → (g2, δr2) of Lie bialgebras, but the converse fails in general (for example, when

both g1 and g2 are abelian Lie algebras). ⋄
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Let (g, δg) be a Lie bialgebra and (d, 〈 , 〉d) its double Lie algebra. Let dim g = m and let Gr0(m, d) be

the set of all m-dimensional subspaces of d complementary to g. Then

(2.11) g⊗ g −→ Gr0(m, d), r 7−→ kr = {−r#(ξ) + ξ : ξ ∈ g∗}

is a bijection, where r# : g∗ → g is given in (1.4). Note that k⊥r = k−r21 for any r ∈ g ⊗ g, where

q⊥ = {a ∈ d : 〈a, q〉d = 0} for q ⊂ d. In particular, kr is a Lagrangian subspace of d with respect to 〈 , 〉d

if and only if r ∈ ∧2g. A proof of the following result of Drinfeld can be found in [3].

Lemma 2.5. (Drinfeld [11]) An element r ∈ g ⊗ g is an r-matrix for (g, δg) if and only if [g, kr] ⊂ kr,

and r is a quasitriangular r-matrix for (g, δg) if and only if kr is a Lie ideal of d.

Applying Lemma 2.5 to the double Lie bialgebra (d, δd) of any Lie bialgebra (g, δg), one sees that

(d, δd) is co-boundary: the two Lie ideals 0 ⊕ d and d ⊕ 0 of d2 = d ⊕ d give rise to the two factorizable

quasitriangular matrices rd and −(rd)
21 for (d, δd) respectively, with

(2.12) rd =

m∑

i=1

xi ⊗ ξi ∈ d⊗ d,

where {xi}
m
i=1 is any basis of g and {ξi}

m
i=1 its dual basis of g∗. It is straightforward to check [18, §4.2]

that δd = δrd : d→ ∧2d.

Definition 2.6. We call rd ∈ d⊗d in (2.12) the quasitriangular r-matrix on d associated to the Lagrangian

splitting d = g+ g∗ of (d, 〈 , 〉d). Its skew-symmetric part

(2.13) Λg,g∗ =
1

2

m∑

i=1

xi ∧ ξi ∈ ∧
2d

will be called the skew-symmetric r-matrix on d associated to the Lagrangian splitting d = g+ g∗.

Let (g, δg) be a Lie bialgebra with a quasitriangular structure r ∈ g ⊗ g, and let (g∗, δg∗) and (d, δd)

be respectively the dual and the double Lie bialgebra of (g, δg). Define (see (1.4))

r+ = r# : g∗ −→ g, r− = −(r21)# = −r∗+ : g∗ −→ g,(2.14)

p± : d −→ g, p+(x+ ξ) = x+ r+(ξ), p−(x+ ξ) = x+ r−(ξ), x ∈ g, ξ ∈ g∗.(2.15)

It follows from Lemma 2.5 (see also [12, 18, 23, 24, 36]) that both p+ and p− are Lie algebra homomor-

phisms. With rd ∈ d⊗ d given in (2.12), one has

(2.16) p+(rd) =
m∑

i=1

xi ⊗ r+(ξi) = r, p−(rd) =
m∑

i=1

xi ⊗ r−(ξi) = −r
21.

In particular, p+ and p− are also Lie bialgebra homomorphisms from (d, δd) to (g, δg), and it follows that

r+, r− : (g∗,−δg∗)→ (g, δg) are also Lie bialgebra homomorphisms. Let

(2.17) f− = Im(r−) ⊂ g, f+ = Im(r+) ⊂ g.

Then (f−, δg|f−) and (f+, δg|f+) are sub-Lie bialgebras of (g, δg). Consider the well-defined non-degenerate

bilinear pairing 〈 , 〉(f−,f+) between f− and f+ given by

(2.18) 〈r−(ξ), r+(η)〉(f−,f+) = −〈ξ, r+(η)〉 = 〈r−(ξ), η〉, ξ, η ∈ g∗.

Lemma 2.7. (See also [18, Proposition 4.1]) Under the non-degenerate pairing 〈 , 〉(f−,f+) between f− and

f+, (f−, δg|f−) and (f+,−δg|f+) form a dual pair of Lie bialgebras.
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Proof. Let x−, y− ∈ f− and x+, y+ ∈ f+. Let x− = r−(ξ) and x+ = r+(η), where ξ, η ∈ g∗. As

r± : (g∗,−δg∗)→ (g, δg) are Lie bialgebra homomorphisms, one has

〈x− ∧ y−, δg(x+)〉(f−,f+) = 〈x− ∧ y−, δg(r+(η))〉(f−,f+) = −〈x− ∧ y−, r+(δg∗(η))〉(f− ,f+)

= −〈x− ∧ y−, δg∗(η)〉 = −〈[x−, y−], η〉 = −〈[x−, y−], x+〉(f−,f+),

〈δg(x−), x+ ∧ y+〉(f−,f+) = 〈δg(r−(ξ)), x+ ∧ y+〉(f−,f+) = −〈r−(δg∗(ξ)), x+ ∧ y+〉(f−,f+)

= −〈δg∗(ξ), x+ ∧ y+〉 = −〈ξ, [x+, y+]〉 = 〈x−, [x+, y+]〉(f−,f+).

Q.E.D.

Remark 2.8. Let {xi}
m
i=1 be a basis of g such that {xi}

l
i=1 is a basis of f−, and let {ξi}

m
i=1 be the dual

basis of g∗. As Span{ξl+1, . . . , ξm} = f0− = ker r+, {r+(ξi)}
l
i=1 is a basis of f+, dual to the basis {xi}

l
i=1

of f− under the pairing 〈 , 〉(f−,f+). Consequently,

(2.19) r =

m∑

i=1

xi ⊗ r+(ξi) =

l∑

i=1

xi ⊗ r+(ξi) ∈ f− ⊗ f+ ⊂ g⊗ g.

⋄

Let (df− , δdf−
) be the double Lie bialgebra of (f−, δg|f−), and let rdf−

be the quasitriangular r-matrix

on df− associated to the Lagrangian splitting df− = f− + f+. Consider the linear map

(2.20) q : df− −→ g, q(x−, x+) = x− + x+, x− ∈ f−, x+ ∈ f+.

Lemma 2.9. ([18, Proposition 4.1]) The map q : (df− , δdf−
)→ (g, δg) is a Lie bialgebra homomorphism.

In fact, q(rdf−
) = r.

Proof. Identify (df− , δdf−
) with the quotient of the sub-Lie bialgebra (f− + g∗, δd|f−+g∗) of (d, δd) as in

Example 2.2. Then q, being the map induced by the Lie algebra homomorphism p+ : d → g, is a Lie

algebra homomorphism. It follows from the definition of rdf−
and (2.19) that q(rdf−

) = r.

Q.E.D.

2.4. Twists of Lie bialgebras and of quasitriangular r-matrices. Let (g, δg) be a Lie bialgebra

and (d, 〈 , 〉d) its double Lie algebra. An element t ∈ ∧2g is called a twisting element for (g, δg) if the

Lagrangian subspace kt = {−t
#(ξ) + ξ : ξ ∈ g∗} of d (see (2.11)) is a Lie subalgebra of d. Using (1.6),

one readily checks [11] that t ∈ ∧2g is a twisting element for (g, δg) if and only if

(2.21) δg(t) +
1

2
[t, t] = 0,

where the co-bracket δg : g→ ∧2g is linearly extended to δg : ∧2g→ ∧3g via

(2.22) δg(x ∧ y) = δg(x) ∧ y − x ∧ δg(y), x, y ∈ g.

A twisting element t for (g, δg) gives rise to the Lagrangian splitting d = g+kt and thus another co-bracket

δg,t : g→ ∧
2g on g given by

(2.23) δg,t(x) = δg(x) − [x, t] = δg(x) + [t, x], x ∈ g.

The Lie bialgebra (g, δg,t) is called the twist of (g, δg) by the twisting element t, and we also say that the

Lagrangian splitting d = g + kt is the twist of the Lagrangian splitting d = g + g∗ by t. Note that the

two quasitriangular r-matrices rd and rd,t on d associated to the two Lagrangian splittings d = g + g∗

and d = g + kt are now related by rd,t = rd − t, where t ∈ ∧2g is regarded as an element in ∧2d via the

embedding g →֒ d.
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Lemma 2.10. Assume that the Lie bialgebra (g, δg) has a quasitriangular structure r ∈ g⊗ g, Then

∧2g −→ g⊗ g, t 7−→ r − t,

is a one-to-one correspondence between twisting elements for the Lie bialgebra (g, δg) and quasitriangular

r-matrices on g that have the same symmetric part as r.

Proof. Let r = Λ+ s, where Λ ∈ ∧2g. Let t ∈ ∧2g. By (2.8) - (2.10),

CYB(r − t) =
1

2
[Λ − t, Λ− t] + CYB(s) = −[t,Λ] +

1

2
[t, t] = δg(t) +

1

2
[t, t].

Thus r − t is a quasitriangular matrix on g if and only if t is a twisting element for (g, δg).

Q.E.D.

Definition 2.11. Given a quasitriangular r-matrix r on a Lie algebra g, any quasitriangular r-matrix r′

on g with the same symmetric part as r will be called a twist of r.

2.5. Poisson Lie groups and Poisson actions. A Poisson bi-vector field πG on a Lie group G is said to

be multiplicative if the group multiplication map (G×G, πG× πG)→ (G, πG), (g1, g2) 7→ g1g2, is Poisson.

A Poisson Lie group is a pair (G, πG), where G is a Lie group and πG is a multiplicative Poisson bi-vector

field on G. A Lie subgroup of G that is also a Poisson submanifold with respect to πG is called a Poisson

Lie subgroup of (G, πG).

Let (G, πG) be a Poisson Lie group and g the Lie algebra of G. Then πG(e) = 0, where e ∈ G is the

identity element. Let deπG : g → ∧2g be the linearization of πG at e, given by (deπG)(x) = [x̃, πG](e),

where for x ∈ g, x̃ is any local vector field on G with x̃(e) = x. Then the pair (g, δg = deπG) is a Lie

bialgebra, called the Lie bialgebra of the Poisson Lie group (G, πG).

Let (G, πG) be a Poisson Lie group with Lie bialgebra (g, δg). Any Poisson Lie group (G∗, πG∗) whose

Lie bialgebra is isomorphic to the dual Lie bialgebra of (g, δg) is called a dual Poisson Lie group of

(G, πG), and we also call (G, πG) and (G∗, πG∗) a dual pair of Poisson Lie groups. If CHECK (D, πD)

is a connected Poisson Lie group whose Lie bialgebra (d, δd) is isomorphic to the double Lie bialgebra of

(g, δg), and if the Lie algebra embedding g→ d integrates to a Lie group homomorphism G→ D, we call

(D, πD) a Drinfeld double of (G, πG).

A left Poisson action of a Poisson Lie group (G, πG) on a Poisson manifold (Y, πY ) is a left group

action σ : G × Y → Y such that σ : (G × Y, πG × πY ) → (Y, πY ) is a Poisson map. Similarly, a right

group action of G on Y given by σ : Y × G → Y is a right Poisson action of (G, πG) on (Y, πY ) if

σ : (Y ×G, πY × πG)→ (Y, πY ) is a Poisson map.

A left (resp. right) Poisson action of a Lie bialgebra (g, δg) on a Poisson manifold (Y, πY ) is a Lie

algebra anti-homomorphism (resp. Lie algebra homomorphism) σ : g→ V1(Y ) such that

[σ(x), πY ] = σ(δg(x)), ∀x ∈ g.

Here recall our convention from §1.5 that for any integer k ≥ 2, σ also denotes the linear map

(2.24) ∧k g −→ Vk(Y ), σ(x1 ∧ · · · ∧ xk) = σ(x1) ∧ · · · ∧ σ(xk), x1, . . . , xk ∈ g.

Definition 2.12. 1) For a Poisson Lie group (G, πG), a left (or right) (G, πG)-Poisson space is a triple

(Y, πY , σ), where (Y, πY ) is a Poisson manifold and σ a left (or right) Poisson action of (G, πG) on (Y, πY );

2) For a Lie bialgebra (g, δg), a left (or right) (g, δg)-Poisson space is a triple (Y, πY , σ), where (Y, πY )

is a Poisson manifold and σ : g→ V1(Y ) a left (or right) Poisson action of (g, δg) on (Y, πY ).

3) For a quasitriangular Lie algebra (g, r) (see Definition 2.3), a left (or right) (g, r)-Poisson space is a

left (or right)-Poisson space of the Lie bialgebra (g, δr), where δr : g→ ∧2g is given in (2.6).
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Let (G, π) be a connected Poisson Lie group with Lie bialgebra (g, δg), let (Y, πY ) be a Poisson manifold,

and let σ : G× Y → Y (resp. σ : Y ×G→ Y ) be a left (resp. right) action of G on Y . Recall from §1.5

our convention on Lie algebra actions induced from Lie group actions.

Lemma 2.13. [40] (Y, πY , σ) is a (G, πG)-Poisson space if and only if it is a (g, δg)-Poisson space.

Remark 2.14. By Lemma 2.13, if (Y, πY , λ) is a left (g, δg)-Poisson space, then (Y, πY ,−λ) is a right

(g,−δg)-Poisson space, and (Y,−πY ,−λ) is a right (g, δg)-Poisson space. ⋄

Example 2.15. (Dressing actions) Let (G, πG) be a Poisson Lie group with Lie bialgebra (g, δg), and

let (g∗, δg∗) and (d, δd) be respectively the dual and double Lie bialgebra of (g, δg). A Poisson map

Φ : (Y, πY )→ (G, πG) generates a right Poisson action of (g∗, δg∗) on (Y, πY ) by

g∗ −→ V1(Y ), ξ 7−→ π#
Y (Φ∗(ξR)), ξ ∈ g∗,

where for ξ ∈ g∗, ξR denotes the right invariant 1-form on G with value ξ at e. In particular, the identity

map G→ G generates [38] the right dressing action ̺ of (g∗, δg∗) on (G, πG) given by

(2.25) ̺ : g∗ −→ V1(G), ̺(ξ) = π#
G (ξR), ξ ∈ g∗.

The vector fields ̺(ξ), ξ ∈ g∗, are called the right dressing vector fields on G. For g ∈ G, denote by Adg

the Adjoint action of g on g and by lg and rg the left and right translations on G by g. Then [13] the

adjoint representation of g on d integrates to an action of G on d, again denoted by Adg for g ∈ G, via

(2.26) Adg−1(x+ ξ) = Adg−1x− lg−1π#
G
(ξR)(g) + Ad∗gξ, x ∈ g, ξ ∈ g∗, g ∈ G.

Let pg : d→ g be the projection with respect to the decomposition d = g+ g∗. By (2.26),

(2.27) ̺(ξ)(g) = −lgpgAdg−1ξ, ξ ∈ g∗.

The following “multiplicativity” of the dressing vector fields ̺(ξ), ξ ∈ g∗, can be proved directly using

(2.27) (see also [25, Lemma 3.4.8] and [29, Corollary 3.10]):

(2.28) ̺(ξ)(g1g2) = rg2̺(ξ)(g1) + lg1̺(Ad
∗
g1
ξ)(g2), g1, g2 ∈ G.

Let λ be the left action of g on G given by

λ : g −→ V1(G), λ(x) = xR, x ∈ g,

where for x ∈ g, xR denotes the right invariant vector field on G with value x at e. It follows from (2.28)

that one has the left Lie algebra action

(2.29) ς : d −→ V1(G), ς(x+ ξ) = λ(x) − ̺(ξ) = xR − π#
G (ξR), x ∈ g, ξ ∈ g∗,

of d on G, which, by (2.5), is a left Poisson action of the Lie bialgebra (d, δd) on (G, πG). ⋄

Recall from §2.4 the notion of twists of Lie bialgebras.

Lemma 2.16. (Twists of Poisson actions.) Assume that the Lie bialgebra (g, δg,t) is the twist of a

Lie bialgebra (g, δg) by a twisting element t ∈ ∧2g of (g, δg).

1) If (Y, πY , λ) is a left (g, δg)-Poisson space, then (Y, πY + λ(t), λ) is a left (g, δg,t)-Poisson space;

2) If (Y, πY , ρ) is a right (g, δg)-Poisson space, then (Y, πY − ρ(t), ρ) is a right (g, δg,t)-Poisson space.

Proof. Assume that (Y, πY , λ) is a left (g, δg)-Poisson space. Then

[πY + λ(t), πY + λ(t)] = 2[λ(t), πY ] + [λ(t), λ(t)] = −λ (2δg(t) + [t, t]) = 0.

Thus πY + λ(t) is a Poisson structure on Y . It follows from (2.23) that λ is also a left Poisson action of

the Lie bialgebra (g, δg,t) on the Poisson manifold (Y, πY + λ(t)). 2) is proved similarly.
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Q.E.D.

2.6. Poisson structures defined by quasitriangular r-matrices. Let g be any Lie algebra and let

σ : g → V1(Y ) be a left or right action of g on a manifold Y . For r =
∑

i xi ⊗ yi ∈ g ⊗ g, one has the

2-tensor field σ(r) on Y given by

σ(r) =
∑

i

σ(xi)⊗ σ(yi).

Let s be the symmetric part of r. Clearly, σ(r) is skew-symmetric, i.e., σ(r) is a bi-vector field on Y , if

and only if σ(s) = 0. A subspace c of g is said to be coisotropic with respect to s if s#(c0) ⊂ c, where

recall that c0 = {ξ ∈ g∗ : 〈ξ, c〉 = 0} ⊂ g∗.

Lemma 2.17. For r ∈ g⊗ g, the 2-tensor field σ(r) on Y is skew-symmetric if and only if the stabilizer

subalgebra of g at every y ∈ Y is coisotropic with respect to the symmetric part s of r.

Proof. Let y ∈ Y and let σy : g → Ty, σy(x) = σ(x)(y) for x ∈ g. Then kerσy ⊂ g is the stabilizer

subalgebra of g at y, and (kerσy)
0 = Im(σ∗

y : T ∗Y → g∗). It follows from the definitions that (σ(s)(y))# =

σy ◦ s
# ◦ σ∗

y : T ∗
y Y → TyY . Thus σ(s)(y) = 0 if and only if kerσy is coisotropic with respect to s.

Q.E.D.

Let r ∈ g ⊗ g be a quasitriangular r-matrix on a Lie algebra g so that (g, r) is a quasitriangular Lie

bialgebra. Let λ : g→ V1(Y ) be a left Lie algebra action of g on a manifold Y .

Proposition 2.18. If the two tensor field λ(r) on Y is skew-symmetric, it is Poisson, and (Y,−λ(r), λ)

is a left (g, r)-Poisson space (see Definition 2.12).

Proof. Let r = Λ + s, where Λ ∈ ∧2g and s ∈ (S2(g))g, and assume that λ(s) = 0, so that λ(r) is a

bi-vector field on Y . By (2.8) - (2.10), the Schouten bracket of λ(r) with itself is given by

[λ(r), λ(r)] = [λ(Λ), λ(Λ)] = −λ([Λ,Λ]) = 2λ(CYB(s)).

Let y ∈ Y , and let the notation be as in the proof of Lemma 2.17. Let α, β, γ ∈ T ∗
y Y . Then by (2.9) and

by the assumption that kerλy is coisotropic with respect to s, one has

λ(CYB(s))(y)(α, β, γ) = 〈λ∗
y(α), [s

#(λ∗
y(β), s

#(λ∗
y(γ))]〉 = 0.

Since [λ(x),−λ(Λ)] = −[λ(x), λ(Λ)] = λ([x,Λ]) = λ(δr(x)) for all x ∈ g, where δr : g→ ∧2g is defined in

(2.6), (Y,−λ(r), λ) is a left (g, r)-Poisson space.

Q.E.D.

Definition 2.19. For a quasitriangular r-matrix r on a Lie algebra g and a left Lie algebra action

λ : g→ V 1(Y ), if λ(r) is skew-symmetric (so it is a Poisson structure on Y by Proposition 2.18), we call

−λ(r) the Poisson structure on Y defined by λ and r.

Remark 2.20. 1) When (g, 〈 , 〉g) is a quadratic Lie algebra and the quasitriangular r-matrix on g is

defined by a Lagrangian splitting of (g, 〈 , 〉g), the construction in Proposition 2.18 has been given in [32,

§2], and an interpretation of the construction in the framework of Courant algebroids is given in [26].

2) An observation analogous to Proposition 2.18 for g-quasi-Poisson spaces is made in [27, §2.1]. The

(g, r)-Poisson space (Y,−λ(r), λ) in Proposition 2.18 corresponds to the g-quasi-Poisson space (Y, 0, λ)

under an equivalence via twisting between the category of (g, r)-Poisson spaces and that of g-quasi-Poisson

spaces, which will be explained in §6.3 and Example 6.14. ⋄
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3. Mixed twists of direct product Lie bialgebras and mixed product Poisson structures

3.1. Mixed twists of direct product Lie bialgebras. Let (g1, δ1), . . . , (gn, δn), n ≥ 1, be Lie bialge-

bras, and let (g, δg) be the direct product Lie bialgebra, i.e., g = g1⊕ · · ·⊕ gn with the direct product Lie

bracket, and

δg(x1, . . . , xn) = (δg1(x1), . . . , δgn(xn)), (x1, . . . , xn) ∈ g,

(see notation in §1.5). For 1 ≤ j ≤ n, let pj : g→ gj be the j’th projection. Recall from §2.4 the notion

of twists of Lie bialgebras. In particular, if t ∈ ∧2g is a twisting element for (g, δg), one has the twisted

Lie bialgebra (g, δg,t), where δg,t(x) = δg(x) − [x, t] for x ∈ g.

Definition 3.1. A twisting element t ∈ ∧2g of the direct product Lie bialgebra (g, δg) is said to be mixed

if pj(t) = 0 for each 1 ≤ j ≤ n, and in this case the twisted Lie bialgebra (g, δg,t) (see (2.23)) is called a

mixed twist of the direct product Lie bialgebra (g, δg). Note that when n = 1, only the zero element is a

mixed twisting element of (g, δg).

For J = {j1, . . . , jk} ⊂ {1, . . . , n} with 1 ≤ j1 < · · · < jk ≤ n, let g
J
= gj1 ⊕ · · · ⊕ gjk , and let

(3.1) pJ : g −→ g
J
, (x1, . . . , xn) 7−→ (xj1 , . . . , xjk).

Denote by (gJ , δgJ
) the direct product Lie bialgebra of (gj1 , δgj1

), . . . , (gjk , δgjk
).

Lemma 3.2. If t ∈ ∧2g be a mixed twisting element of the direct product Lie bialgebra (g, δg), then pJ(t) ∈

∧2g
J
is a mixed twisting element of the direct product Lie bialgebra (g

J
, δg

J
) for any J ⊂ {1, . . . , n}, and

(3.2) pJ : (g, δg,t) −→ (gJ , δgJ
,pJ (t))

is a Lie bialgebra homomorphism. In particular, pj : (g, δg,t)→ (gj , δgj ) is a Lie bialgebra homomorphism

for each 1 ≤ j ≤ n.

Proof. Let tJ = pJ(t). As pJ : (g, δg) → (gJ , δg
J
) is a Lie bialgebra homomorphism, it follows from

2δg(t) + [t, t] = 0 that 2δg
J
(tJ) + [tJ , tJ ] = 0, so tJ is a twisting element, and in fact a mixed twisting

element, of (g
J
, δg

J
). It is also clear from the definitions of δg,t and δg

J
,tJ that pJ in (3.2) is a Lie bialgebra

homomorphism.

Q.E.D.

If (g1, r1), . . . , (gn, rn) are quasitriangular Lie bialgebras, one has the direct product quasitriangular Lie

bialgebra (g, r), where again g = g1⊕· · ·⊕gn is the direct product Lie algebra and r = (r1, . . . , rn) ∈ g⊗g.

Let δgj = δrj (see (2.6)) for 1 ≤ j ≤ n. By Lemma 2.10, t ∈ ∧2g is a twisting element for the direct

product Lie algebra (g, δg) of (g1, δg1), . . . , (gn, δgn) if and only if r − t is quasitriangular r-matrix on g.

Definition 3.3. If t ∈ ∧2g is such that r − t, where r = (r1, . . . , rn), is quasitriangular r-matrix on g

and pj(t) = 0 for each 1 ≤ j ≤ n, we call r− t a mixed twist of r, and we also call the quasitriangular Lie

bialgebra (g, r − t) a mixed twist of the direct product quasitriangular Lie bialgebra (g, r).

3.2. Mixed twists and mixed product Poisson structures. Let (g1, δg1), . . . , (gn, δgn), n ≥ 2, be

Lie bialgebras and let (g, δg) be the direct product Lie bialgebra as in §3.1. Assume that t ∈ ∧2g is a

mixed twisting element of (g, δg), and let (g, δg,t) be the corresponding twisted Lie bialgebra. As a direct

application of Lemma 2.16 and an immediate consequence of t being a mixed twisting element, we have

Proposition 3.4. 1) Let (Yj , πi, λj), 1 ≤ j ≤ n, be left (gj , δgj )-Poisson spaces, and let Y = Y1×· · ·×Yn

be the product manifold, equipped with the product Lie algebra action λ = (λ1, . . . , λn) of g, i.e.,

λ : g −→ V1(Y ), λ(x1, . . . , xn) = (λ1(x1), . . . , λn(xn)), xj ∈ gj .
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Then πY = (π1, . . . , πn) + λ(t) is a mixed product Poisson structure on Y , and (Y, πY , λ) is a left

(g, δg,t)-Poisson spaces;

2) Let (Yj , πi, ρj), 1 ≤ j ≤ n, be right (gj , δgj )-Poisson space, and let

ρ = (ρ1, . . . , ρn) : g −→ V1(Y ), ρ(x1, . . . , xn) = (ρ1(x1), . . . , ρn(xn)), xj ∈ gj ,

where Y = Y1× · · · × Yn, Then πY = (π1, . . . , πn)− ρ(t) is a mixed product Poisson structure on Y , and

(Y, πY , ρ) is a right (g, δg,t)-Poisson spaces;

3) If rj ∈ gj ⊗ gj is a quasitriangular structure for (gj , δgj ) and πj = −λj(rj) in 1) (resp. πj = ρj(rj)

in 2)) for 1 ≤ j ≤ n, then πY = −λ(r − t) in 1) (resp. πY = ρ(r − t) in 2)), where r = (r1, . . . , rn).

Proposition 3.4 is the key to all the constructions in this paper. Indeed, the mixed product Poisson

structures constructed in the following §4, §5, and §6 are all incidences of mixed twists of direct product

Lie bialgebras and of their direct product Poisson actions in the spirit of Proposition 3.4.

4. Two-fold mixed product Poisson structures associated to Lie bialgebras

Although a special case of what to be covered in §5, the two-fold mixed product Poisson structure

construction in this section is more basic, so we discuss it first. The construction also appeared in [35].

4.1. The construction. Let (g, δg) be a Lie bialgebra, with dual Lie bialgebra (g∗, δg∗) and double Lie

bialgebra (d, δd), and let (d′, δd′) be the dual Lie bialgebra of (d, δd). Recall from §2.2 that as a Lie algebra

d′ = g∗ ⊕ g with the direct product Lie bracket. Define the direct product Lie co-bracket δ′d′ on d′ by

(4.1) δ′d′(ξ, x) = (δg∗(ξ), −δg(x)), ξ ∈ g∗, x ∈ g.

Let {xi}
m
i=1 be any basis of g and let {ξi}

m
i=1 be the dual basis for g∗. Let

(4.2) t =

m∑

i=1

(ξi, 0) ∧ (0, xi) ∈ ∧
2d′.

Lemma 4.1. The element −t ∈ ∧2d′ is a mixed twisting element for the direct product Lie bialgebra

(d′, δ′d′), and the twist of (d′, δ′d′) by −t is the Lie bialgebra (d′, δd′).

Proof. It is straightforward to check that δ′d′ is defined (see Definition 2.1) by the Lagrangian splitting

d2 = d′ + (g⊕ g∗) of the quadratic Lie algebra (d2, 〈 , 〉d2), and that the twist by −t of d2 = d′ + (g⊕ g∗)

is the Lagrangian splitting d2 = d′ + ddiag which defines the Lie bialgebra (d′, δd′).

Q.E.D.

Let (X, πX , ρ) be a right (g∗, δg∗)-Poisson space and (Y, πY , λ) a left (g, δg)-Poisson space. Let again

{xi}
m
i=1 be any basis of g and {ξi}

m
i=1 the dual basis for g∗. Define the bi-vector field πX ×(ρ,λ) πY on the

product manifold X × Y by

(4.3) πX ×(ρ,λ) πY = (πX , πY )−

m∑

i=1

(ρ(ξi), 0) ∧ (0, λ(xi)).

The following Proposition 4.2 is now a direct consequence of Remark 2.14 and Proposition 3.4.

Proposition 4.2. The bi-vector field πX ×(ρ,λ) πY on X × Y is Poisson, and the map

ρ0 : d′ −→ V1(X × Y ), ρ0(ξ, x) = (ρ(ξ), 0) + (0, −λ(x)), ξ ∈ g∗, x ∈ g

is a right Poisson action of the Lie bialgebra (d′, δd′) on (X × Y, πX ×(ρ,λ) πY ).

Definition 4.3. We call πX ×(ρ,λ) πY the mixed product Poisson structure on X × Y associated to the

pair (ρ, λ) of Poisson actions.
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Remark 4.4. (Reduction to sub-Lie bialgebras, I.) In the setting of Proposition 4.2, assume that

(p, δp) is a sub-Lie bialgebra of (g, δg) such that ρ(ξ) = 0 for all ξ ∈ p0 ⊂ g∗. Let λp : p→ V1(Y ) be the

restriction of λ to p and ρp∗ : p∗ ∼= g∗/p0 → V1(X) the Lie algebra action induced by ρ. Then (Y, πY , λp)

is a left (p, δp)-Poisson space and (X, πX , ρp∗) a right (p∗, δp∗)-Poisson space. Choosing a basis of p and

extending it to a basis of g, one sees that πX ×(ρ,λ) πY = πX ×(ρp∗ ,λp) πY . ⋄

Remark 4.5. Given a right (g∗, δg∗)-Poisson space (X, πX , ρ) and a left (g, δg)-Poisson space (Y, πY , λ),

let ρ̂ : T ∗X → g and λ̂ : T ∗Y → g∗ be respectively given by

〈ρ̂(αp), ξ〉 = 〈αp, ρ(ξ)(p)〉, p ∈ X, αp ∈ T ∗
pX, ξ ∈ g∗,(4.4)

〈λ̂(βq), x〉 = 〈βq, λ(x)(q)〉, q ∈ Y, βq ∈ T ∗
q Y, x ∈ g,(4.5)

and let pX : X × Y → X and pY : X × Y → Y be the two projections. Then a Poisson structure π

on X × Y is equal to πX ×(ρ,λ) πY if and only if the two projections pX : (X × Y, π) → (X, πX) and

pY : (X × Y, π)→ (Y, πY ) are Poisson and

(4.6) (πX ×(ρ,λ) πY )(p
∗
X
α, p∗

Y
β) = −〈ρ̂(α), λ̂(β)〉.

for any 1-form α on X and 1-form β on Y . ⋄

The next Lemma 4.6 follows directly from the definition of the Poisson structure πX ×(ρ,λ) πY .

Lemma 4.6. Let πX ×(ρ,λ) πY be the mixed product Poisson structure on X × Y defined by the pair

(ρ, λ). If X1 ⊂ X is a g∗-invariant Poisson submanifold of (X, πX) and Y1 ⊂ Y a g-invariant Poisson

submanifold of (Y, πY ), then X1 × Y1 is a Poisson submanifold of (X × Y, πX ×(ρ,λ) πY ).

Example 4.7. Let (G, πG) be a Poisson Lie group with Lie bialgebra (g, δg) and dual Lie bialgebra

(g∗, δg∗), and let λ be the left Poisson action of (g, δg) on (G, πG) given by λ(x) = xR for x ∈ g (see Example

2.15). For a right (g∗, δg∗)-Poisson space (X, πX , ρ), the mixed product Poisson structure πX ×(ρ,λ) πG

on X × G is called a semi-direct product Poisson structure on X × G in [29]. In this case, the right

Poisson action of (g∗, δg∗) on (X × G, πX ×(ρ,λ) πG) generated (see Example 2.15) by the Poisson map

κG : (X ×G, πX ×(ρ,λ) πG)→ (G, πG), (x, g)→ g, is the diagonal action

g∗ −→ V1(X ×G), ξ 7−→ (ρ(ξ), 0) + (0, ̺(ξ)), ξ ∈ g∗,

where ̺ is the right dressing action of (g∗, δg∗) on (G, πG). ⋄

Example 4.8. Let (G, πG) be a Poisson Lie group with Lie algebra (g, δg) and (G∗, πG∗) any dual Poisson

Lie group of (G, πG). Consider the dual pair of Poisson Lie groups

(H, πH) = (Gop, πG)× (G, πG) and (H∗, πH∗) = (G∗,−πG∗)× (G∗, πG∗),

where Gop denotes G with the opposite group structure, and the right and left Poisson actions

ρ : (G∗, πG∗)× (H∗, πH∗) −→ (G∗, πG∗), (g∗, (h1, h2)) 7−→ h−1
1 g∗h2, g∗, h1, h2 ∈ G∗,

λ : (H, πH)× (G,−πG) −→ (G,−πG), ((g1, g2), g) 7−→ g−1
1 gg−1

2 , g, g1, g2 ∈ G.

Then (D′, πD′) = (G∗ × G, πG∗ ×(ρ,λ) (−πG)) is a Poisson Lie group with Lie bialgebra (d′, δd′), where

recall from §2.2 that (d′, δd′) is the dual Lie bialgebra of the double Lie bialgebra (d, δd) of (g, δg). Indeed,

identify the Lie algebra of D′ with d′ = g∗ ⊕ g. If {xi}
m
i=1 is a basis of g and {ξi}

m
i=1 the dual basis in g∗,

the mixed term of πG∗ ×(ρ,λ) (−πG) is

µ(ρ,λ) = −

m∑

i=1

(ξRi , 0) ∧ (0, xR
i )− (ξLi , 0) ∧ (0, xL

i ) = −t
L + tR,
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where t ∈ ∧2d′ is defined in (4.2). Thus πD′ = (πG∗ , −πG) − tL + tR is multiplicative. Moreover, since

the Lie bialgebra (d′, δd′) is the twisting by t of the Lie bialgebra (d′, δ0) as in the proof of Proposition

4.2, the Lie bialgebra of (D′, πD′) is (d′, δd′). ⋄

4.2. Morphisms between mixed product Poisson structures. For i = 1, 2, let (gi, δgi) be a Lie bial-

gebra and (g∗i , δg∗
i
) its dual Lie bialgebra, let (Yi, πY i

, λi) be a left (gi, δgi)-Poisson space and (Xi, πXi
, ρi)

a right (g∗i , δg∗
i
)-Poisson space. Given a triple (Φ,Ψ, φ), where

Φ : (X1, πX1) −→ (X2, πX2) and Ψ : (Y1, πY 1) −→ (Y2, πY 2)

are Poisson maps and φ : (g1, δg1) → (g2, δg2) is a Lie bialgebra homomorphism such that for every

x1 ∈ g1, the vector fields λ1(x1) ∈ V
1(Y1) and λ2(φ(x1)) ∈ V

1(Y2) are Ψ-related and that for every

ξ2 ∈ g∗2, the vector fields ρ1(φ
∗(ξ2)) ∈ V

1(X1) and ρ2(ξ2) ∈ V
1(X2) are Φ-related, let

Φ×Ψ : X1 × Y1 −→ X2 × Y2, (p1, q1) 7−→ (Φ(p1), Ψ(q1)), p1 ∈ X1, q1 ∈ Y1.

Proposition 4.9. Φ×Ψ : (X1 × Y1, πX1
×(ρ1,λ1) πY 1

)→ (X2 × Y2, πX2
×(ρ2,λ2) πY 2

) is Poisson.

Proof. Let µi = πXi
×(ρi,λi) πY i

− (πXi
, 0)− (0, πY i

) be the mixed terms of πXi
×(ρi,λi) πY i

, i = 1, 2. Since

Φ and Ψ are Poisson, it suffices to show that µ1 and µ2 are (Φ×Ψ)-related.

Fix (p1, q1) ∈ X1 × Y1 and let p2 = Φ(p1) and q2 = Ψ(q1). For i = 1, 2, let ρ̂i : T ∗
pi
Xi → gi and

λ̂i : T
∗
qi
Yi → g∗i be defined as in Remark 4.5. Then the assumptions on Φ and Ψ imply that

φρ̂1Φ
∗ = ρ̂2 : T ∗

p2
X2 −→ g2 and λ̂1Ψ

∗ = φ∗λ̂2 : T ∗
q2
Y2 −→ g∗1.

It follows that for any (α2, β2) ∈ T ∗
p2
X2 × T ∗

q2
Y2, one has

µ1(p1, q1)(Φ
∗(α2),Ψ

∗(β2)) = −〈ρ̂1(Φ
∗(α2)), λ̂1(Ψ

∗(β2))〉 = −〈φρ̂1Φ
∗(α2), λ̂2(β2)〉

= −〈ρ̂2(α2), λ̂2(β2)〉 = µ2(p2, q2)(α2, β2).

Thus (Φ×Ψ)(µ1(p1, q1)) = µ2(p2, q2).

Q.E.D.

We now look at a situation in which the mixed term of a mixed product Poisson structure vanishes

under a Poisson morphism. Let ((g, δg), (g
∗, δg∗)) be a dual pair of Lie bialgebras.

Lemma 4.10. Let (X, πX , ρ) be a right (g∗, δg∗)-Poisson space and (Y, πY , λ) a left (g, δg)-Poisson space,

and assume that Φ : (X, πX) → (X ′, πX′) and Ψ : (Y, πY ) → (Y ′, πY ′) are Poisson morphisms. If there

is a subspace a ⊂ g such that Ψ(λ(x)) = 0 for all x ∈ a and Φ(ρ(ξ)) = 0 for all ξ ∈ a0 ⊂ g∗, then

(Φ×Ψ)(πX ×(ρ,λ) πY ) = πX′ × πY ′ .

Proof. Let {xi}
m
i=1 be a basis of g such that {xi}

k=dim a
i=1 is a basis of a, and let {ξi}

m
i=1 be the dual basis

of g∗. As Ψ(λ(xi)) = 0 for 1 ≤ i ≤ k and Φ(ρ(ξi)) = 0 for k + 1 ≤ i ≤ n, the mixed term of πX ×(ρ,λ) πY

is mapped to zero by Φ×Ψ.

Q.E.D.

5. Polyubles of Lie bialgebras and mixed product Poisson structures

5.1. Polyubles of Lie bialgebras. Let (g, δg) be a Lie bialgebra, with dual Lie bialgebra (g∗, δg∗), double

Lie algebra (d, 〈 , 〉d), and double Lie bialgebra (d, δd). For an integer n ≥ 1, consider the quadratic Lie
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algebra (dn, 〈 , 〉dn), where dn = d ⊕ · · · ⊕ d has the direct product Lie bracket, its elements denoted as

(a1, . . . , an) with aj ∈ d, and the bilinear form 〈 , 〉dn is given by

(5.1) 〈(a1, . . . , an), (a
′
1, . . . , a

′
n)〉dn =

n∑

j=1

(−1)j+1〈aj , a
′
j〉d, aj , a

′
j ∈ d.

Let again ddiag = {(a, a) : a ∈ d} ⊂ d⊕ d. For an integer n ≥ 1, define

g(2n−1) =

n−1︷ ︸︸ ︷
ddiag ⊕ · · · ⊕ ddiag⊕ g ⊂ d2n−1, g∗(2n−1) = g∗ ⊕

n−1︷ ︸︸ ︷
ddiag ⊕ · · · ⊕ ddiag ⊂ d2n−1,(5.2)

g(2n) =

n︷ ︸︸ ︷
ddiag ⊕ · · · ⊕ ddiag ⊂ d2n, g∗(2n) = g∗ ⊕

n−1︷ ︸︸ ︷
ddiag ⊕ · · · ⊕ ddiag⊕ g ⊂ d2n.(5.3)

It is straightforward to check that for each n ≥ 1,

(5.4) dn = g(n) + g∗(n)

is a Lagrangian splitting of (dn, 〈 , 〉dn). Denote by
(
g(n), δg(n)

)
and

(
g∗(n), δg∗

(n)

)
the dual pair of Lie

bialgebras defined by the Lagrangian splitting in (5.4), and denote by (dn, δdn) the corresponding double

Lie bialgebra. Note that when n = 1, 2, the splitting in (5.4) are respectively d = g + g∗ and d2 =

ddiag + d′, where d′ = g∗ ⊕ g, and we thus recover the two dual pairs of Lie bialgebras ((g, δg), (g
∗, δg∗))

and ((d, δd), (d
′, δd′)) (see §2.2).

Definition 5.1. The Lie bialgebra (g(n), δg(n)
) is called the n-uble of (g, δg).

Remark 5.2. 1) The 1-uble and 2-uble of a Lie bialgebra are respectively the Lie bialgebra itself and

its Drinfeld double. For n = 3, triples of quasitriangular Lie bialgebras were constructed by Grabowski

in [22]. In the factorizable case, it follows from [22, Theorem 4.5] and our Proposition 6.7 in §6 that the

triple of a Lie bialgebra is isomorphic to its 3-uble.

2) Polyubles for factorizable Lie bialgebras and factorizable Poisson Lie groups [36] were constructed

in [19, 20], and we also refer to [19, 20, 28] for interpretations of such polyubles as moduli spaces of

flat connections on (quilted) surfaces. Due to limitation of space, we will only present in this section

properties of polyubles (for arbitrary Lie bialgebras) that are needed for the rest of the paper. ⋄

We now show that the Lie bialgebras
(
g(n), δg(n)

)
for n ≥ 3 and

(
g∗(n), δg∗

(n)

)
for n ≥ 2 are mixed twists

of direct product Lie bialgebras (see §3). Note that the Lie brackets on g(n) for n ≥ 3 and on g∗(n) for

n ≥ 3 are indeed direct product Lie brackets: identify ddiag ∼= d via (a, a) 7→ a for a ∈ d in (5.2) and (5.3),

one has the identification of Lie algebras

(5.5) g(2n+2)
∼= dn+1, g∗(2n) = g∗ ⊕ dn−1 ⊕ g, g(2n+1) = dn ⊕ g, g∗(2n+1) = g∗ ⊕ dn, n ≥ 1.

Notation 5.3. Let n ≥ 1, and for 1 ≤ j ≤ n+1 and a ∈ d, let (a)j = (0, . . . , 0, a, 0, . . . , 0) ∈ dn+1, where

a is at the j’th entry of (a)j . Let {xi}
m
i=1 be any basis of g and {ξi}

m
i=1 the dual basis of g∗. Set

(5.6) tn+1 =
∑

1≤j<k≤n+1

m∑

i=1

(ξi)j ∧ (xi)k ∈ ∧
2(dn+1).

Note that tn+1 in fact lies in ∧2(g∗ ⊕ dn−1 ⊕ g) ⊂
(
∧2(dn ⊕ g)

)
∩
(
∧2(g∗ ⊕ dn)

)
⊂ ∧2(dn+1). Using the

identifications in (5.5), we can regard tn+1 as an element in ∧2V , where V can be either of g(2n+2), ,

g∗(2n), g(2n+1), or g
∗
(2n+1).
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Lemma 5.4. Under the Lie algebra identification g(2n+2)
∼= dn+1 in (5.5), where n ≥ 1, the Lie bialgebra

(
g(2n+2), δg(2n+2)

)
is the mixed twist of the direct product Lie bialgebra

(
g(2n+2), δ

′
g(2n+2)

)
by the mixed

twisting element tn+1 ∈ ∧
2g(2n+2), where

δ′g(2n+2)
(a1, . . . , an+1) = (δd(a1), . . . , δd(an+1)), a1, . . . , an+1 ∈ d.

Proof. Consider the two Lagrangian splittings of the quadratic Lie algebra (d2n+2, 〈 , 〉d2n+2):

(5.7) d2n+2 = g(2n+2) +

n+1︷ ︸︸ ︷
d′ ⊕ · · · ⊕ d′ = g(2n+2) + g∗(2n+2),

where recall from §2.2 that d′ = g∗ ⊕ g ⊂ d2. Clearly, the co-bracket on g(2n+2) defined by the first

splitting in (5.7) is δ′g(2n+2)
. It is straightforward to check that second Lagrangian splitting in (5.7) is the

twist by tn+1 ∈ ∧
2g(2n+2) of the first splitting. It is also evident that the twisting element tn+1 is mixed.

Q.E.D.

Let rd ∈ d⊗d be again the quasitriangular r-matrix on d defined by the Lagrangian splitting g = g+g∗

of the quadratic Lie algebra (d, 〈 , 〉d). For n ≥ 1, let rdn+1 ∈ dn+1⊗ dn+1 be the quasitriangular r-matrix

on dn+1 defined by the Lagrangian splitting dn+1 = g(n+1)+g∗(n+1) of (d
n+1, 〈 , 〉dn+1). Define the (n+1)’st

alternating sum of rd by

Altn+1(rd) =

{
(rd, −r

21
d , rd, · · · , −r

21
d , rd) ∈ dn+1 ⊗ dn+1, n even,

(rd, −r
21
d , · · · , rd, −r

21
d ) ∈ dn+1 ⊗ dn+1, n odd.

Lemma 5.5. For n ≥ 1, the quasitriangular Lie bialgebra (dn+1, rdn+1) is the mixed twist by tn+1 ∈

∧2dn+1 of the direct product quasitriangular Lie bialgebra (dn+1, Altn+1(rd)), i.e.,

rdn+1 = Altn+1(rd)− tn+1 ∈ dn+1 ⊗ dn+1.

Consequently, J2n : g(2n) → dn : (a1, a1, a2, a2, . . . , an, an) 7→ (a1, a2, . . . , an), where a1, . . . , an ∈ d, is a

Lie bialgebra isomorphism from (g(2n), δg(2n)
) to (dn, δdn).

Proof. For a ∈ d, and 1 ≤ j ≤ k ≤ n+ 1, let

(5.8) (a)(j,k) = (0, . . . , 0, a
jth

, a, . . . , a
kth

, 0, . . . , 0) ∈ dn+1.

Assume first that n = 2q − 1 is odd. If {xi}
m
i=1 is a basis of g and {ξi}

m
i=1 is the dual basis of g∗,

then
{
(xi)(2r−1,2r), (ξi)(2r−1,2r) : 1 ≤ r ≤ q

}m
i=1

is a basis for g(n+1), with its dual basis of g∗(n+1) given

by
{
(ξi)(1,2r−1), −(xi)(2r,n+1) : 1 ≤ r ≤ q

}m
i=1

, and one proves that rdn+1 = Altn+1(rd) − tn+1 by using

the definition of rdn+1 given in Definition 2.6. The case when n is even is similarly proved. Combining

with Lemma 5.4, one sees that the Lie algebra identification J2n is also a Lie bialgebra isomorphism from

(g(2n), δg(2n)
) to (dn, δdn).

Q.E.D.

Analogous to Lemma 5.4, we have

Lemma 5.6. Let n ≥ 1 and let the Lie algebra identifications be as in (5.5).

1) The Lie bialgebra
(
g(2n+1), δg(2n+1)

)
is the mixed twist by the element tn+1 ∈ ∧

2g(2n+1) of the direct

product Lie bialgebra
(
g(2n+1), δ

′
g(2n+1)

)
, where

δ′g(2n+1)
(a1, . . . , an, x) = (δd(a1), . . . , δd(an), δg(x)), a1, . . . , an ∈ d, x ∈ g;
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2) The Lie bialgebra
(
g∗(2n), δg∗

(2n)

)
is the mixed twist by the element −tn+1 ∈ ∧

2g∗(2n) of the direct

product Lie bialgebra
(
g∗(2n), δ

′
g∗
(2n)

)
, where

δ′g∗
(2n)

(ξ, a1, . . . , an−1, x) = (δg∗(ξ), −δd(a1), . . . ,−δd(an−1), −δg(x)), ξ ∈ g∗, a1, . . . , an−1 ∈ d, x ∈ g;

3) The Lie bialgebra
(
g∗(2n+1), δg∗

(2n+1)

)
is the mixed twist by the element −tn+1 ∈ ∧

2g∗(2n+1) of the

direct product Lie bialgebra
(
g∗(2n+1), δ

′
g∗
(2n+1)

)
, where

δ′g∗
(2n+1)

(ξ, a1, . . . , an) = (δg∗(ξ), −δd(a1), . . . , −δd(an)), ξ ∈ g∗, a1, . . . , an ∈ d.

Proof. One checks directly that the embeddings of direct product Lie algebras

g(2n+1) −→ g(2n+2), (a1, a1, . . . , an, an, x) 7−→ (a1, a1, . . . , an, an, x, x),

g∗(2n) −→ g(2n+2), (ξ, a1, a1, . . . , an−1, an−1, x) 7−→ (ξ, ξ, a1, a1, . . . , an−1, an−1, x, x),

g∗(2n+1) −→ g(2n+2), (ξ, a1, a1, . . . , an, an) 7−→ (ξ, ξ, a1, a1, . . . , an, an),

where ξ ∈ g∗, x ∈ g, and aj ∈ d for 1 ≤ j ≤ n, are also respective Lie bialgebra embeddings of
(
g(2n+1), δg(2n+1)

)
,
(
g∗(2n),−δg∗

(2n)

)
, and

(
g∗(2n+1),−δg∗

(2n+1)

)
into (g(2n+2), δg(2n+2)

). As tn+1 ∈ ∧
2g(2n+2)

actually lies in the images of the above embeddings, Lemma 5.6 follows directly from Lemma 5.4.

Q.E.D.

5.2. Mixed product Poisson structures associated to polyubles. Let again (g, δg) be a Lie bial-

gebra, with dual Lie algebra (g∗, δg∗) and double Lie bialgebra (d, δd). Assume that (Yj , πj , σj), for

1 ≤ j ≤ n and n ≥ 2, are left (d, δd)-Poisson spaces. Set

ρj = −σj |g∗ : g∗ −→ V1(Yj) and λj = σj |g : g −→ V1(Yj), 1 ≤ j ≤ n,

so that ρj and λj are respectively right and left Poisson actions of (g∗, δg∗) and (g, δg) on (Yj , πj). Let

again {xi}
m
i=1 be any basis of g and {ξi}

m
i=1 the dual basis of g∗. Define the bi-vector field πY on the

product manifold Y = Y1 × Y2 × · · · × Yn by

(5.9) πY = (π1, π2, · · · , πn)−
∑

1≤j<k≤n

m∑

i=1

(0, . . . , ρj(ξi)
jth entry

, . . . , 0) ∧ (0, . . . , λk(xi)
kth entry

, . . . , 0),

where (π1, π2, · · · , πn) is the direct product Poisson structure on Y (see notation in §1.5). Let σ : dn →

V1(Y ) be the direct product Lie algebra action, i.e.,

(5.10) σ(a1, a2, . . . , an) = (σ1(a1), σ2(a2), . . . , σn(an)), a1, . . . , an ∈ d.

The following Proposition 5.7 is a direct consequence of Lemma 5.5 and Proposition 3.4.

Proposition 5.7. The triple (Y, πY , σ) is a left (dn, δdn)-Poisson space. Moreover, for 1 ≤ j < k ≤ n,

one has pjk(πY ) = πj ×(ρj ,λk) πj , where pjk : Y → Yj×Yk is the projection to the j’th and the k’th factor.

Remark 5.8. If n ≥ 2 and if we are given (Y1, π1, ρ1) as a right (g∗, δg∗)-Poisson space, (Yn, πn, λn) as

a left (g, δg)-Poisson space, and for 2 ≤ j ≤ n− 1, (Yj , πj , σj) as a left (d, δd)-Poisson space, one can still

define the bi-vector field πY on Y = Y1 × Y2 × · · · × Yn as in (5.9), and Lemma 5.6 and Proposition 3.4

imply that (Y, πY , ρ) is a right
(
g∗(2n−2), δg∗

(2n−2)

)
-Poisson space, where ρ is the right Lie algebra action

ρ : g∗(2n−2) → V
1(Y ) given by

(5.11) ρ(ξ, a2, a2, . . . , an−1, an−1, x) = (ρ1(ξ), −σ2(a2), . . . , −σn−1(an−1), −λn(x)),
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generalizing the two-fold mixed product Poisson structure construction in Proposition 4.2. Using Lemma

5.6, one can similarly apply Proposition 3.4 to obtain mixed product Poisson structures with Poisson

actions by the Lie bialgebras
(
g∗(2n−1), δg∗

(2n−1)

)
and

(
g(2n−1), δg(2n−1)

)
.

6. Mixed twists of product quasitriangular Lie bialgebras and mixed product Poisson

structures

In §6, we give a construction of certain mixed twists of direct product quasitriangular Lie bialgebras,

generalizing that of polyubles of Lie bialgebras in §5. Throughout §6, let r be a quasitriangular r-matrix

on a Lie algebra g, and let δr : g → ∧2g, δr(x) = adx r be the co-bracket on g (see (2.6)). The dual map

of δr is the Lie bracket on g∗ given by

(6.1) [ξ, η] = ad∗r−(ξ) η − ad∗r+(η) ξ = ad∗r+(ξ) η − ad∗r−(η) ξ.

where r+, r− : g∗ → g are given in (2.14). Recall that a (left or right) Poisson space of the Lie bialgebra

(g, δr) is also called a Poisson space of the quasitriangular Lie bialgebra (g, r).

6.1. The quasitriangular r-matrix r(n) on gn. Let n ≥ 1 and consider the direct product Lie algebra

gn = g ⊕ · · · ⊕ g (n-copies). For X ∈ g⊗k, k ≥ 1, and 1 ≤ j ≤ n, let (X)j ∈ (gn)⊗k be the image of X

under the embedding of g into gn as the j’th summand. If r =
∑

i xi⊗yi ∈ g⊗g, define Altn(r) ∈ gn⊗gn

to be the alternating sum

(6.2) Altn(r) = (r, −r21, r, −r21, · · · ) =
∑

1≤j≤n, j is odd

(r)j +
∑

1≤j≤n, j is even

(−r21)j ,

where recall that r21 =
∑

i yi ⊗ xi, and define Mixn(r) ∈ ∧2(gn)

(6.3) Mixn(r) =
∑

1≤j<k≤n

(Mixn(r))j,k ,

where (Mixn(r))j,k =
∑

i(yi)j ∧ (xi)k for 1 ≤ j < k ≤ n. The elements (Mixn(r))j,k ∈ ∧
2(gn), where

1 ≤ j < k ≤ n, are indeed well-defined: the linear map (Mixn(r))
#
j,k : (g∗)n ∼= (gn)∗ → gn is given by

(6.4) (Mixn(r))
#
j,k (ξ1, . . . , ξn) = (−r+(ξk))j + (−r−(ξj))k, (ξ1, . . . , ξn) ∈ (g∗)n ∼= (gn)∗.

Define now r(n) ∈ gn ⊗ gn by

(6.5) r(n) = Altn(r) −Mixn(r) ∈ gn ⊗ gn.

The next Theorem 6.2 says that r(n) is a quasitriangular r-matrix on gn. For n ≥ 2, r(n) is thus a mixed

twist (see Definition 3.3) of the quasitriangular r-matrix Altn(r) on gn.

Remark 6.1. Consider the quasitriangular r-matrix rd on the double Lie algebra (d, 〈 , 〉d) of an arbitrary

Lie bialgebra (g, δg) defined by the Lagrangian splitting d = g + g∗. By Lemma 5.5, r
(n)
d coincides with

the quasitriangular r-matrix on dn defined by the Lagrangian splitting dn = g(n)+g∗(n) in (5.4). Note also

that if φ : (g, r)→ (g, r′) is a homomorphism of quasitriangular Lie bialgebras, then φ(r(n)) = (r′)(n). ⋄

Theorem 6.2. For any integer n ≥ 1, r(n) is a quasitriangular r-matrix on the direct product Lie algebra

gn, and the dual of δr(n) : gn → ∧2gn is the Lie bracket [ , ]r(n) on (g∗)n ∼= (gn)∗ given by

[(ξ1, . . . , ξn), (η1, . . . , ηn)]r(n) = (ζ1, . . . , ζn),

where (ξ1, . . . , ξn), (η1, . . . , ηn) ∈ (g∗)n, and for each 1 ≤ j ≤ n,

(6.6) ζj = [ξj , ηj ] + ad∗r−(ξ1+···+ξj−1)+r+(ξj+1+···+ξn) ηj − ad∗r−(η1+···+ηj−1)+r+(ηj+1+···+ηn) ξj .
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Moreover, for any 1 ≤ k ≤ m ≤ n, the map φm,k : gm → gn given by

(6.7) φm,k(x1, x2, . . . , xm) = (x1, . . . , xk−1,

(n−m+1) terms︷ ︸︸ ︷
xk, xk, . . . , xk, xk+1, . . . , xm), xj ∈ g,

is a Lie bialgebra homomorphism from (gm, δr(m)) to (gn, δr(n)).

Proof. Note that the symmetric part of r(n) is the alternating sum (s,−s, s, · · · , (−1)ns), where s is

the symmetric part of r. To show that r(n) is a quasitriangular r-matrix on gn, we need to show that

CYB(r(n)) = 0. Let (d, δd) be the double Lie bialgebra of (g, δr), and consider the Lie algebra homomor-

phism p+ : d → g given by p+(x + ξ) = x + r+(ξ) for x ∈ g and ξ ∈ g∗. By (2.16), p+(rd) = r. Thus

r(n) = p+

(
r
(n)
d

)
, where p+(a1, . . . , an) = (p+(a1), . . . , p+(an)) ∈ gn for (a1, . . . , an) ∈ dn. As r

(n)
d is a

quasitriangular r-matrix on dn by Remark 6.1,

CYB(r(n)) = pn+

(
CYB(r

(n)
d )

)
= 0.

To compute the Lie bracket [ ]r(n) on (gn)∗ ∼= (g∗)n, consider first the case of n = 2. It is easy to

check that the two linear maps (r(2))± : g∗ ⊕ g∗ → g⊕ g are respectively given by

(r(2))+(ξ1, ξ2) = (r+(ξ1 + ξ2), r−(ξ1 + ξ2)),(6.8)

(r(2))−(ξ1, ξ2) = (r−(ξ1) + r+(ξ2), r−(ξ1) + r+(ξ2)), ξ1, ξ2 ∈ g∗.(6.9)

It follows that for ξ1, ξ2, η1, η2 ∈ g∗, one has

[(ξ1, ξ2), (η1, η2)]r(2) =
(
[ξ1, η1] + ad∗r+(ξ2) η1 − ad∗r+(η2) ξ1, [ξ2, η2] + ad∗r−(ξ1) η2 − ad∗r−(η1) ξ2

)
.

The formula for [ ]r(n) now follows from the observation that, as r(n) is a mixed twist of Altn(r), for each

pair 1 ≤ j < k ≤ n, the projection pjk : gn → g ⊕ g given by (x1, . . . , xn) 7→ (xj , xk) is a Lie bialgebra

homomorphism from (gn, δr(n)) to (g2, δr(2)).

Let 1 ≤ k ≤ m ≤ n. Using (6.6), one checks by direct computations (we omit the details) that the

dual map φ∗
m,k of φm,k, which is given by

φ∗
m,k : (g∗)n −→ (g∗)m, φ∗

m,k(ξ1, . . . , ξn) = (ξ1, . . . , ξk−1, ξk + · · ·+ ξl, ξl+1, . . . , ξn),

where l = n−m+ k, is a Lie algebra homomorphism from ((g∗)n, [ , ]r(n)) to ((g∗)m, [ , ]r(m)).

Q.E.D.

Remark 6.3. Starting from the quasitriangular Lie bialgebra (g, r), P. Etingof and D. Kazhdan con-

structed in [16] a Lie bracket on (g∗)n = g∗ ⊕ · · · ⊕ g∗, n ≥ 2, which, together with the co-bracket dual

to the direct product Lie bracket on gn, form a locally factored Lie bialgebra with equal components, i.e.,

for each 1 ≤ j ≤ n, the j’th summand (g∗)j is a sub-Lie bialgebra, isomorphic to the dual Lie bialgebra

of (g, r), and [(g∗)i, (g
∗)j ] ⊂ (g∗)j ⊕ (g∗)j for each pair i 6= j. One checks directly that the Lie bracket

[ , ]r(n) given in Theorem 6.2 is precisely the Lie bracket on (g∗)n in [16, Proposition 1.9]. ⋄

Remark 6.4. One may obtain other quasitriangular r-matrices on gn from r(n). Indeed, let Sn be

the permutation group of {1, 2, . . . , n}, and for τ ∈ Sn, define φτ ∈ Aut(gn) by φτ (x1, . . . , xn) =

(xτ−1(1), . . . , xτ−1(n)) for x1, . . . , xn ∈ g. Then φτ (r
(n)) is a quasitriangular r-matrix on gn for every

τ ∈ Sn. Write r = Λ+ s, where Λ ∈ ∧2g and s ∈ (S2(g))g, so that

r(n) = (Λ,Λ, . . . ,Λ)−Mixn(Λ)−Mixn(s) + (s,−s, s, . . . , (−1)n−1s),

where Mixn(Λ) ∈ ∧2gn and Mixn(s) ∈ ∧2gn are defined using (6.3) by replacing r by Λ and s. Then for

every τ ∈ Sn,

φτ

(
r(n)

)
= (Λ,Λ, . . . ,Λ)− φτ (Mixn(Λ))− φτ (Mixn(s)) + (ε(1)s, ε(2)s, . . . , ε(n)s)



22 JIANG-HUA LU AND VICTOR MOUQUIN

for some sign function ε : {1, 2 . . . , n} → {1,−1}. It is easy to show that φτ (Mixn(Λ)) = Mixn(Λ), while

φτ (Mixn(s)) =
∑

1≤j<k≤n, τ−1(j)<τ−1(k)

(Mixn(s))j,k −
∑

1≤j<k≤n, τ−1(j)>τ−1(k)

(Mixn(s))j,k .

For an arbitrary function ε : {1, 2 . . . , n} → {1,−1} and any τ ∈ Sn, define

(6.10) r(ε,τ,n) = (ε(1)s, ε(2)s, . . . , ε(n)s) + (Λ,Λ, . . . ,Λ)−Mixn(Λ)− φτ (Mixn(s)) ∈ gn ⊗ gn.

By (2.8) - (2.10), r(ε,τ,n) is a quasitriangular r-matrix on gn. By Definition 3.1, the corresponding Lie

bialgebra (gn, δr(ε,τ,n)) is a mixed twist of the n-fold direct product Lie bialgebra (g, δr) with itself. As

a special case, for any J = {j1, . . . , jk} ⊂ {1, . . . , n} with j1 < · · · < jk and pJ : gn → gk the projection

given by (x1, . . . , xn) 7→ (xj1 , . . . , xjk), one has

pJ(r
(n)) = r(ε,e,k) = (ε(1)s, ε(2)s, . . . , ε(k)s) + (Λ,Λ, . . . ,Λ)−Mixk(r),

where e is the identity element of Sk, and ε(i) = (−1)ji−1 for i = 1, . . . , k. ⋄

For n ≥ 1, we now compare the n-uble (g(n), δg(n)
) of the Lie bialgebra (g, δr) with the Lie bialgebra

(gn, δr(n)). Consider first the (2n)-uble (g(2n), δg(2n)
) of (g, δr), where n ≥ 1. Recall from Lemma 5.5 that

one has the Lie bialgebra isomorphism
(
g(2n), δg(2n)

)
−→

(
dn, δ

r
(n)
d

)
: (a1, a1, . . . , an, an) 7−→ (a1, . . . , an), aj ∈ d.

Let p2n : dn → g2n be the Lie algebra homomorphism given by

p2n(a1, a2, . . . , an) = (p+(a1), p+(a2), . . . , p+(an), p−(an), p−(an−1), . . . , p−(a1)), aj ∈ d,

where p± : d→ g are the Lie algebra homomorphisms given in (2.15).

Lemma 6.5. One has p2n

(
r
(n)
d

)
= r(2n). Consequently, J2n : (g(2n), δg(2n)

)→
(
g2n, δr(2n)

)
given by

J2n(a1, a1, . . . , an, an) = (p+(a1), p+(a2), . . . , p+(an), p−(an), p−(an−1), . . . , p−(a1)), aj ∈ d,

is a Lie bialgebra homomorphism.

Proof. Using (2.16), one proves that p2n

(
r
(n)
d

)
= r(2n) by a straightforward calculation.

Q.E.D.

For the (2n− 1)-uble (g(2n−1), δg(2n−1)
) of (g, δr), where n ≥ 1, define J2n−1 : g(2n−1) → g2n−1 by

J2n−1(a1, a1, . . . , an−1, an−1, x) = (p+(a1), . . . , p+(an−1), x, p−(an−1), . . . , p−(a1)),

where a1, . . . , an−1 ∈ d and x ∈ g.

Lemma 6.6. The map J2n−1 : (g(2n−1), δg(2n−1)
)→ (g2n−1, δr(2n−1)) is a Lie bialgebra homomorphism.

Proof. One has J2n−1 = p(2n) ◦ J2n ◦ I2n−1, where I2n−1 : (g(2n−1), δg(2n−1)
) → (g(2n), δg(2n)

) is the Lie

bialgebra embedding given by

I2n−1(a1, a1, . . . , an−1, an−1, x) 7−→ (a1, a1, . . . , an−1, an−1, x, x), aj ∈ d, x ∈ g,

and p(2n) : (g2n, δr(2n)) → (g2n−1, δr(2n−1)) is the surjective Lie bialgebra homomorphism (see Remark

6.4)

p(2n)(x1, x2, . . . , x2n) = (x1, x2, . . . , xn, xn+2, . . . , x2n), xj ∈ g.

Q.E.D.

Proposition 6.7. When r factorizable, the Lie bialgebra homomorphisms Jn : (g(n), δg(n)
) → (gn, δr(n))

in Lemma 6.5 and Lemma 6.6 are Lie bialgebra isomorphisms.
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Proof. When r is factorizable, the map d→ g⊕g, a 7→ (p+(a), p−(a)), a ∈ d, is a Lie algebra isomorphism.

Thus Jn : g(n) → gn is a Lie algebra isomorphism for any n ≥ 1.

Q.E.D.

6.2. Mixed product Poisson structures associated to quasitriangular r-matrices. Assume that

(Yj , πj , λj), 1 ≤ j ≤ n, are left (g, r)-Poisson spaces. Let Y = Y1 × · · · × Yn be the product manifold, and

let λ = (λ1, . . . , λn) : g
n → V1(Y ) be the direct product left Lie algebra action of gn on Y given by

(6.11) λ(x1, . . . , xn) = (λ1(x1), . . . , λn(xn)), xj ∈ g.

If r =
∑

i xi ⊗ yi ∈ g⊗ g, define the bi-vector field πY on Y by

πY = (π1, . . . , πn) + λ (Mixn(r))(6.12)

= (π1, π2, · · · , πn) +
∑

1≤j<k≤n

∑

i

(0, . . . , λj(yi)
jth entry

, . . . , 0) ∧ (0, . . . , λk(xi)
kth entry

, . . . , 0),

where again (π1, π2, · · · , πn) is the direct product Poisson structure on Y = Y1 × · · · × Yn.

Theorem 6.8. The triple (Y, πY , λ) is a left (gn, r(n))-Poisson space, and (Y, πY , λdiag) is a left (g, r)-

Poisson space, where λdiag is the diagonal action

(6.13) λdiag : g −→ V1(Y ), λdiag(x) = (λ1(x), . . . , λn(x)), x ∈ g,

of g on Y . If, in addition, πj = −λj(r) for each 1 ≤ j ≤ n (see Proposition 2.18), then πY = −λ(r(n)).

Proof. The first and the third statements of Theorem 6.8 follow directly from Proposition 3.4. By Theorem

6.2, for any 1 ≤ k ≤ m ≤ n, (Y, πY , λ ◦ φm,k) is a left (gm, r(m))-Poisson space, where φm,k : gm → gn is

given in (6.7). In particular, the triple (Y, πY , λdiag) is a left (g, r)-Poisson space.

Q.E.D.

Definition 6.9. Given (g, r)-Poisson spaces (Yj , πj , λj) for 1 ≤ j ≤ n with n ≥ 2, we also denote the

Poisson structure πY on Y = Y1 × · · · × Yn given in (6.12) by

πY = (π1 × · · · × πn)(λ1,...,λn),

and we will refer to the left (g, r)-Poisson space (Y, πY , λdiag), where λdiag is the diagonal action of g on

Y given in (6.13), as the fusion product of (Yj , πj , λj), 1 ≤ j ≤ n.

Remark 6.10. Recall from Lemma 2.7 the dual pair of Lie bialgebras (f−, δr|f−) and (f+,−δr|f+). Let

{xi}
m
i=1 be a basis of g such that {xi}

l
i=1 is a basis of f−, and let {ξi}

m
i=1 be the dual basis of g∗. Then

{r+(ξi)}
l
i=1 is a basis of f+, dual to the basis {xi}

l
i=1 of f− under the pairing 〈 , 〉(f−,f+) in (2.18), and

r =

m∑

i=1

xi ⊗ r+(ξi) =

l∑

i=1

xi ⊗ r+(ξi) ∈ f− ⊗ f+ ⊂ g⊗ g

(see Remark 2.8). In the context of Theorem 6.8, it then follows that for any 1 ≤ j < k ≤ n, the projection

of πY to Yj × Yk is precisely the mixed product Poisson structure πj ×(−λj |f+ ,λk|f− ) πk formed out of

the right (f+,−δr|f+)-Poisson space (Yj , πj ,−λj |f+) and the left (f−, δr|f−)-Poisson space (Yk, πk, λk|f−).

Furthermore, let 1 ≤ j ≤ n, and let Y(j) = Y1 × · · · × Yj and Y[j] = Yj+1 × · · · × Yn. It then follows from

Mixn(r) =
(
Mixj(r), 0

)
+
(
0, Mixn−j(r)

)

+

l∑

i=1

(r+(ξi), r+(ξi), . . . , r+(ξi)︸ ︷︷ ︸
j terms

, 0, 0, . . . , 0) ∧ (0, 0, . . . , 0, xi, xi, . . . , xi︸ ︷︷ ︸
n−j terms

)
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that under the obvious identification Y = Y(j) × Y[j], πY is also a two-fold mixed product, namely

πY = π(j) ×(−λ(j)|f+ , λ[j]|f− ) π[j],

where π(j) = (π1 × · · · × πj)(λ1,...,λj), π[j] = (πj+1 × · · · × πn)(λj+1,...,λn), and

λ(j) : g −→ V 1(Y(j)), λ(j)(x) = (λ1(x), . . . , λj(x)), x ∈ g,

λ[j] : g −→ V 1(Y[j]), λ[j](x) = (λj+1(x), . . . , λn(x)), x ∈ g.

Set, for notational simplicity,

λ+
j = λj |f+ : f+ −→ V

1(Yj), λ+
(j) = λ(j)|f+ : f+ −→ V

1(Y(j)),

λ−
j = λj |f− : f− −→ V

1(Yj), λ−
[j] = λ[j]|f− : f− −→ V

1(Y([j]).

Then πY can also be realized as the successive 2-fold mixed products

πY =

((
π1 ×(−λ

+
1 ,λ

−

2 )
π2

)
×(

−λ
+
(2)

,λ
−

3

) · · · ×(
−λ

+
(n−2)

,λ
−

n−1

) πn−1

)
×(

−λ
+
(n−1)

,λ
−
n

) πn

= π1 ×(
−λ

+
1 ,λ

−

[2]

)
(
π2 ×(

−λ
+
2 ,λ

−

[3]

) · · · ×(
−λ

+
n−2,λ

−

[n−1]

)
(
πn−1 ×(−λ

+
n−1,λ

−
n ) πn

))
.

⋄

We now give a typical example of the construction in Theorem 6.8.

Example 6.11. Suppose that G is a connected Lie group with Lie algebra g and let s ∈ (S2g)g be the

symmetric part of r. Suppose that Q1, . . . , Qn are closed Lie subgroups of G such that the Lie algebra

qj of Qj for each j is coisotropic with respect to s (see §2.6). Let λj be the left action of g on G/Qj

induced by the left action of G on G/Q by left translation. By Proposition 2.18, λj(r) is a Poisson

structure on G/Qj for each j, and by Theorem 6.8, λ(r(n)) is a mixed product Poisson structure on

the product manifold G/Q1 × · · · ×G/Qn, where λ = (λ1, . . . , λn) is the direct product action of gn on

G/Q1 × · · · ×G/Qn. Note that any twist r′ of r, having the same symmetric part as r, also gives rise to

the Poisson structure λ
(
(r′)(n)

)
on G/Q1× · · · ×G/Qn. We will return to these examples in §8.6 for the

case when G is a complex semi-simple Lie group. ⋄

Let G be again any connected Lie group with Lie algebra g. We end §6.2 by a discussion on the Poisson

Lie group
(
Gn, π

(n)
G

)
, where n ≥ 1, and

(6.14) π
(n)
G =

(
r(n)

)L
−
(
r(n)

)R
,

with
(
r(n)

)L
and

(
r(n)

)R
respectively denoting the left and right invariant 2-tensor fields on Gn with value

r(n) at the identity element. Here r(1) = r by convention, and we also write π
(1)
G = πG. By Proposition

6.7, when r is factorizable,
(
G×G, π

(2)
G

)
is a Drinfeld double of the Poisson Lie group (G, πG).

Consider again the pair ((f+,−δr|f+), (f−, δr|f−)) of dual Lie bialgebras, where f± = Im(r±) ⊂ g. Let

F+ and F− be the connected subgroups of G with Lie algebras f− and f+ respectively, and denote by the

same symbol the restrictions of πG to F+ and F−. Then the Poisson Lie groups (F+,−πG) and (F−, πG)

form a dual pair, and so do (F+, πG) and (F op
− , πG), where F

op
− denotes the manifold F− with the opposite

group structure. Consider now the dual pair of Poisson Lie groups

(6.15) (F, πF ) = (F−, πG)× (F op
− , πG) and (F ∗, πF∗) = (F+,−πG)× (F+, πG).

By the multiplicativity of the Poisson structure πG, one has the right and left Poisson actions

ρ : (G, πG)× (F ∗, πF∗) −→ (G, πG), (g, (f1, f2)) 7−→ f−1
1 gf2, g ∈ G, f1, f2 ∈ F+,(6.16)

λ : (F, πF )× (G, πG) −→ (G, πG), ((f−1, f−2), g) 7−→ f−1gf−2, g ∈ G, f−1, f−2 ∈ F−.(6.17)
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For 1 ≤ j < k ≤ n, let pjk : Gn → G×G be the projection to the j’th and the k’th factor.

Proposition 6.12. For any n ≥ 2, π
(n)
G is a mixed product Poisson structure on Gn, and pjk

(
π
(n)
G

)
=

π
(2)
G for every 1 ≤ j < k ≤ n; Moreover, π

(2)
G = πG ×(ρ,λ) πG.

Proof. The first statement is clear from the definition of r(n). To prove the second one, let {xi}
m
i=1 be a

basis of g such that {xi}
k
i=1 is a basis of f−, and let {ξi}

m
i=1 be the dual basis of g∗. By (2.19), one has

π
(2)
G = (πG, πG)−

k∑

i=1

(
(r+(ξi)

L, 0) ∧ (0, xL
i ) + (r+(ξi)

R, 0) ∧ (0, xR
i )
)
= πG ×(ρ,λ) πG.

Q.E.D.

6.3. Fusion products of Poisson spaces and quasi-Poisson spaces. Write r = s + Λ, where s ∈

(S2g)g and Λ ∈ ∧2g, and let φs = −2CYB(s) ∈ (∧3g)g. By (2.8) - (2.10), [Λ,Λ] = φs, and

φs(ξ, η, ζ) = −2〈ξ, [s
#(η), s#(ζ)]〉, ξ, η, ζ ∈ g∗.

Recall from [2] that a (g, φs)-quasi-Poisson space is a triple (Y,QY , λ), where Y is a manifold, λ : g →

V1(Y ) a left Lie algebra action, and QY a g−invariant bi-vector field on Y such that

[QY , QY ] = λ(φs).

Let P(g, δr) be the category of left (g, δr)-Poisson spaces with g-equivariant Poisson morphisms as

morphisms, and let QP(g, φs) be the category of (g, φs)-quasi-Poisson spaces whose morphisms are the g-

equivariant morphisms respecting the quasi-Poisson bi-vector fields. The following Lemma 6.13 is proved

in [1, 27]. Due to our sign conventions, we include a proof for the convenience of the reader.

Lemma 6.13. [1, 27] One has the equivalence of categories

(6.18) P(g, δr) ←→ QP(g, φs), (Y, πY , λ) ←→ (Y, QY , λ),

where QY = πY + λ(Λ), and the map on morphisms is the identity map.

Proof. Let Y be a manifold with a left action λ of g, and let πY and QY be bi-vector fields on Y related

by QY = πY + λ(Λ). Assume first that (Y,QY , λ) is (g, φs)-quasi-Poisson. Then

[πY , πY ] = [QY , QY ]− λ([Λ,Λ]) = λ(φs − [Λ,Λ]) = 0,

and for x ∈ g, [λ(x), πY ] = −[λ(x), λ(Λ)] = λ([x,Λ]) = λ(δr(x)). Thus (Y, πY , λ) ∈ P(g, δr). Conversely,

assume that (Y, πY , λ) ∈ P(g, δr). Then [λ(x), QY ] = [λ(x), πY ] − λ([x,Λ]) = [λ(x), πY ]− λ(δr(x)) = 0

for all x ∈ g, and

[QY , QY ] = 2[λ(Λ), πY ]− λ([Λ,Λ]) = λ(2[Λ,Λ]− [Λ,Λ]) = λ([Λ,Λ]) = λ(φs).

Thus (Y,QY , λ) ∈ QP(g, φs). Clearly the two functors in (6.18) are inverse functors of each other.

Q.E.D.

Example 6.14. If λ : g → V1(Y ) is a left action of g on a manifold Y such that λ(s) = 0 (see §2.6),

then λ(φs) = 0 by the proof of Proposition 2.18, so (Y,QY = 0, λ) is a left (g, φs)-quasi-Poisson space,

which, under the equivalence of categories in Lemma 6.13, corresponds to the left (g, δr)-Poisson space

(Y,−λ(r), λ) in Proposition 2.18. ⋄

Remark 6.15. Note that if (Y,QY , λ) is a (g, φs)-quasi-Poisson space, so is (Y,−QY , λ). If (Y,QY , λ)

corresponds to the (g, δr)-Poisson space (Y, πY , λ) as in Lemma 6.13, then (Y,−QY , λ) corresponds to

(Y, πY − 2QY , λ). ⋄
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Remark 6.16. The category QP(g, φs) depends only on s ∈ (S2g)g, while P(g, δr) depends only on

Λ ∈ ∧2g subject to the condition [Λ,Λ] = φs. If r′ = r − t is a twist of r (see Definition 2.11), the

composition functor

P(g, δr) −→ QP(g, φs) −→ P(g, δr′) : (Y, πY , λ) 7−→ (Y, πY + λ(t), λ)

is the equivalence of categories given in Lemma 2.16.

Let n ≥ 2 be any integer and let φn
s = (φs, φs, . . . , φs) ∈ ∧

3(gn). Applying Lemma 6.13 to the

quasitriangular r-matrix r(n) on gn defined in §6.1, one has the equivalence of categories

P(gn, δr(n)) ←→ QP(gn, φn
s ),(6.19)

(Y, πY , λ) ←→ (Y, QY , λ), where QY = πY + λ(Λ, . . . , Λ)− λ(Mixn(r)).(6.20)

By Theorem 6.2, one has the restriction functor

(6.21) P(gn, δr(n))
Res
−→ P(g, δr), (Y, πY , λ) 7−→ (Y, πY , λ ◦ (diag)n),

where (diag)n : g −→ gn, (diag)n(x) = (x, x, . . . , x) for x ∈ g. On the other hand, by [1, 2] (see also [28]),

one has the fusion functor

(6.22) QP(gn, φn
s )

Fus
−→ QP(g, φs), (Y, QY , λ) 7−→ (Y, QY + λ(Mixn(s)), λ ◦ (diag)n).

Proposition 6.17. One has the commutative diagram

P(gn, δr(n)) ←→ QP(gn, φn
s )

Res ↓ ↓ Fus

P(g, δr) ←→ QP(g, φs),

where the functors represented by the top and bottom horizontal arrows are respectively given in (6.19)

and (6.18).

Proof. Using the definitions of the functors, it is enough to show that

(6.23) (diag)n(Λ) = (Λ, . . . ,Λ)−Mixn(Λ),

which is straightforward to check.

Q.E.D.

Corollary 6.18. Under the equivalence in (6.18), the fusion product in P(g, δr) defined in Definition 6.9

corresponds to the fusion product in QP(g, φs).

Remark 6.19. For each permutation τ ∈ Sn, the element

φτ (Mixn(r)) = Mixn(Λ) + φτ (Mixn(s)) ∈ ∧2(gn)

is also a mixed twisting element of the n-fold direct product of the Lie bialgebra (g, δr) with itself. Given

(g, δr)-Poisson spaces (Yj , πj , λj) for 1 ≤ j ≤ n with n ≥ 2, we then have the left (g, δr)-Poisson space

(Y, πτ
Y , λdiag), called the τ-fusion product, of {(Yj , πj , λj)}j , where πτ

Y is now the mixed product Poisson

structure on Y = Y1 × · · · × Yn defined by

πτ
Y
= (π1, . . . , πn) + λ (φτ (Mixn(r))) .

Replacing the fusion functor Fus in (6.22) by

(6.24) QP(gn, φn
s )

Fusτ
−→ QP(g, φs), (Y, QY , λ) 7−→ (Y, QY + λ(φτ (Mixn(s))), λ ◦ (diag)n),
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it follows from (6.23) again that under the functor in Lemma 6.13, τ -fusion products of (g, δr)-Poisson

spaces correspond to τ -fusion products of (g, φs)-quasi-Poisson spaces. See [28] for examples of τ -fusion

products of (g, φs)-quasi-Poisson spaces for non-trivial τ ∈ Sn. ⋄

7. Quotient Poisson structures as mixed products

In §7, we present examples that have motivated our introduction to the notion of mixed product Poisson

structures. Namely, we identify a class of quotient Poisson manifolds of product Poisson Lie groups as

mixed product Poisson manifolds (see Definition 1.1).

7.1. Quotient Poisson structures. Let (G, πG) be a Poisson Lie group. Recall that a coisotropic

subgroup of (G, πG) is, by definition, a Lie subgroup Q of G which is also a coisotropic submanifold with

respect to πG, i.e., πG(q) ∈ TqQ⊗ TqG+ TqG⊗ TqQ for every q ∈ Q.

Lemma 7.1. [38] If (Y, πY , ρ) is a right (G, πG)-Poisson space and Q a closed coisotropic subgroup of

(G, πG) such that Y/Q is a smooth manifold, then the Poisson structure πY projects to a well-defined

Poisson structure on Y/Q.

We will refer to the projection of πY to Y/Q as the quotient Poisson structure on Y/Q. As an

example, assume that (Y, πY ) is a Poisson manifold with a left Poisson action of a closed Poisson subgroup

(Q, πQ = πG|Q) of (G, πG). Then one has the right Poisson action of the product Poisson Lie group

(Q ×Q, πQ × (−πQ)) on the product Poisson manifold (G× Y, πG × πY ) by

(g, y) · (q1, q2) = (gq1, q
−1
2 y), g ∈ G, y ∈ Y, q1, q2 ∈ Q.

As Qdiag = {(q, q) : q ∈ Q} is a coisotropic subgroup of (Q × Q, πQ × (−πQ)), the Poisson structure

πG×πY on G×Y projects to a well-defined Poisson structure on the quotient of G×Y by Qdiag, denoted

by G×Q Y . Repeating the construction, one has the following Lemma-Definition 7.2.

Lemma-Definition 7.2. If Q1, . . . , Qn are closed Poisson subgroups of (G, πG), the quotient manifold

Z = G×Q1 · · · ×Qn−1 G/Qn

in (1.2) has the well-defined Poisson structure πZ =̟Z(π
n
G
), where ̟Z :Gn→ Z is the projection. We

will refer to (Z, πZ) as a quotient Poisson manifold of the product Poisson Lie group (Gn, πn
G).

We now look at the case when n = 1, leaving the case of an arbitrary n to §7.2. Assume thus Q is a

closed Poisson Lie subgroup of (G, πG) and consider the Poisson structure

πG/Q := ̟G/Q(πG)

on G/Q, where ̟G/Q : G → G/Q is the projection. Let (g, δg) be the Lie bialgebra of (G, πG), and let

(g∗, δg∗) and (d, δd) be respectively the dual and double Lie bialgebras of (g, δg). Recall from (2.29) the

left Poisson action ς of (d, δd) on (G, πG), i.e.,

ς : d −→ V1(G), ς(x+ ξ) = xR − π#
G
(ξR), x ∈ g, ξ ∈ g∗.

As Q is a Poisson subgroup, it follows from (2.28) that

(7.1) ̺G/Q : g∗ −→ V1(G/Q), ̺G/Q(ξ)
def
= ̟G/Q(π

#
G
(ξR)), ξ ∈ g∗,

is a well-defined Poisson action, called the right dressing action, of (g∗, δg∗) on (G/Q, πG/Q). As

(7.2) λG/Q : g −→ V1(G/Q), λG/Q(x)
def
= ̟G/Q(x

R), x ∈ g,
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is also well-defined, one has the well-defined left Lie algebra action

(7.3) ςG/Q = ̟G/Q ◦ ς : d −→ V1(G/Q), ςG/Q(x+ ξ) = ̟G/Q(x
R − π#

G
(ξR)), x ∈ g, ξ ∈ g∗,

of d on G/Q, making (G/Q, πG/Q, ςG/Q) into a left (d, δd)-Poisson space. Recall from (2.12) the quasitri-

angular r-matrix rd on d associated to the Lagrangian splitting d = g+ g∗.

Lemma 7.3. For any closed Poisson Lie subgroup Q of (G, πG), one has πG/Q = −ςG/Q(rd).

Proof. Let {xi}
m
i=1 be any basis of g and {ξi}

m
i=1 the dual basis of g∗. By the definition of the bundle

map π#
G : T ∗G→ TG, one has

πG =

m∑

i=1

xR
i ⊗ π#

G
(ξRi ) = −

m∑

i=1

ς(xi)⊗ ς(ξi) = −ς(rd).

Composing with ̟G/Q : G→ G/Q gives

(7.4) πG/Q =

m∑

i=1

̟G/Q(x
R
i )⊗̟G/Q(π

#
G (ξRi )) = −ςG/Q(rd).

Q.E.D.

For the remainder of §7.1, let (g, r) be quasitriangular Lie bialgebra, and let G be any connected

Lie group with Lie algebra g. One then has the Poisson Lie group (G, πG), where πG = rL − rR. We

now consider some particular examples of Poisson Lie subgroups of (G, πG). We first compute the right

dressing action ̺ of (g∗, δg∗) on (G, πG). Recall from §2.3 that r+ = r# and r− = −(r21)# = −r∗+ are

Lie bialgebra homomorphisms from (g∗,−δg∗) to (g, δr). For g ∈ G, let Lg and Rg denote again the

respective left and right translations on G by g.

Lemma 7.4. For ξ ∈ g∗ and g ∈ G, one has

(7.5) π#
G
(ξR)(g) = Lgr+(Ad

∗
gξ)−Rgr+(ξ) = Lgr−(Ad

∗
gξ)−Rgr−(ξ).

Proof. Writing r =
∑

j xi ⊗ yj where xj , yj ∈ g, one has

π#
G
(ξR)(g) = Lg




∑

j

〈R∗
g−1ξ, Lgxj〉yj



−Rg




∑

j

〈R∗
g−1ξ, Rgxj〉yj





= Lgr+(Ad
∗
gξ)−Rgr+(ξ).

The second identity in (7.5) is proved using πG(g) = Lg(−r
21)−Rg(−r

21).

Q.E.D.

Consider again (see §2.3) the sub-Lie bialgebras (f−, δr|f−) and (f+, δr|f+) of (g, δr), where f± = Im(r±).

Proposition 7.5. Let Q be a Lie subgroup of G with Lie algebra q ⊂ g such that f+ ⊂ q or f− ⊂ q. Then

Q is a Poisson Lie subgroup of (G, πG). Moreover, if Q ⊂ G is closed, then

̺G/Q(ξ) = −λG/Q(r+(ξ)), ξ ∈ g∗, if f+ ⊂ q;(7.6)

̺G/Q(ξ) = −λG/Q(r−(ξ)), ξ ∈ g∗, if f− ⊂ q.(7.7)

In both cases, one has πG/Q = −λG/Q(r).
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Proof. As q ⊃ f+ or q ⊃ f−, it follows from Lemma 7.4 that π#
G (ξR)(g) ∈ TgQ for every ξ ∈ g∗ and g ∈ Q.

Thus Q is a Poisson Lie subgroup of (G, πG).

Assume that Q is closed in G. Then (7.6) and (7.7) follow from (7.5). Assume that f+ ⊂ q. Let {xi}
m
i=1

be basis of g and {ξi}
m
i=1 the dual basis of g

∗ such that {xi}
k
i=1 is a basis of f−. Then Span{ξk+1, . . . , ξm} =

f0− = ker r+. By (7.4) and (7.6),

πG/Q =

k∑

i=1

λG/Q(xi)⊗ ̺G/Q(ξi) = −λG/Q

(
k∑

i=1

xi ⊗ r+(ξi)

)
= −λG/Q(r).

If f− ⊂ q, one has πG/Q = −λG/Q(−r
21) = −λG/Q(r).

Q.E.D.

7.2. Quotient Poisson structures as mixed products. In §7.2, fix a connected Poisson Lie group

(G, πG) and let (g, δg) be its Lie bialgebra. Let (g
∗, δg∗) and (d, δd) be respectively the dual and the double

Lie bialgebra of (g, δg). Recall the right dressing action ̺ of (g∗, δg∗) on (G, πG) given in (2.27).

Let (Y, πY , λ) be a left (G, πG)-Poisson space. Let J be the diffeomorphism

J : G× Y −→ G× Y, (g, y) 7−→ (g, gy), g ∈ G, y ∈ Y.

Recall from §4.1 that one has the mixed product Poisson structure πG ×(̺,λ) πY on G× Y .

Lemma 7.6. One has J(πG × πY ) = πG ×(̺,λ) πY .

Proof. Let π = J(πG × πY ). With κG : G × Y → G and κY : G × Y → Y denoting the two projections,

it is clear that κG : (G × Y, π)→ (G, πG) and κY : (G × Y, π)→ (Y, πY ) are Poisson maps. Let µ be the

mixed term of πG ×(̺,λ) πY and let g ∈ G, y ∈ Y . It remains to show that

π(g, y)(κ∗
G
θg, κ

∗
Y
ζy) = µ(g, y)(κ∗

G
θg, κ

∗
Y
ζy), θg ∈ T ∗

gG, ζy ∈ T ∗
y Y.

Let y1 = g−1y ∈ Y , and let λy1 : G→ Y, λy1(h) = hy1 for h ∈ G. Let ιg : Y → G×Y and ιy1 : G→ G×Y

be respectively given by ιg(y
′) = (g, y′) and ιy1(g

′) = (g′, y1). Then

π(g, y)(κ∗
Gθg, κ

∗
Y ζy) = πG(g)(ι

∗
y1
J∗κ∗

Gθg, ι
∗
y1
J∗κ∗

Y ζy) + πY (y1)(ι
∗
gJ

∗κ∗
Gθg, ι

∗
gJ

∗κ∗
Y ζy)

= πG(g)(θg, λ
∗
y1
ζy)− 〈θg, ̺(r

∗
gλ

∗
y1
ζy)〉 = µ(g, y)(κ∗

G
θg, κ

∗
Y
ζy).

This proves that π = πG ×(̺,λ) πY .

Q.E.D.

Assume now that Q is a closed Poisson Lie subgroup of (G, πG), and consider the quotient manifold

G×QY with the quotient Poisson structure π = ̟(πG×πY ), where ̟ : G×Y → G×QY is the projection.

Let JQ be the diffeomorphism

JQ : G×Q Y −→ (G/Q)× Y, JQ(̟(g, y)) = (gQ, gy), g ∈ G, y ∈ Y.

Recall the right Poisson action ̺G/Q of the Lie bialgebra (g∗, δg∗) on (G/Q, πG/Q) given in (7.1).

Lemma 7.7. As Poisson structures on (G/Q)× Y , one has

(7.8) JQ(π) = πG/Q ×(̺G/Q, λ) πY .

Proof. Lemma 7.7 follows from Lemma 7.6 and the commutative diagram

G× Y
J
−→ G× Y

̟ ↓ ↓ ̟G/Q × IdY

G×Q Y
JQ
−→ G/Q× Y.
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Q.E.D.

Let now Q1, . . . , Qn be closed Poisson Lie subgroups of (G, πG) and consider the quotient

Z = G×Q1 G×Q2 · · · ×Qn−1 G/Qn

defined in (1.2) with the quotient Poisson structure πZ = ̟Z(π
n
G
), where ̟Z : Gn → Z is the projection.

Set [g1, . . . , gn]Z = ̟Z(g1, . . . , gn) ∈ Z for (g1, . . . , gn) ∈ Gn and recall the diffeomorphism JZ : Z →

G/Q1 × · · · ×G/Qn given in (1.3), i.e.,

JZ [g1, g2, . . . , gn]Z = (g1Q1, g1g2Q2, . . . , g1g2 · · · gnQn), gj ∈ G.

By Lemma 7.3, for each 1 ≤ j ≤ n, one has the (d, δd)-Poisson space (G/Qj, πG/Qj
, ςj), where ςj = ςG/Qj

(see (7.3)), and πG/Qj
= −ςj(rd), where rd ∈ d ⊗ d is the quasitriangular r-matrix on d defined by the

Lagrangian splitting d = g + g∗. Consider the direct product left Lie algebra action σ = (ς1, . . . , ςn) of

dn on the product manifold G/Q1 × · · · ×G/Qn.

Theorem 7.8. One has (see notation in Definition 6.9)

(7.9) JZ(πZ) = (πG/Q1
× · · · × πG/Qn)(ς1, ..., ςn) = −σ

(
r
(n)
d

)
.

Proof. When n = 1, (7.9) holds by Lemma 7.3. Assume that n > 1 and that (7.9) holds for n − 1. By

taking Q = Q1 and Y = G ×Q2 · · · ×Qn−1 G/Qn in Lemma 7.7 and by noting that Im((rd)+) = g∗ ⊂ d

and Im((rd)−) = g ⊂ d, (7.9) holds by Lemma 7.7 and Remark 6.10.

Q.E.D.

Remark 7.9. (Reduction to sub-Lie bialgebras, II.) For a Poisson Lie group (G, πG) with Lie

bialgebra (g, δg), a pair ((p, δp), Q), where (p, δp = δg|p) is a sub-Lie bialgebra of (g, δg) and Q is a closed

Poisson Lie subgroup of (G, πG), is said to be special if ̺G/Q(ξ) = 0 for all ξ ∈ p0, where ̺G/Q is given in

(7.1). In this case, the left Poisson action ςG/Q of (d, δd) on (G/Q, πG/Q) induces a left action, denoted by

ςp, of the double Lie bialgebra of (p, δp) on (G/Q, πG/Q) by ςp(x + ξ + p0) = ςG/Q(x + ξ), x ∈ p, ξ ∈ g∗

(see Example 2.2 and Remark 4.4), and in the setting of Theorem 7.8 with Qj = Q for each j, one checks

directly that the Poisson structure JZ(πZ) on G/Q× · · · ×G/Q is also given by

JZ(πZ) = (πG/Q × · · · × πG/Q)(ςp,...,ςp) = −σp

(
r
(n)
dp

)
,

where σp = (ςp, . . . , ςp) is the direct product action of dp on Z and rdp
is the quasitriangular r-matrix on

dp associated to the Lagrangian splitting dp = p+ p∗. ⋄

8. Primary examples

In §8, we identify a specific class of mixed Poisson structures, which are the main motivation for the

work in the present paper. Examples include those defined on products of flag varieties and related spaces

that are mentioned in the Introduction.

8.1. The set-up. Throughout §8, we fix a quasitriangular Lie bialgebra (g, r), and let G be any connected

Poisson Lie group with Lie algebra g. One then has the Poisson Lie groups (G, πG) and
(
G×G, π

(2)
G

)
,

where πG = rL − rR, and π
(2)
G = (r(2))L − (r(2))R (see §6.2).

Recall the two Lie subalgebras f± = Im(r±) of g. Let (Q+, Q−) be a pair of connected and closed Lie

subgroups of G such that their respective Lie algebras q+ and q− satisfy

(8.1) f+ ⊂ q+ and f− ⊂ q−.
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By Proposition 7.5, both Q+ and Q− are Poisson Lie subgroups of (G, πG). By (6.8), q+ ⊕ q− ⊃

Im
(
(r(2))+

)
, so Q+ ×Q− is a Poisson Lie subgroup of

(
G×G, π

(2)
G

)
again by Proposition 7.5. One thus

has the following six series of quotient Poisson manifolds (see Lemma-Definition 7.2)

(8.2) (Xn, πXn
), (X−n, πX−n

), (Yn, πY n
), (Y−n, πY −n

), (Xn, πXn), (Yn, πYn)

of the product Poisson Lie groups (Gn, πn
G
) and ((G×G)n, (π

(2)
G )n), where n ≥ 2 is any integer, and

Xn = G×Q+ · · · ×Q+ G, X−n = G×Q−
· · · ×Q−

G,(8.3)

Yn = G×Q+ · · · ×Q+ G/Q+, Y−n = G×Q−
· · · ×Q−

G/Q−,(8.4)

Xn = (G×G)×(Q+×Q−) · · · ×(Q+×Q−) (G×G),(8.5)

Yn = (G×G)×(Q+×Q−) · · · ×(Q+×Q−) (G×G)/(Q+ ×Q−).(8.6)

Theorem 7.8 applies to any (Z, πZ) in the series in (8.2) and identifies the Poisson structures πZ as a mixed

product Poisson structure defined by a quasitriangular r-matrix. We show in §8 that the assumptions on

q+ and q− in (8.1) allow one to “reduce” the quasitriangular r-matrix in Theorem 7.8 in the same spirit

as the reduction of the r-matrix in Lemma 7.3 to that in Proposition 7.5 for the case of n = 1.

8.2. The Poisson manifolds (Xn, πXn
), (X−n, πX−n

). Let n ≥ 1 and consider first the Poisson mani-

fold (Xn, πXn). Define the direct sum quasitriangular r-matrix r〈n+1〉 on gn+1 = gn ⊕ g by

(8.7) r〈n+1〉 =

{
(r(n), 0) + (0, −r), if n = 2m+ 1 is odd,

(r(n), 0) + (0, r21), if n = 2m is even,

and let λ be the left Lie algebra action of gn+1 on the product manifold (G/Q+)
n−1 ×G by

λ(x1, . . . , xn, xn+1) = (λG/Q+
(x1), . . . , λG/Q+

(xn−1), x
R
n − xL

n+1), xj ∈ g.

Let JXn : Xn → (G/Q+)
n−1 ×G be the diffeomorphism given by

JXn
([g1, g2, · · · , gn]Xn

) = (g1Q+, g1g2Q+, . . . , g1g2 · · · gn−1Q+, g1g2 · · · gn) , gj ∈ G.

Proposition 8.1. As Poisson structures on (G/Q+)
n−1 ×G, one has JXn

(πXn
) = −λ

(
r〈n+1〉

)
.

Proof. We apply Theorem 7.8 by taking Q1 = · · · = Qn−1 = Q+ and Qn = {e}. Let the notation be as

in Theorem 7.8. Let {xi}
m
i=1 be a basis of g such that {xi}

k
i=1 is a basis of f−, and let {ξi}

m
i=1 be the dual

basis of g∗. Then rd =
∑m

i=1 xi ⊗ ξi. By Theorem 7.8,

JXn
(πXn

) = (πG/Q+
, . . . , πG/Q+

, πG) + σ (Mixn (rd)) .

Let 1 ≤ j < k ≤ n and consider (see (6.3))

µjk = σ
(
(Mixn (rd))jk

)
=

m∑

i=1

(0, . . . , σG/Q+
(ξi)

jth entry

, . . . , 0) ∧ (0, . . . , σG/Q+
(xi)

kth entry

, . . . , 0).

Using the fact that f+ ⊂ q+ and by Proposition 7.5, one has

µjk =

k∑

i=1

(0, . . . , λG/Q+
(r+(ξi))

jth entry

, . . . , 0) ∧ (0, . . . , λG/Q+
(xi)

kth entry

, . . . , 0) = λ
(
(Mixn(r))jk

)
.

Thus

JXn
(πXn

) = (πG/Q+
, . . . , πG/Q+

, πG) + λ ((Mixn (r) , 0)) .

On the other hand, again by Proposition 7.5, one has

−λ
((

r(n), 0
))

=

{
(πG/Q+

, . . . , πG/Q+
, −rR) + λ ((Mixn (r) , 0)) , if n is odd,

(πG/Q+
, . . . , πG/Q+

, (r21)R) + λ ((Mixn (r) , 0)) , if n is even,
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Let r′ = −r if n is odd and r′ = r21 if n is even. Then −λ(0, r′) = rL if n is odd and −λ(0, r′) = −(r21)L

if n is even. Since πG = rL − rR = (r21)R − (r21)L, one has

−λ
(
r〈n+1〉

)
= −λ

((
r(n), 0

))
− λ(0, r′) = JXn(πXn).

Q.E.D.

Replacing r by −r21, we have

JX−n
(πX−n

) = −λ
(
(−r21)〈n+1〉

)
,

where JX−n is the diffeomorphism X−n → (G/Q−)
n−1 ×G given by

JX−n
([g1, g2, · · · , gn]X−n

) = (g1Q−, g1g2Q−, . . . , g1g2 · · · gn−1Q−, g1g2 · · · gn) , gj ∈ G.

8.3. The Poisson manifolds (Yn, πY n
) and (Y−n, πY −n

). Let n ≥ 1, and let JY n
: Yn → (G/Q+)

n and

JY −n
: Y−n → (G/Q−)

n be the diffeomorphisms, respectively given by

JY n
([g1, g2, · · · , gn]Y n

) = (g1Q+, g1g2Q+, . . . , g1g2 · · · gnQ+) , gj ∈ G,

JY −n
([g1, g2, · · · , gn]Y −n

) = (g1Q−, g1g2Q−, . . . , g1g2 · · · gnQ−) , gj ∈ G.

Using the surjective Poisson morphisms

(Xn, πXn) −→ (Yn, πY n), [g1, g2, . . . , gn]Xn 7−→ [g1, g2, . . . , gn]Y n , gj ∈ G,(8.8)

(X−n, πX−n
) −→ (Y−n, πY −n

), [g1, g2, . . . , gn]X−n
7−→ [g1, g2, . . . , gn]Y −n

, gj ∈ G,(8.9)

one has the following direct consequence of Proposition 8.1.

Theorem 8.2. As Poisson structures on (G/Q+)
n and (G/Q−)

n respectively, one has

JY n
(πY n

) = −λ
(
r(n)

)
and JY −n

(πY −n
) = −λ

(
(−r21)(n)

)
,

where the action λ of gn on (G/Q±)
n is the direct product of λG/Q±

of g on each factor.

8.4. The Poisson structures πXn and πYn as two-fold mixed products. Let n ≥ 1, and consider

the diffeomorphism SXn : Xn → Xn ×X−n given by

(8.10) SXn([g1, k2, g2, k2, . . . , gn, kn]Xn) =
(
[g1, g2, . . . , gn]Xn , [k1, k2, . . . , kn]X−n

)
, gj, kj ∈ G.

We now express the Poisson structure SXn(πXn) on Xn × X−n as a mixed product. To this end, recall

from (6.15) the pair of dual Poisson Lie groups

(F, πF ) = (F−, πG)× (F op
− , πG) and (F ∗, πF∗) = (F+,−πG)× (F+, πG),

where F+ and F− are the connected Lie subgroup of G with Lie algebras f+ and f− respectively. Consider

the right Poisson action ρXn of (F ∗, πF∗) on (Xn, πXn) and the left Poisson action λX−n of (F, πF ) on

(X−n, πX−n
), respectively given by

ρXn([g1, g2, . . . , gn]Xn , (f1, f2)) = [f−1
1 g1, g2, . . . , gnf2]Xn , gj ∈ G, f1, f2 ∈ F+,

λX−n
((f−1, f−2), [g1, g2, . . . , gn]X−n

) = [f−1g1, g2, . . . , gnf−2]X−n
, gj ∈ G, f−1, f−2 ∈ F−.

Proposition 8.3. One has SXn(πXn) = πXn ×(ρXn ,λX−n
) πX−n

.

Proof. Let S be the diffeomorphism (G×G)n −→ Gn ×Gn given by

S(g1, k2, g2, k2, . . . , gn, kn) = ((g1, g2, . . . , gn), (k1, k2, . . . , kn)), gj, kj ∈ G.

By Proposition 6.12, S
((

π
(2)
G

)n)
= πn

G
×(ρn, λn) π

n
G
, where ρ is the right Poisson action of (F ∗, πF∗) on

(G, πG) given in (6.16), λ is the left Poisson action of (F, πF ) on (G, πG) given in (6.17), and ρn and λn
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denote respectively the direct product actions of the direct product Poisson Lie groups ((F ∗)n, πn
F∗) and

(Fn, πn
F
) on (Gn, πn

G
). Let ̟n and ̟−n be respectively the projections from Gn to Xn and X−n. Then

SXn(πXn) = (̟n ×̟−n)
(
S
((

π
(2)
G

)n))
= (̟n ×̟−n)

(
πn

G
×(ρn, λn) π

n
G

)
.

Consider the product Poisson Lie group (M,πM) = (F op
− , πG)× (F−, πG) and its dual Poisson Lie group

(M∗, πM∗) = (F+, πG)× (F+,−πG), and note the direct product decompositions

(Fn, πn
F
) = (F−, πG)× (Mn−1, πn−1

M
)× (F op

− , πG),(8.11)

((F ∗)n, πn
F∗) = (F+,−πG)× ((M∗)n−1, πn−1

M∗ )× (F+, πG).(8.12)

The action λn of (Fn, πn
F
) on (Gn, πn

G
) restricts to left Poisson actions by the Poisson subgroups

(Mn−1, πn−1
M ) ∼= {e} × (Mn−1, πn−1

M )× {e} ⊂ (Fn, πn
F ),

(F, πF ) ∼= (F−, πG)× {e} × (F op
− , πG) ⊂ (Fn, πn

F
),

which will be respectively denoted by λ(n−1) and λ′. Similarly, ρn restricts to right Poisson actions ρ(n−1)

of ((M∗)n−1, πn−1
M∗ ) on (Gn, πn

G
) and ρ′ of (F ∗, πF∗) = (F+,−πG)× (F+, πG) on (Gn, πn

G
) via (8.12). We

then have πn
G ×(ρn,λn) π

n
G = πn

G ×(ρ′,λ′) π
n
G + µ, where µ is the mixed term of the mixed product Poisson

structure πn
G
×(ρ(n−1),λ(n−1)) π

n
G
. Thus

SXn(πXn) = (̟n ×̟−n)
(
πn

G ×(ρ′,λ′) π
n
G

)
+ (̟n ×̟−n)(µ) = πXn ×(ρXn ,λX−n

) πX−n
+ (̟n ×̟−n)(µ).

It remains to show that (̟n ×̟−n)(µ) = 0.

Consider the coisotropic subgroup A = {(f−, f
−1
− ) : f− ∈ F−} of (M,πM ) and the coisotropic subgroup

B = {(f, f) : f ∈ F+} of (M∗, πM∗). It is easy to see that the annihilator of the Lie algebra of A in

the Lie algebra of M∗ is precisely the Lie algebra of B. Thus the annihilator of the Lie algebra of An−1

in the Lie algebra of (M∗)n−1 is precisely the Lie algebra of Bn−1. Since Xn = Gn/Bn−1, where Bn−1

acts on Gn by ρ(n−1) via Bn−1 ⊂ (M∗)n−1, and X−n = An−1\Gn, where An−1 acts on Gn by λ(n−1) via

An−1 ⊂Mn−1, it follows from Lemma 4.10 that (̟n ×̟−n)(µ) = 0.

Q.E.D.

Similarly, define the diffeomorphism SYn : Yn → Yn × Y−n by

(8.13) SYn([g1, k2, g2, k2, . . . , gn, kn]Yn) =
(
[g1, g2, . . . , gn]Yn , [k1, k2, . . . , kn]Y−n

)
, gj, kj ∈ G.

Define the right Poisson action ρY n
of (F+,−πG) on (Yn, πYn) and the left Poisson action λY −n

of (F−, πG)

on (Y−n, πY−n
), respectively given by

ρY n
([g1, g2, . . . , gn]Yn , f) = [f−1g1, g2, . . . , gn]Yn , gj ∈ G, f ∈ F+,

λY −n
(f−, [g1, g2, . . . , gn]Y−n

) = [f−g1, g2, . . . , gn]Y−n
, gj ∈ G, f− ∈ F−.

Using again the Poisson morphisms in (8.8) - (8.9), one has the following consequence of Proposition 8.3.

Proposition 8.4. One has SYn(πYn) = πYn ×(ρY n ,λY −n
) πY−n

.

8.5. A weak Poisson dual pair.

Definition 8.5. A weak Poisson dual pair is a pair of surjective Poisson submersions

(8.14) ΦX : (Z, πZ) −→ (X, πX) and ΦY : (Z, πZ) −→ (Y, πY ),

between Poisson manifolds such that the map

(ΦX, ΦY ) : (Z, πZ) −→ (X × Y, πX × πY ), z 7−→ (ΦX(z), ΦY (z)), z ∈ Z,

is Poisson, where πX × πY is the product Poisson structure on X × Y .
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Remark 8.6. When (Z, πZ) is symplectic and when the tangent spaces to the fibers of ΦX and ΦY are

the symplectic orthogonals of each other, the pair (ΦX , ΦY ) is called a symplectic dual pair. Our notion

of weak Poisson dual pairs thus generalizes that of symplectic dual pairs. ⋄

Let the setting, in particular, the pair of subgroups (Q+, Q−) of G, be as in §8.1. Similar to the Poisson

manifold (Y−n, πY −n), where n ≥ 1, introduce the left action of Qn
− on Gn by

(q−1, q−2, . . . , q−n) · (g1, g2, . . . , gn) = (q−1g1q
−1
−2 , q−2g2q

−1
−3 , . . . , q−ngn), q−j ∈ Q−, gj ∈ G,

and denote by

(8.15) Y ′
−n = Q−\G×Q−

G×Q−
· · · ×Q−

G

the corresponding quotient of Gn by Qn
−, and by

Φ− : Gn −→ Y ′
−n, (g1, g2, . . . , gn) 7−→ [g1, g2, . . . , gn]Y ′

−n
, gj ∈ G,

the corresponding quotient map. Then

πY ′
−n

:= Φ−(π
n
G
)

is a well-defined Poisson structure on Y ′
−n. Let Φ+ : Gn → Xn be the projection from Gn to Yn, i.e.,

Φ+(g1, . . . , gn) = [g1, . . . , gn]Y n
for (g1, . . . , gn) ∈ Gn.

Proposition 8.7. For any n ≥ 1, the pair

Φ+ : (Gn, πn
G) −→ (Yn, πY n) and Φ− : (Gn, πn

G) −→
(
Y ′
−n, πY ′

−n

)

is a weak Poisson dual pair.

Proof. By definition, both Φ+ and Φ− are surjective Poisson submersions. Denote the Poisson submersion

in (8.8) by φ+ : (Xn, πXn)→ (Yn, πY n), and consider the Poisson submersion

φ− : (X−n, πX−n
) −→ (Y ′

−n, πY ′
−n

), [g1, . . . , gn]X−n
7−→ [g1, . . . , gn]Y ′

−n
, gj ∈ G.

By Proposition 8.3, one has the Poisson morphism

SXn : (Xn, πXn) −→ (Xn ×X−n, πXn ×(ρXn ,λX−n
) πX−n

).

By the definition the the projections φ+ and φ−, the mixed term in the mixed product Poisson structure

πXn ×(ρXn ,λX−n
) πX−n

on Xn×X−n vanishes under φ+ × φ− : Xn×X−n → Yn× Y ′
−n. Thus one has the

Poisson morphism

(φ+ × φ−) ◦ SXn : (Xn, πXn) −→
(
Yn × Y ′

−n, πY n
× πY ′

−n

)
.

As (G, πG)→
(
G×G, π

(2)
G

)
, g 7→ (g, g) is Poisson, one has the Poisson embedding

In : (G, πn
G
) −→

(
(G×G)n,

(
π
(2)
G

)n)
, (g1, g2, . . . , gn) 7−→ (g1, g1, g2, g2, . . . , gn, gn), gj ∈ G.

With Φ :
(
(G×G)n,

(
π
(2)
G

)n)
→ (Xn, πXn) denoting the projection, one sees that

(Φ+,Φ−) = (φ+ × φ−) ◦ SXn ◦ Φ ◦ In : (Gn, πn
G) −→

(
Yn × Y ′

−n, πY n
× πY ′

−n

)

is a Poisson morphism.

Q.E.D.
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8.6. Holomorphic Poisson structures on flag varieties. Let G be a connected complex semi-simple

Lie group with Lie algebra g. Recall that a flag variety of G is a (left) G-homogeneous space with

parabolic stabilizer subalgebras. Let F1, . . . ,Fn be any finite collection of flag varieties of G, and for each

1 ≤ j ≤ n, let λj be the corresponding (left) Lie algebra action of g on Fj.

Proposition 8.8. For any quasitriangular r-matrix r on g, λ(r(n)) is a mixed product Poisson structure

on the product manifold F = F1 × · · · × Fn, where λ = (λ1, . . . , λn) is the direct product action of gn on

F .

Proof. Let s ∈ (S2g)g be the symmetric part of r. If g = g1 ⊕ · · · ⊕ gk is the decomposition of g into

simple factors, then [7, Lemma 1], s = (s1, . . . , sk), where, si ∈ S2(gi)
gi , 1 ≤ i ≤ k, is a scalar multiple

of the element in S2(gi)
gi corresponding to the Killing form of gi. Thus every parabolic subalgebra of g,

being a direct sum of parabolic subalgebras of the gi’s, is coisotropic with respect to s. Proposition 8.8

now follows from Theorem 6.8 (see also Example 6.11).

Q.E.D.

We remark that all factorizable quasitriangular r-matrices on a complex simple Lie algebra have been

classified by Belavin-Drinfeld in [4]. Assume again that g is semi-simple. To give more concrete examples

of the Poisson structures on flag varieties and related spaces, fix a symmetric non-degenerate invariant

bilinear form 〈 , 〉g on g, and fix also a pair (b, b−) of opposite Borel subalgebras of g. Let h = b ∩ b−, a

Cartan subalgebra of g. Let ∆ and ∆+ ⊂ ∆ be respectively the set of roots for the pair (g, h) and (b, h),

and let g = h +
∑

α∈∆+

gα +
∑

α∈∆+

g−α be the corresponding root decomposition. Let {hi}
r
i=1 be a basis

of h such that 〈hi, hj〉g = δij for 1 ≤ i, j ≤ dim h, and let Eα ∈ gα and E−α ∈ g−α be root vectors for

α ∈ ∆+ such that 〈Eα, E−α〉g = 1. The standard quasitriangular r-matrix associated to the choice of the

triple (b, b−, 〈 , 〉g) is the element rst ∈ g⊗ g given by

(8.16) rst =
1

2

dimh∑

i=1

hi ⊗ hi +
∑

α∈∆+

E−α ⊗ Eα.

The Poisson Lie group (G, πst), where πst = rLst− rRst, is called a standard complex semi-simple Lie group,

and it has (G×G, Πst) as a Drinfeld double Poisson Lie group, where Πst is the Poisson structure on the

product group G×G given by Πst = (r
(2)
st )L − (r

(2)
st )R.

It is clear from the definition in (2.17) that Lie subalgebras f− and f+ of g associated to rst are

respectively given by f− = b− and f+ = b. Let B and B− be the subgroups of G with Lie algebras b and

b− respectively. Taking Q+ = B and Q− = B− and applying the constructions in §8.1, one arrives at the

four series of complex manifolds in §1.3, respectively denoted as

(Fn, πFn= πn), (Fn, πFn= Πn), (F̃n, πF̃n= π̃n), (F̃n, πF̃n
= Π̃n).

Using results in §8.2 and §8.3, we can thus identify the four series of Poisson manifolds with mixed prod-

uct Poisson manifolds, but more importantly, their mixed product Poisson structures are now defined by

quasitriangular r-matrices. In [30], a sequel to the current paper, we first develop a general theory on torus

orbits of symplectic leaves for Poisson structures defined by quasitriangular r-matrices and then apply the

general theory to obtain descriptions of the T - orbits of symplectic leaves for (Fn, πn), (Fn, Πn), (F̃n, π̃n)

and (F̃n, Π̃n), where T = B ∩B−, a maximal torus of G. See [30] for detail.

For n ≥ 1, introduce also the quotient manifold

F ′
−n = B−\G×B−

G×B−
· · · ×B−

G
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of Gn as in (8.15) and denote by π′
−n projection of πn

st from Gn to F ′
−n. Let Φ+ and Φ− be the projections

Φ+ : Gn −→ Fn, (g1, g2, . . . , gn) 7−→ [g1, g2, . . . , gn]Fn
,

Φ− : Gn −→ F ′
−n, (g1, g2, . . . , gn) 7−→ [g1, g2, . . . , gn]F ′

−n
, gj ∈ G.

The following Proposition 8.9 is a special case of Proposition 8.7 and is used in [14].

Proposition 8.9. For any n ≥ 1, the pair

Φ+ : (Gn, πn
st) −→ (Fn, πn) and Φ− : (Gn, πn

st) −→
(
F ′
−n, π

′
−n

)

is a weak Poisson dual pair.
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