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An effective physiological pain assessment method that complements the gold standard

of self-report is highly desired in pain clinical research and practice. Recent studies have

shown that pain-evoked electroencephalography (EEG) responses could be used as a

readout of perceived pain intensity. Existing EEG-based pain assessment is normally

achieved by cross-individual prediction (i.e., to train a prediction model from a group of

individuals and to apply the model on a new individual), so its performance is seriously

hampered by the substantial inter-individual variability in pain-evoked EEG responses. In

this study, to reduce the inter-individual variability in pain-evoked EEG and to improve

the accuracy of cross-individual pain prediction, we examined the relationship between

pain-evoked EEG, spontaneous EEG, and pain perception on a pain EEG dataset, where

a large number of laser pulses (>100) with a wide energy range were delivered. Motivated

by our finding that an individual’s pain-evoked EEG responses is significantly correlated

with his/her spontaneous EEG in terms of magnitude, we proposed a normalization

method for pain-evoked EEG responses using one’s spontaneous EEG to reduce the

inter-individual variability. In addition, a nonlinear relationship between the level of pain

perception and pain-evoked EEG responses was obtained, which inspired us to further

develop a new two-stage pain prediction strategy, a binary classification of low-pain

and high-pain trials followed by a continuous prediction for high-pain trials only, both

of which used spontaneous-EEG-normalized magnitudes of evoked EEG responses as

features. Results show that the proposed normalization strategy can effectively reduce

the inter-individual variability in pain-evoked responses, and the two-stage pain prediction

method can lead to a higher prediction accuracy.
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INTRODUCTION

Pain is an unpleasant experience related to substantive or
potential tissue damage (Loeser and Treede, 2008; Brown et al.,
2011). Self-report is the gold standard to determine the presence,
absence, and the degree of pain perception in clinic practice
(Cruccu et al., 2010; Haanpää et al., 2011), but it may fail
in certain patient populations, e.g., patients who suffer from
consciousness disorders or are in coma (Schnakers and Zasler,
2007). Lack of accurate pain assessment in these populations can
lead to inadequate or suboptimal treatment of pain. Therefore,
it is of high importance to develop a physiology-based pain
assessment method that is independent of participants’ subjective
rating (Brown et al., 2011; Terhaar et al., 2011; Huang et al.,
2013b).

As a sensory perception that involves a complex set of brain
activities, pain has been under intensive investigations using
brain imaging techniques, such as electroencephalography (EEG)
and functional magnetic resonance imaging (fMRI). A variety
of neural signatures of pain have been identified from brain
imaging data, and the possibility to utilize pain-related neural
signatures for pain assessment has been explored in many studies
(Bromm and Treede, 1983; Iannetti et al., 2003; Marquand et al.,
2010; Brown et al., 2011; Brodersen et al., 2012; Schulz et al.,
2012; Zhang et al., 2012). For example, a support vector machine
(SVM) trained on fMRI data was verified to be possible for
pain assessment (Brown et al., 2011). Schulz et al. also applied
a multivariate pattern analysis to predicted individual’s pain
sensitivity using single-trial pain-related EEG (Schulz et al.,
2012).

Particularly, EEG-based pain assessment has attracted a
growing interest in recent years, not only because the EEG
technique is cheap, easy-to-use, and non-invasive, but also
because the relationship between EEG responses and pain
perception has been relatively well recognized. In basic research
of pain, EEG activities elicited by nociceptive laser heat pulses
are widely used to assess neural processing of nociceptive pain
(Bromm and Treede, 1983; Iannetti et al., 2003; Treede et al.,
2003). A positive relationship between the intensity of perceived
pain and a variety of components (such as N2 and P2) in
laser-evoked EEG responses has been well documented (Kakigi
et al., 1989; Bromm and Treede, 1990; Beydoun et al., 1993;
Arendt-Nielsen, 1994; Garcí-Larrea et al., 1997; Iannetti et al.,
2005; Huang et al., 2013a). Based on the existing knowledge
on relationship between laser-evoked EEG and pain, we have
developed a method to predict the level of subjective pain
perception using single-trial laser-evoked EEG potentials (Huang
et al., 2013a), and achieved good predictive accuracy.

Pain prediction using evoked EEG can be realized at two
levels: within-individual pain prediction (the classifier and the
prediction model were trained on and applied to the same group
of individuals) and cross-individual prediction (the classifier and
the prediction model were trained on a group of individuals
but applied to different individuals). Since within-individual pain
prediction requires real pain ratings for new individuals and
is not applicable to people who are unable to reliably express
their pain perception (Brodersen et al., 2012; Schulz et al.,

2012), cross-individual pain prediction is more desired in clinical
uses. However, our previous work (Huang et al., 2013b) showed
that cross-individual pain prediction has a significantly lower
performance than within-individual prediction, mainly because
of the inherent inter-individual variability in pain perception
and neural responses. Therefore, incorporating individual factors
that are particularly related to inter-individual variability of
pain perception or pain-evoked neural activities into the cross-
individual pain prediction model is crucial in pain assessment
and pain therapy (Davis, 2011), and it is also the objective of the
present study.

In an EEG-based pain prediction model that links EEG
signals and subjective pain ratings, substantial inter-individual
variability is involved in both EEG and ratings. However, it
is difficult to improve the performance of cross-individual
pain prediction by means of reducing the inter-individual
variability of subjective pain ratings, because pain ratings for a
new individual, as the unknown variables to be predicted, are
not accessible. Therefore, this study is focused exclusively on
decreasing the inter-individual variability of pain-related EEG
responses: we aim to explore how the pain-related EEG responses
vary between individuals at different levels of pain and how to
normalize pain-related EEG responses across individuals for a
more accurate EEG-based cross-individual pain prediction.

In the present study, we hypothesize that an individual’s
spontaneous EEG activity can be used to normalize his/her
pain-evoked EEG responses so as to improve the accuracy of
cross-individual pain prediction. This hypothesis is induced by
strong and consistent evidence showing that the magnitudes of
a variety of pain-evoked EEG responses are highly correlated
with that of spontaneous EEG of the same individual. Actually,
the magnitudes of both spontaneous and pain-evoked EEG
activities are altered by the difference in individual-specific
factors, such as cortical anatomy (e.g., the thickness of the skin
and skull) and experimental conditions (e.g., electrode position
and scale-electrode impedances; Klistorner and Graham, 2001;
You et al., 2012). Therefore, the magnitude of spontaneous
EEG has the potential to serve as an individual scale to
normalize the magnitude of pain-evoked EEG responses for a
reduced inter-individual variability. The normalized magnitudes
of pain-evoked EEG are used as features in the subsequent pain
prediction. Next, a two-stage cross-individual pain prediction
method is developed: a binary classifier to discriminate low-
pain (NRS ≤ 4) and high-pain (NRS > 4) followed by a linear
prediction model to predict the pain ratings (4–10) for high-pain
trials only. The results showed that the proposed spontaneous
EEG based normalization can effectively decrease the inter-
individual variability in the classifiers and prediction models, and
consequently, can increase the accuracy of pain prediction, as
compared with the prediction based on raw pain-evoked EEG
responses.

MATERIALS AND METHODS

Participants
Thirty-four healthy volunteers (17 females and 17 males), aged
18–25 years (Mean ± SD: 21.6 ± 1.7), without a history of
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chronic pain, participated in the study. All volunteers gave their
written informed consent and were paid for their participation.
The experiment procedures were approved by the local ethics
committee. Before the experiment, they were familiarized with
the experimental setup and task.

Experimental Design
Nociceptive-specific radiant-heat stimuli were generated
by an infrared neodymium yttrium aluminiumperovskite
(Nd:YAP) laser with a wavelength of 1.34 µm (Electronical
Engineering, Italy). At this wavelength, laser pulses activate
directly nociceptive terminals in the most superficial skin layers.
The laser beamwas transmitted via an optic fiber and its diameter
was set at ∼ 7mm (≈38mm2) by focusing lenses. Laser pulses
were directed at the medial side of the dorsum of left hand,
between the first and third metacarpus. A He-Ne laser pointed
to the area to be stimulated. The duration of the laser pulse was
fixed at 4ms. After each stimulus, the target of the laser beam
was shifted by more than 1 cm in a random direction, to avoid
nociceptor fatigue or sensitization.

Participants were asked to report the intensity of perceived
pain elicited by the laser stimulus, using a numerical rating scale
(NRS) ranging from 0 (no pain) to 10 (pain as bad as it could
be). Prior to EEG data collection, the highest energy of the laser
stimulation, used in the following experiment, was individually
determined using the method of limits (from 1 J in step of 0.25
J) until a rating of 8 was reached. No withdrawal reflexes and
motor contractions were observed until the stimulation intensity
increased to 3.75–4.5 J. During the EEG data collection, 12–15
different levels of laser stimulation energies (from 1 to 3.75–4.5 J,
in step of 0.25 J) were adopted, and 10 laser pulses at each energy
level, for a total of 120–150 pulses, were delivered in two blocks.
Before each block, the surface temperatures of hand dorsum for
each participant were measured using an infrared thermometer.
The order of stimulus energies was pseudo-randomized. The
inter-stimulus interval (ISI) varied randomly between 10 and 15 s
(uniformly distributed). An auditory tone delivered between 3
and 6 s after the laser pulse (uniformly distributed) prompted the
participants to rate the intensity of pain. The dataset with 12–
15 levels of stimulation energy enables a more comprehensive
and detailed investigation of the relationship between pain-
evoked EEG responses and spontaneous EEG activities and the
relationship between pain-evoked EEG responses and subjective
pain ratings.

EEG Recording
Participants were seated in a comfortable chair in a silent,
temperature-controlled room. They wore protective goggles and
were asked to focus their attention on the stimuli and relax
their muscles. The EEG data were recorded using a 64-channel
EEG cap with Ag-AgCl scalp electrodes placed according to the
international 10–20 system (Brain Products GmbH, Munich,
Germany; pass band: 0.01–100Hz; sampling rate: 1000Hz). The
nose was used as the reference electrode, and the impedances of
all electrodes were kept lower than 10 k�. Electrooculographic
(EOG) signals were simultaneously recorded using surface
electrodes to monitor ocular movements and eye blinks.

EEG Data Analysis
Preprocessing

Continuous EEG data from Cz channel were band-pass filtered
between 1 and 30Hz. EEG epochs were extracted using a
window analysis time of 1 s (from 0.5 s pre-stimulus to 0.5 s post-
stimulus), and baseline corrected using the pre-stimulus interval
(−0.5 to 0 s). Artifacts due to eye blinks or eye movements were
subtracted using independent component analysis. In all datasets,
the independent components which had a large EOG channel
contribution and a frontal scalp distribution were removed. The
above EEG data preprocessing were realized using EEGLAB
(Delorme and Makeig, 2004), an open source toolbox running in
MATLAB environment.

Feature Extraction

EEG trials recorded at Cz (nose referenced) were used for
prediction of pain perception. Each EEG trial consists of two
segments: the pre-stimulus trial (−0.5 to 0 s) is spontaneous
EEG (sEEG) and the post-stimulus trial (0–0.5 s) is dominated
by pain-evoked EEG (pEEG) or, more precisely, Aδ-fiber pain-
evoked EEG responses. The magnitude of sEEG or pEEG trial is
quantified by root mean square (RMS)

RMS =

√

√

√

√

1

K

K
∑

k= 1

x2
k
, (1)

where xk is the k-th sample of the trial, and K is the number of
data samples. The RMS of sEEG or pEEG are denoted as RMSS or
RMSP and will be used as features in subsequent investigation of
the relationship between pain and EEG and in pain prediction.

Relationship between sEEG and pEEG
To test whether sEEG can serve as a baseline to normalize
pEEG for a smaller inter-individual variability, we examined
the relationship between RMSS and RMSP. We assume that an
individual’s RMSS and RMSP (both of which are averaged across
all trials at each pain intensity level) are normally distributed,
and calculate the mean and standard deviation (SD) of RMSS and
RMSP across all trials at each pain intensity level. Then, cross-
individual correlation between these mean and SD values were
estimated.

Relationship between Pain and pEEG
In our experiments, participants were asked to report the level
of pain perception with four as the pinprick pain threshold (i.e.,
NRS > 4 refers to feeling of pinprick pain). Thus, NRS = 4
serves as a threshold to differentiate low-pain and high-pain
(i.e., low-pain: NRS≤ 4, high-pain: NRS > 4). To investigate the
relationship between the rating of perceived pain and evoked
EEG responses, RMSP, which was averaged across trials with
each identical pain level for each individual, was fitted using two
models: a global linear model and a two-piecewise linear model
(two segments withNRS= 4 as the break point). The global linear
model is based on the assumption that magnitude of pEEG is
linearly increased with the pain rating, while the piecewise linear
model assumes that the relationship between pain rating and
pEEG is different for low-pain (NRS ≤ 4) and high-pain (NRS
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> 4). The performance of the two models are quantified with the
mean square error (MSE) and compared across individuals using
a paired sample t-test.

Feature Normalization Based on sEEG
There are different normalization methods available, and here
we normalized the magnitude of a pEEG trial as the z-score of
the population defined by sEEG trials. For each individual, the
magnitude of the i-th pEEG trial, RMSP(i), was normalized by
RMSS of all sEEG trials as

nRMSP(i) =
RMSP(i)− µ(RMSS)

σ (RMSS)
, (2)

where nRMSP(i) is the normalized magnitude of the i-th pEEG
trial,µ and σ are respectively the mean and the SD of RMSS of all
trials of this individual.

To examine whether the inter-individual variability of pEEG
magnitudes was decreased by the sEEG-based normalization,
we performed an ANOVA F-test on RMSP and nRMSP. More
precisely, at each pain level, an ANOVA F-test was performed
on RMSP or nRMSP of all trials with this pain level across all
individuals to check whether the means of RMSP or nRMSP
of this group of individuals are the same, and the resultant F-
statistics denote the inter-individual variability relative to the
within-individual variability of the variable under test. Then, we
compared the F-statistics between RMSP and nRMSP at each pain
level, and it is expected that nRMSP has a smaller F-statistic than
RMSP.

We next investigate whether the proposed sEEG-based
normalization method can reduce the cross-individual variability
in the relationship between intensity of pain perception and the
magnitude of pEEG. Firstly, for each individual, we calculated
an optimal threshold of RMSP or nRMSP that can best classify
(with the highest accuracy) the individual’ trials into low-pain
(NRS ≤ 4) and high-pain (NRS > 4). The inter-individual
variability of the binary classification thresholds of RMSP and
nRMSP were measured by variance. If the variance of the
threshold obtained from nRMSP is smaller than that from
RMSP, the effectiveness of sEEG-based normalization in reducing
the individual difference in the binary classification can be
validated. A two-sample F-test was also conducted to check
whether the thresholds of RMSP and nRMSP have the same
variance. Secondly, we consider the relationship between pain
ratings and RMSP (or nRMSP) of high-pain (NRS > 4) trials
to be a linear model specific to each individual, then the inter-
individual variability in this relationship is indicated by the
cross-individual variance of slope and intercept of the linear
model. So, slopes and intercepts of all individuals were calculated
using two sets of features (RMSP and nRMSP), and their inter-
individual variability were compared. If the cross-individual
variance of slopes or intercepts obtained using nRMSP is smaller
than that obtained using RMSP, the effectiveness of sEEG-
based normalization in reducing the individual variability in
the continuous prediction model can be validated. Similarly,
a two-sample F-test was also conducted to check whether
the slopes or intercepts of RMSP and nRMSP have the same
variance.

Binary Classification (Low-Pain vs.
High-Pain)
A linear discriminant analysis (LDA) classifier was adopted to
classify low-pain and high-pain trials using leave-one-individual-
out cross validation. The classifier was first trained with RMSP or
nRMSP of training trials, which divided into two categories (low-
pain: NRS ≤ 4, and high-pain: NRS > 4), and then applied to
the test trials to predict labels (low-pain vs. high-pain) from the
corresponding RMSP or nRMSP. The classification performance
was evaluated by accuracy, and the accuracies obtained from
classification using RMSP and nRMSP were compared using
paired sample t-test.

Continuous Prediction of Pain Levels for
High-Pain Trials
After binary classification, only high-pain trials are involved
in continuous pain prediction, because there is no significant
correlation between pain ratings and pEEG of low-pain trials.
To prove that the sEEG-based normalization is effective
for continuous pain prediction regardless of the results of
the preceding binary classification, we performed continuous
pain prediction for trials predicted as high-pain from binary
classification as well as for real high-pain trials (NRS > 4).

Relationship between single-trial RMSP (or nRMSP) and the
corresponding intensity of pain perception wasmodeled by linear
regression. For the i-th pEEG trial, the pain rating Ri can be
estimated as

Ri = α · RMSP(i)+ c, (3)

Ri = α · nRMSP(i)+ c, (4)

where α and c are slope and intercept of the linear regression
model. The model of (Equations 3 and 4) was trained and tested
using leave-one-individual-out cross validation.

The prediction performance of the linear regression model
was evaluated by Mean Absolute Error (MAE),

MAE =
1

N

N
∑

n=1

∣

∣

∣
Ri − R̂i

∣

∣

∣
, (5)

where N is the total number of test trials, Ri and R̂i are
respectively the real and predicted rating value for the i-
th trial. MAE provides a straightforward measure on how
precisely the generated linear regression model can represent the
relationship between pain ratings and pEEG magnitudes. The
MAE values obtained from prediction using RMSP and nRMSP
were compared using the paired sample t-test.

RESULTS

Relationship between sEEG and pEEG
For each participant, the mean and SD of RMSS and RMSP at
each pain intensity level were calculated. Since NRS > 8 was
not available for some participants, we use a combined level of
“NRS > 8” to denote all trials with an NRS > 8. It can be clearly
seen from Figure 1 and Table 1 that, a significant correlation
(p ≤ 0.007) between the mean values of RMSS and RMSP was
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FIGURE 1 | Correlation between the mean and SD of RMSS and RMSP at levels of (A) NRS ≤ 4, and (B) NRS > 4. Red dots represent the mean or SD of

RMSS and RMSP, which are averaged across all trials at each pain intensity level for each participant. Gray lines represent the best linear fit.

TABLE 1 | Correlation between the mean and SD of RMSS and RMSP at each pain level.

NRS (0, 4] (0, 1] (1, 2] (2, 3] (3, 4]

Mean R 0.891 0.721 0.930 0.725 0.666

P-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

SD R 0.659 0.614 0.466 0.171 0.537

P-value < 0.001 < 0.001 0.013 0.335 0.001

NRS (4, 10] (4, 5] (5, 6] (6, 7] (7, 8] (8, 10]

Mean R 0.550 0.454 0.525 0.570 0.633 0.555

P-value < 0.001 0.007 0.001 < 0.001 < 0.001 0.003

SD R 0.519 0.303 0.340 0.065 0.402 0.193

P-value 0.002 0.082 0.049 0.718 0.025 0.346

obtained at each intensity level of pain perception. In addition, a
significant correlation between the SD values of RMSS and RMSP
was also obtained (p≤ 0.02) for overall intensity level of low-pain

(NRS ≤ 4) and high-pain (NRS > 4), though some individual
intensity level is not significant (such as intensity level at 2–3, 4–
5, 6–7, and 8–10). To conclude, the distributions of RMSS and
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FIGURE 2 | (A) Relationship between pain ratings and RMSP (from one participant). Colored dots represent mean ± SD of RMSP averaged across trials at different

level of pain perception. The red line represents the fitted global linear model, while the blue lines represent the fitted two-piecewise linear model. (B) Comparison of

MSE (mean ± SD) of all participants between two fitting models.

TABLE 2 | Comparison of F-statistics obtained from the ANOVA F-test on RMSP and nRMSP.

NRS (0, 1] (1, 2] (2, 3] (3, 4] (4, 5] (5, 6] (6, 7] (7, 8] (8, 10]

RMSP 5.279 6.476 5.802 10.553 17.022 13.501 17.278 10.420 18.718

nRMSP 1.182 1.475 1.582 4.795 11.624 11.332 13.792 8.172 9.310

RMSP are highly correlated, which verifies our hypothesis that
magnitudes of pEEG are highly correlated with the magnitude of
sEEG. This observation supports the idea that RMSS could serve
as an individual scale to normalize his/her RMSP to reduce inter-
individual variability of pain-related features in pain classification
and prediction models.

Relationship between Pain and pEEG
Figure 2A shows the relationship between pain rating and the
magnitude of pEEG (mean ± SD) of one participant. Overall,
pain rating and RMSP are positively related, but RMSP does not
increase significantly when the subjective pain ratings is ≤ 4
(referred to as “low-pain”); when the subjective pain rating is
>4 (referred to as “high-pain”), RMSP is linearly increased with
pain ratings. MSE of the global linear model (red line) or the
two-piecewise linear model (blue line) was adopted to measure
the accuracy of fitting, as shown in Figure 2B. It can be seen
from the group-level results in Figure 2B that, the fitting error
of the piecewise linear model is significantly smaller than that
of the global linear model. Therefore, the piecewise linear model
can better describe the relationship between pain perception and
RMSP. The nonlinear relationship motivates us to develop the
two-stage pain prediction (i.e., to classify low- and high-pain first,
then to predict the pain rating for high-pain trials only).

Feature Normalization Based on sEEG
We first confirmed that the magnitudes of sEEG trials and
pEEG trials of each individual approximately follow a normal

distribution (p < 0.0001 for all individuals, one-sample
Kolmogorov–Smirnov test). Therefore, an individual’s sEEG
trials could form a distribution for normalizing pEEG trials into
z-scores. Table 2 shows that, at each pain level, the F-statistic
obtained from the ANOVA F-test on nRMSP is lower than
that obtained from RMSP, which proves that the sEEG-based
normalization method can effectively reduce the inter-individual
variability of pEEG trials.

Figure 3 shows the optimal binary classification thresholds
and slopes/intercepts of linear regression models for high-pain
trials, which were obtained from available trials and ratings
of all individuals. We can clearly see that, after sEEG-based
normalization, the variance of all above three parameters were
remarkably decreased, which illustrates that the proposed sEEG-
based normalization method can effectively reduce the inter-
individual variability in classification and prediction models.

Table 3 further shows that, cross-individual variances of all
three classifier/model parameters were decreased after sEEG-
based normalization. The two-sample F-test also demonstrates
that the variances of all three classifier/model parameters are
significantly different between using RMSP and using nRMSP as
features (p < 0.0001 for all).

Pain Prediction
The mean and SD of accuracy for binary pain classification
(low-pain vs. high-pain) using RMSP (i.e., pEEG features)
and using nRMSP (i.e., sEEG-normalized pEEG features)
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FIGURE 3 | Effects of sEEG normalization on inter-individual variability of (A) binary classification thresholds, (B) slopes of linear regression models

for high-pain trials, (C) intercepts of linear regression models for high-pain trials. Noted that mean values were removed from these parameters for

illustration. The box plots show the minimu, lower quartile, median, upper quartile, and maximum values of one group of variables.

TABLE 3 | Comparison of binary classifier thresholds and model

parameters between using RMSP and using nRMSP.

RMSP nRMSP

Binary classfication

theresholds

Cross-individual variance 4.284 1.797

P-value (F-test for equal variance) <0.001

Slopes of linear models Cross-individual variance 1.340 0.522

P-value (F-test for equal variance) <0.001

Intercepts of linear

models

Cross-individual variance 7.525 3.254

P-value (F-test for equal variance) <0.001

TABLE 4 | Accuracy of binary classification and prediction error (MAE) of

continuous prediction.

RMSP nRMSP P-value (paired

t-test)

Accuracy of binary

classification (%)

68.95 ± 12.91 70.36 ± 14.18 0.092

MAE of continuous

prediction (on predicted

high-pain trials)

1.838 ± 0.602 1.625 ± 0.446 0.002

MAE of continuous

prediction (on real

high-pain trials)

1.235 ± 0.278 1.173 ± 0.278 0.003

are summarized in Table 4. Results show that nRMSP can
improve the classification accuracy, though the performance
improvement is only close to significant (p= 0.092).

The mean and SD of MAE for continuous pain prediction
using RMSP (i.e., pEEG responses) and using nRMSP (i.e., sEEG-
normalized pEEG responses) for trials predicted as high-pain
from binary classification and for real high-pain trials (NRS >

4) are summarized in Table 4. Results indicate that the proposed
sEEG-based normalization method can significantly improve
the prediction accuracy for both predicted high-pain trials

(p= 0.002) and real high-pain trials (p = 0.003) in continuous
pain prediction.

DISCUSSION

In this study, we proposed to normalize pain-evoked EEG
responses using spontaneous EEG to improve the performance
of EEG-based pain prediction. Pain-related EEG responses have
been used to predict the level of subjective pain, but the large
inter-individual variability seriously degrades the performance
of cross-individual pain prediction. In this work, we began by
performing a comprehensive and detailed investigation of the
relationship between pEEG responses and sEEG activities as
well as the relationship between subjective pain ratings and
pEEG responses. Our results revealed a strong inter-individual
correlation between the magnitude of pEEG and sEEG. Besides,
our results also confirmed a nonlinear relationship between
pEEG and subjective pain ratings. Based on above observations,
we proposed a new two-stage approach for pain prediction: (1)
a binary classification to differentiate low-pain and high-pain
trials; (2) a continuous regression to predict pain ratings of
high-pain trials. In both steps, the normalization strategy based
on sEEG was used to reduce the inter-individual variability in
the magnitude of pEEG, so that a higher classification accuracy
and a lower prediction error were achieved. The new sEEG-
based normalization strategy has the potential to contribute to
an applicable and reliable tool for pain assessment.

Relationship between sEEG and pEEG
An individual’s spontaneous EEG has been shown to be related to
his/her genetic code, implying its uniqueness (Tran et al., 2001;
Doležal et al., 2005; Anokhin et al., 2006; Marcel and Del Millan,
2007; Näpflin et al., 2007; Zietsch et al., 2007). A strong inter-
individual correlation between the magnitude of sEEG and pEEG
was also obtained from our database. A potential interpretation
for this phenomenon may be due to the skull thickness, the
orientation of the gray matter and so forth. These anatomical
factors are specific to each person and will remain relatively stable
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for adults. Experimental conditions, such as electrode position
and scale-electrode impedances, could also contribute to the
phenomenon, because theymay influence themagnitudes of both
pEEG and sEEG.

Relationship between Pain Rating and
Pain-Evoked EEG Responses
Numerous previous studies have shown that the perceived pain
intensity is strongly correlated with the amplitude of a number
of evoked EEG responses (Iannetti et al., 2005; Huang et al.,
2013b). In most of these works, the level of pain perception was
assumed or found to be linearly correlated with the evoked EEG
responses, but such a linear relationship has been challenged by
growing evidence showing the nonlinearity between pain level
and the neural responses. The assumption and observation of
the linear relationship may due to the limited range of painful
stimulus intensities used in most of pain experiments, which
further limited the range of perceived pain intensity. To solve this
problem, our experiment was designed to deliver a large number
of laser pulses (>100) with a wide energy range (from 1 to 3.75–
4.5 J; 12−15 levels) to each participant. The result that the fitting
error of a two-piecewise linear model (with a break point of NRS
= 4) was significantly smaller than that of a global linear model
indicated a nonlinear relationship between pain level and the
evoked EEG responses.

Feature Normalization Based on sEEG
To normalize the magnitudes of pEEG trials of one individual,
we proposed to estimate their z-scores in the population
defined by sEEG trials of this individual. Although other
normalization methods exist, the proposed z-scores can achieve
better prediction results than other normalization methods, such
as dividing RMSP with the mean of sEEG or subtracting the
mean of sEEG from RMSP (results are not shown here). Besides
its good performance, the proposed z-score normalization also
reflects certain physiological meanings. It has been revealed
that the variability of spontaneous neural activity can reflect
the “dynamic range” of possible neural responses to incoming
stimuli and can provide a powerful and accessible measure for
understanding various individual difference variables (Barlow,
1960; Rodin et al., 1965; Rogers, 1980; Polich, 1997; Ramos-
Loyo et al., 2004; Lee et al., 2011; Nash et al., 2012; Garrett
et al., 2013; Schiller et al., 2014). Therefore, the distribution
defined by the magnitudes of sEEG is indicative of the possible
range of magnitudes of evoked pEEG and it can be used as
a baseline distribution to normalize pEEG magnitudes to z-
scores.

Applicability of the sEEG-Normalization
Based Pain Prediction
Predictive power of pEEG responses for decoding the intensity of
subjective pain perception has been well documented in previous
studies (Kakigi et al., 1989; Bromm and Treede, 1990; Garcí-
Larrea et al., 1997; Iannetti et al., 2005; Huang et al., 2013b),
which further led to several cross-individual pain prediction
methods, which do not need any subjective pain rating for
new individuals and thus more promising for clinical uses.

However, the accuracy of cross-individual pain prediction is
still not satisfactory because of the inherent inter-individual
variability in either pain evoked responses or pain ratings. A
practical solution to this problem is to incorporate individual
traits that are related to inter-individual variability into the pain
prediction model (Davis, 2011). In our previous study (Huang
et al., 2013b), single-trial evoked EEG features were normalized
by subtracting themean and dividing by the SD of the individual’s
evoked EEG features, and single-trial ratings of pain perception
were rescaled within the range from 0 to 10 (defining 0 as the
lowest pain rating and 10 as the highest pain rating for each
participant). Although above normalization on both evoked EEG
features and pain ratings can significantly increase the prediction
accuracy, its drawback was obvious. First, the normalization
was based on the distribution of evoked EEG features, which
can only be obtained from a large number of painful stimuli
and may not be accepted by participants. Second, it still needs
subjective pain rating from a new individual, which is not
suitable for participants with communication impairments. As
compared with the conventional normalization strategy (Huang
et al., 2013b), the proposed method has two main advantages:
first, it will not introduce any pain experience to a new
participant because the normalization is based on spontaneous
EEG; second, it can well deal with the difficult situation that
no reliable pain rating is available because no subjective rating
is needed. Therefore, the proposed sEEG-based normalization
method is more practical and feasible for clinical research and
applications.

Limitation and Future Work
The proposed normalization strategy focused solely on features
of pain-evoked EEG responses, simply because real values
of pain perception are generally considered to be unknown
in clinical scenarios. However, not only EEG responses but
also the pain ratings are characterized by tremendous inter-
individual variability. Different individuals perceive different
pain perception in response to the same painful stimulus. For
example, we have found pronounced sex-dependent difference
in pain perception as well as in pain-evoked EEG responses (see
Supplementary Materials). Taking into account gender difference
(such as using sex as a predictor) may lead to a more accurate
pain prediction. Mechanisms contributing to inter-individual
differences in pain sensitivity include genetic, environmental,
psychological, and cognitive factors (Nielsen et al., 2009; Coghill,
2010; Schulz et al., 2012), and it may be caused at any stage in pain
processing from the skin to the brain. Highly sensitive individuals
may activate stronger neural responses and/or pain experience
than insensitive individuals (Coghill et al., 2003; Coghill, 2010).
Variations in pain sensitivity is an important issue worthy of
further investigation, because understanding the contributing
factors of pain sensitivity will help greatly in developing a more
accurate and practical method for diagnosis of pain (Edwards,
2005; Nielsen et al., 2009). Our future study is aimed to address
above difficult problems, such as how to normalize pain ratings
and pain sensitivity and how to incorporate personal traits and
environmental factors in the prediction model, to develop a more
accurate and practical EEG-based prediction assessment method.
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