Title	Insights From Students＇Private Work In Their Notebooks：How Do Students Learn From The Teacher＇s Examples？
Author（s）	Yau，KW；Mok，IAC
Citation	Educational Studies in Mathematics，2016，v． 93 n．3，p．275－292
Issued Date	2016
URL	http：／／hdl．handle．net／10722／234105
Rights	The final publication is available at Springer via http：／／dx．doi．org／10．1007／s10649－016－9702－y；This work is licensed under a Creative Commons Attribution－ NonCommercial－NoDerivatives 4．0 International License．

Metadata of the article that will be visualized in OnlineFirst

Please note: Images will appear in color online but will be printed in black and white.

1	Article Title	Insights from students' private work in their notebooks: how do students learn from the teacher's examples?
2	Article Sub- Title	
3	Article Copyright Year	Springer Science+Business Media Dordrecht 2016 (This will be the copyright line in the final PDF)
4	Journal Name	Educational Studies in Mathematics
5		Family Name Mok
6		Particle
7		Given Name Ida Ah Chee
8	Corresponding	Suffix
9	Author	Organization The University of Hong Kong
10		Division
11		Address Hong Kong, SAR, China
12		e-mail iacmok@hku.hk
13		Family Name Yau
14		Particle
15		Given Name King Woon
16		Suffix
17		Organization The University of Hong Kong
18		Division
19		Address Hong Kong, SAR, China
20		e-mail
21		Received
22	Schedule	Revised
23		Accepted
24	Abstract	Students' seatwork plays an important part in their learning in their lessons, and very offen, students record their private work in the notebooks during seatwork. The students' private work in their notebooks reflects students' learning and thinking, representing explicit learning outcomes. The students' private work in their notebooks of 14 mathematics lessons of an eighth-grade Hong Kong classroom was analyzed. The mathematical tasks used in the lessons were categorized with the Trends in International Mathematics and Science Study (TIMSS) cognitive domains framework. The implementation of the tasks was recorded in cycles of teacher's examples (TEs) and students' exercises (SEs). By comparing the methods employed by the students and the teacher, the students' methods were found to be mainly imitation or partial

imitation regardless of the cognitive domains of the students' exercises. The students' perspectives on the instructional practice expressed in the post-lesson interviews were used as a triangulation for the results. The results showed that the students appreciated the teacher's explanation and demonstration in the teacher's exposition. Finally, the authors argue that the high percentages of imitation of teacher's methods not only are due to the students' choice, but also are influenced by the Confucian heritage cultures.

25 Keywords separated Students' private work - Learning - Cognitive domains - Imitation by ' - '
26 Foot note information

Insights from students' private work in their notebooks: how do students learn from the teacher's examples?

Ida Ah Chee Mok ${ }^{1} \cdot$ King Woon Yau ${ }^{1}$
6

(C) Springer Science+Business Media Dordrecht 2016
Abstract Students' seatwork plays an important part in their learning in their lessons, and
very often, students record their private work in the notebooks during seatwork. The students' 11
private work in their notebooks reflects students' learning and thinking, representing explicit 12
learning outcomes. The students' private work in their notebooks of 14 mathematics lessons of 13
an eighth-grade Hong Kong classroom was analyzed. The mathematical tasks used in the 14
lessons were categorized with the Trends in International Mathematics and Science Study 15
(TIMSS) cognitive domains framework. The implementation of the tasks was recorded in 16
cycles of teacher's examples (TEs) and students' exercises (SEs). By comparing the methods 17
employed by the students and the teacher, the students' methods were found to be mainly 18
imitation or partial imitation regardless of the cognitive domains of the students' exercises. The 19
students' perspectives on the instructional practice expressed in the post-lesson interviews 20were used as a triangulation for the results. The results showed that the students appreciated theteacher's explanation and demonstration in the teacher's exposition. Finally, the authors argue2122
that the high percentages of imitation of teacher's methods not only are due to the students' 23choice, but also are influenced by the Confucian heritage cultures.24
Keywords Students' private work • Learning • Cognitive domains • Imitation 2526
1 Introduction 27
Comparative studies such as Trends in International Mathematics and Science Study (TIMSS, 28
Mullis, Martin, Foy \& Arora, 2012) and Programme for International Assessment (PISA, 29
OECD, 2010) have reported that students in East Asian regions such as Hong Kong, Korea, 30
Singapore, and Taiwan have results outperform their counterparts in the non-Asian regions. As 31
a result, much interest has been made in studies about East Asian classrooms and many studies 329

[^0]1 The University of Hong Kong, Hong Kong, SAR, China

Abstract

of the instructional practices in East Asian regions such as Singapore, Shanghai and Hong Kong (Kaur, 2009; Leung, 2005; Mok \& Lopez-Real, 2006; Mok, 2009), and Korea (Park \& Leung, 2006) have been reported. The results of these studies show not only some similarities consistent with the teacher-led directive style but also unfolding, at a deeper level, some features conducive to learning in the cultural contexts of East Asian classrooms, hence, explaining, to a certain extent, the good performance of East Asian students. In general, students engage themselves in a lot of classroom activities under the teacher's instruction. This happens when students work individually or in a small group, and such organization of activities is called "seatwork" (Stigler, Gonzales, Kawanaka, Knoll, \& Serrano, 1999, p.74). Students may produce different kinds of outcomes depending on the nature of the teacher's assigned tasks. In the case of Hong Kong, seatwork often serves the purpose for the students to practice what they have just learned by doing exercises in their notebooks privately. Such private work in the students' notebooks often matters to what the students have learned in that particular lesson and directly represents the explicit learning outcomes achieved by the students in the lesson (Fried \& Amit, 2003; Jablonka, 2006). However, there are very few studies on the students' private work in their notebooks. The aim of this paper is to fill the gap with a case study in the context of Hong Kong mathematics lessons putting the focus on students' private work in their notebooks, hoping to provide a gateway for understanding the nature of the students' learning in the classrooms.

Learning activities in a mathematics classroom are usually organized via mathematical tasks. A mathematical task may be a set of problems or a single problem for drawing students’ attention on a particular mathematical idea (Stein, Grover, \& Henningsen, 1996). These tasks that include teachers' examples and students' exercises in the lessons may come directly from the textbooks or the teacher's improvisation depending on the teacher's enactment of the lesson. The lessons in this study demonstrated a very typical feature in East Asian mathematics lessons; that is, the teacher's expository explanation through the teacher's examples formed a very important component of the instructional practice. How did the students learn from the teacher's exposition? This study attempted to investigate the relationship between the teacher's examples in the teacher's exposition and the students' private work through a detailed examination of the students' private work. The analysis was carried out in four aspects: (1) the cognitive domains of mathematical tasks, (2) the pattern of the teacher's examples and the students' exercises in the lessons, (3) the degree of imitation of the teacher's methods in the students' private work, and (4) the students' perspectives on the instructional practice.

While filling in the literature gap on students' private work in their notebooks, this paper aims to contribute in several aspects: to show how the role of the students' notebooks may serve as a locus wherein the public world of the classroom may be transformed into students' own private world of engagement with mathematical materials; the potentials and pitfalls of cognitive import in imitation; and the cultural aspect of imitation with respect to teacher's authority and students' patterns of learning with respect to the Confucian tradition.

2 Theoretical perspectives and terminology

2.1 Cognitive domains of mathematical tasks

The mathematical tasks are important vehicles for students to develop their mathematical learning and thinking because, on the one hand, mathematical tasks and the teacher's
interpretation of the tasks determine the students' experience in their lessons (Doyle, 1988; National Council of Teacher and Mathematics, 1991). Different attempts have been made to study the cognitive demand of mathematical tasks that plays a pertinent role in defining the premises of the students' work. Doyle (1988) discussed the cognitive demand of an academic task in terms of the cognitive process that varies from low level of memory such as multiplication tables, to high level of decisions in problem solving or more advanced mathematical work. Stein et al. (1996) defined mathematical tasks as a class activity focusing students' attention on a particular mathematical idea, which could be examined in the dimensions of task features and cognitive demands. Mathematical features were referred to aspects of tasks for engaging student thinking, reasoning, and sense making. The cognitive demand of the task-set-up phase referred to the kind of process entailed in the teacher's announcement, whereas the cognitive demands at the implementation stage in the classrooms referred to the actual cognitive processes in which the students engaged while carrying out the tasks, that is, whether the students actually recalled facts and formulas or engaged in high-level thinking and reasoning. Cognitive demand or level defined in such way referring the actual process of students' engagement is dynamic and difficult to measure. Nonetheless, for studying the students' learning outcomes, it is important to have indicators for measuring the potential cognitive demand of the mathematical problems that the students engage in. By classifying the assessment items, TIMSS attempts to assess students' understanding at multiple levels in three cognitive domains, namely, knowing, applying, and reasoning (Mullis, Martin, Ruddock, O’Sullivan, \& Preuschoff, 2009), hence, giving a valid inference of how students may perform on specific tasks (Nixon \& Barth, 2014).

The TIMSS categories of cognitive domains were applied in the analysis and recapitulated here (Mullis et al., 2009, pp. 40-46):

- Knowing: covers the facts, concepts, and procedures that students need to know. The subcategories are recall, recognize, compute, retrieve, measure, and classify/order.
- Applying: focuses on the ability of students to apply knowledge and conceptual understanding to solve problems or answer questions. The subcategories are select, represent, model, implement, and solving routine problems.
- Reasoning: goes beyond the solution of routine problems to encompass unfamiliar situations, complex contexts, and multistep problems. The subcategories include analyze, generalize/specialize, integrate/synthesize, justify, and solving non-routine problems

2.2 Students' seatwork and private work in the classrooms

When classroom activities are organized in such way that students may engage themselves in mathematical materials in their seats either individually or in small groups, such organization of activities is called seatwork (Stigler et al, 1999, p.74). Seatwork often occupies a significant portion of the mathematics lessons in different places in the world (Stigler et al., 1999), and quite a few researchers have attempted to study seatwork in different cultural contexts. For example, Hino (2006) studied the role of seatwork in Japanese classrooms and found that the placement of the seatwork prior to the presentation of the main content of the lessons provided opportunities for students to share and exchange their ideas, and the main content could make a connection to their seatwork in the earlier part of the lesson. Serrano (2012) compared
the seatwork in Germany, Japan, and USA in the TIMSS videos to investigate the influence of seatwork activities on students' thinking in the lessons.

Fried (2008) discussed public domain and private domain in mathematics classroom practice. The same mathematical activity such as seatwork or writing in students' notebook can be termed as private or public depending on the pedagogical practice. In particular, Fried and Amit (2003) investigated students' notebooks, one of the products of the seatwork in the lessons, in two Israel eighth-grade mathematics classes and found that the work in the students' notebooks was the rehearsals for public display as the students' work was open for inspection There is a certain tension between the private domain and the public domain of the treatment of the notebooks, but the work in the notebooks becomes a finished product by public inspection (Fried, 2008). In the case of Hong Kong mathematics classrooms, occasionally, the teacher might select the students' work to show on the board, to show the students' ideas, and to share alternative solutions (Jablonka, 2006). However, for most of the cases in Hong Kong, students' notebooks were often individual and private although there might be limited sharing between students when they talked to their classmates sitting next to them (Lui \& Leung, 2013).

2.3 The framework of the study

The process of teaching and learning in mathematics classrooms is complex in the sociocultural context. According to Vygotsky (1978), the interpersonal (the interaction between the teacher and peers) process is transformed into an intrapersonal (the student) one. Within the zone of proximal development (ZPD), students may handle problems beyond the capability of their mental age when they are under guidance or in collaboration with peers. Activities in a lesson are arranged based on mathematical tasks that may appear in the form of a problem statement going through three stages: the text format of the tasks, the setting up by the teachers, and the implementation by the students in the classrooms (Henningsen and Stein, 1997). In the case of Hong Kong classrooms, the social space consists of the teacher-led whole class interaction and the seatwork period when the students may occasionally talk to the classmate sitting next to them. When students interact within the social space in the lesson, their learning takes place when observing and imitating of teacher's procedures. This imitation is not necessary a purely mechanical process. Students imitate the teacher's procedures and later become independent through their minds.

In the lessons in this study, the text format of the tasks might be either worksheets designed by the teacher or problems adapted from the textbooks. The mathematical tasks might be used for teacher's expository work or assigned exercises for student seatwork, which occupied a significant component of the lessons. The students' work during seatwork was directly influenced by the design of the tasks, the teacher's exposition and demonstration, and the students' own implementation of the tasks. The methods demonstrated in the teacher's examples often acted as a model for students to imitate in their work. Thus, the methods employed in the students' work might infer how students learnt from the teacher's exposition. The students' private work is the focus in the study. The key terms are defined below.

A task/mathematical task in this paper is defined as a mathematical problem, which can either be used as an example in the teacher's expository explanation or demonstration, known as teacher's example (TE), or an exercise assigned for students to work during seatwork, known as students' exercise (SE). The problem statements of TE and SE might appear in the text form of a mathematical problem in the textbooks, a teacher example shown on the board, or a problem in the teacher-designed
worksheets. Consequently, a lesson can be represented as a sequence of TE episodes

Student's private work (SW) refers to the records of the students' work in their notebook during seatwork. A preliminary analysis showed that the students' private work contained some direct copies of the TEs shown on the board and the students' private work when they engaged in the exercises on their own. The students' private work also contained some incomplete items (including the unattempted items) and some complete items. The reason for incomplete items might be due to insufficient time to complete the assigned exercises during the lessons. The complete items of SW were further analyzed. To make a differentiation, SE referred to the task problem statement of the SE, whereas SW referred to the students' private work when they completed the exercises in their notebooks during seatwork. SW includes the students' own answers worked out by themselves for the teacher's assigned student exercises (SE) or the students working on extra exercises not assigned by the teacher.

The cognitive domains of the mathematical tasks, including both TE and SE, were analyzed according to the TIMSS cognitive domain categories. Some examples are shown in Table 1.

The degree of imitation refers to the degree of similarity when the method employed in the complete items of students' private work (SW) was contrasted with the method employed in the TE. The degree of imitation of the SW thus gives an indicator on how the students learn from the teacher's expository demonstration.

3 Source of data: the LPS

The data consisted of 14 consecutive lessons of a Hong Kong school (HK3) taken from the Learner's Perspective Study (LPS) which was an international research collaboration to examine the patterns of participation in competently taught eighth-grade mathematics classrooms (Clarke, Keitel, \& Shimizu, 2006). The 14 lessons covered two topics: slopes of lines and a system of simultaneous linear equations in two unknowns (Table 2). The class size was 40 and the mean International Benchmark Test (IBT) ${ }^{1}$ scores of the class were 38.4 over 50 (77%). The teacher had 12 years of secondary mathematics teaching experience and was identified as a competent teacher locally by the researchers and the school principal.

The data collection procedures followed the LPS design which aimed to collect a rich data set for allowing the researchers to reconstruct the lesson scenario from different perspectives including the learners' perspectives to make possible analysis under different themes and frameworks (Clarke et al., 2006). An integrated system of three cameras was used to collect data in which one was for the whole class, one was for the teacher, and one was for a group of two focus students. A total of 14 consecutive lessons of the same class were recorded. Two different students were chosen to be the focus for each lesson, and they were invited to take a post-lesson interview. All the lesson materials including the focus students were collected at the end of the lesson. The video-stimulated recall interview technique was used, and the students were asked to stop the video at episodes that they saw as important and explained why they saw the importance. The data used in this study consisted of the videos and transcripts, focus students' notebooks and worksheets, and interview transcripts.

[^1]Table 1 The examples of cognitive domains of mathematical tasks in the lessons

Cognitive domains	Teacher's examples (TE)	Students' exercises (SE)

(4) Springer
$\stackrel{\cong}{\square}$

| 10 |
| ---: | ---: |
| Ψ |

$\stackrel{\infty}{\rightrightarrows}$
$\stackrel{3}{7}$
$\stackrel{?}{\square}$
$\underset{=}{F}$
$\stackrel{\overbrace{}}{\rightrightarrows} \stackrel{\square}{\rightrightarrows}$

How do students learn from the teacher's examples?

Table 2 The topics of the 14 lessons

Topics	Lessons
Slopes of lines	L01 to L04
A system of simultaneous linear equations in two unknowns	L05 to L07
(i) The graphical method	L08 to L09
(ii) The method of substitution	L10 to L11
(iii) The method of elimination	L11 to L14

4 Methods of analysis

4.1 The cognitive domains of mathematical tasks

A total of 116 mathematical tasks, which might be used as either a TE or a SE, were implemented in the 14 lessons. The cognitive domains of the mathematical tasks were classified into knowing, applying, or reasoning with their corresponding subcategories (Table 1).

4.2 TE-SE cycles of the lessons

The mathematical tasks implemented in the lessons were identified as either TEs or SEs according to the lesson videos. The teacher usually demonstrated principles or procedures in

Fig. 1 The structural patterns of teacher's examples and students' exercises in the lessons
solving the TEs and then assigned exercises for student to practice forming a TE-SE cycle;

4.3 The degree of imitation when contrasting SW with the teacher's method in TE

After the classification of cognitive domains of mathematical tasks and the pattern of the TE-
produced their own SW; therefore, the counting of SE was 1 and the counting of SW was 2 inthis case (Fig. 2).

Very often, the teacher's demonstration of principles and procedures for solving a particular task in TE was prior to the SEs. Therefore, there was often a high degree of similarity between the TE and the SEs in a TE-SE cycle. Two examples of TE-SE cycles are given in Table 5. The methods employed in the students' private work (SW) were compared with the method in the TEs, the degree of imitation was categorized based on how closely the students imitated the teacher's methods, and the categories were as follows: imitation, partial imitation, and students' own method (Table 3).

4.3.1 Examples of imitation and partial imitation

The students' private work (SW) by Gary and Janice (Fig. 2) is used here to illustrate the differentiation between imitation and partial imitation in the coding. The lesson (L06) was about graphical method for solving a pair of simultaneous linear equations. The teacher's method was to use three points with the values of x coordinates 1,3 , and 5 in two tables, respectively, to draw the two lines. Gary copied the TE in solving the equations ($4 x-5 y=2$, $7 x-10 y=2$); he imitated completely the teacher's method by using the same values of x coordinates ($1,3,5$, respectively) for plotting the two lines. His private work was coded as "imitation." In contrast, Janice also imitated the teacher's method of using three points, but she chose different values of x ($1,3,5$ for one equation and 1, 2, 3 for another equation). Janice's private work was classified as "partial imitation."

4.4 Students' perspectives on the instructional practice

Twenty-six student interview transcripts were analyzed to give the students' perspectives of the instructional practice. The stimulated-video-recall method was used in the post-lesson

Fig. 2 Gary's private work (left) was classified as imitation, and Janice's private work (right) was classified as partial imitation
t3.1 Table 3 The degree of imitation in the student's private work

Degrees of imitation	Descriptions
Imitation	Students reproduce the methods used in the teacher's example exactly in solving the task. Partial imitation Students imitate the teacher's methods incompletely, such as skip/miss some steps or use other values that were not same as in the teacher's examples.
Student's own method	Students use a method different from the teacher's examples or no corresponding teacher's example for imitation.

interviews. The students were invited to stop the lesson videos at moments where they saw as 245 important and give their comments. In general, the instructional practice could be categorized
into exposition, seatwork, and review, which could be further break down into subcategories(for details, Mok, Kaur, Zhu, \& Yau, 2013). The lesson video segments and the students’exposition/seatwork/review, and (3) subcategories under exposition, seatwork, and review that are as follows:

- Exposition: teacher's explanation (EC), teacher's demonstration (D), new knowl- 252 edge (NK), giving instruction (GI), and uses real-life examples during instruction 253 (RE).
- Seatwork: students working individually/copying notes (IW), students working in groups/ 255 group discussion (GW), and material used as part of instruction (M). 256
- Review: reviews prior knowledge (PK), uses student's presentation or work to give 257 feedback for in class work or homework (SP), gives feedback to individuals during lesson 258 (IF), and gives feedback through grading of written assignments (GA).

4.5 Reliability and validity

Two researchers carried out the coding independently on the cognitive domains of teacher's methods in students' private work, and the exposition codes. The percentages of agreement were over 84%.

5 Results: how did the students learn from the teacher's exposition?

5.1 The cognitive domains of mathematical tasks

The distribution of the cognitive domains of the tasks in the 14 lessons is shown in
Table 4. The ratio of SEs to TEs was about 2.6 (84:32). The distributions of the cognitive domains of the TEs were knowing (47%), applying (50%), and reasoning (3%), whereas those of SEs were knowing (33 \%), applying (45%), and reasoning (21%). Therefore, the students had more practice on the knowing and applying tasks in comparison with the reasoning tasks. The proportion of reasoning tasks for SE was greater than that for TE.
Table 4 The cognitive domains of mathematical tasks

Topics	Teacher's examples			Students' exercises			Total		
	Knowing CO/RC/RE	Applying SE/IM/MO	Reasoning JU/GE/AN	Knowing CO/RC/RE	Applying SE/IM/MO	Reasoning JU/GE/AN	Knowing CO/RC/RE	Applying SE/IM/MO	Reasoning JU/GE/AN
Slope of the lines	0/0/0	4/0/0	1/0/0	1/1/0	21/0/0	12/2/4	1/1/0	25/0/0	13/2/4
The graphical method	4/0/0	0/2/0	0/0/0	1/0/1	0/4/0	0/0/0	5/0/1	0/6/0	0/0/0
The methods of substitution and elimination	11/0/0	0/1/0	0/0/0	24/0/0	6/1/0	0/0/0	35/0/0	6/2/0	0/0/0
Word problems	0/0/0	0/0/9	0/0/0	0/0/0	0/0/6	0/0/0	0/0/0	0/0/15	0/0/0
Total number of tasks in each subcategory	15/0/0	4/3/9	1/0/0	26/1/1	27/5/6	12/2/4	41/1/1	31/8/15	13/2/4
Total number of tasks in each cognitive domain (\%)	15 (47\%)	16 (50\%)	1 (3\%)	28 (33 \%)	38 (45\%)	18 (21\%)	43 (37 \%)	54 (47 \%)	19 (16\%)
Total number of mathematical tasks (\%)	32 (28\%)			84 (72 \%)			116 (100\%)		

$C O$ knowing -compute, $R C$ knowing-recognize, $R E$ knowing-retrieve, $S E$ applying-select, $I M$ applying-implement, $M O$ applying-Model, $J U$ reasoning-Justify, $G E$ reasoning-generalize, $A N$ reasoning-analyze

5.2 The TE-SE cycles in the lessons

The pattern of TE-SE cycles in each lesson is shown in Fig. 1. There were 11 lessons containing TE-SE cycles with different length of SE items, showing a variation in the emphasis of SEs in these cycles. Three lessons L02, L03, and L07 did not have TEs. When we examined the TEs and the SEs, the tasks used for TE and SE were very similar in each cycle. Using Lesson L08 as an example, the first cycle was TE(2)-SE(2). The teacher first introduced the lesson with one TE on the board; then, he used the first item (question 1 (a)) of his selfdesigned worksheet as the second TE. The worksheet consisted of 18 items that were grouped into six questions. All the items were very similar with minor changes, and the teacher gave emphasis in different part of the computation procedures in his explanation for different examples. The students were expected to use the teacher's methods in TE to complete the assigned SE (Table 5).

5.3 The students' private work in their notebooks

The students' private work (SW) in their notebooks was analyzed. One hundred thirty-six items of students' complete private work were coded for the degree of imitation. Among the items, 116 items belonged to teacher-assigned exercises and 20 items belonged to items that were not assigned by the teacher but completed on the students' self-initiative because they completed the assigned work early. The distribution of the different degrees of imitation in the students' private work is given in Table 6. Imitating from the teacher's method in the

Table 5 The teacher's examples and the students' exercises implemented in L08 (the first seven tasks)

Mathematical tasks	Classification
The first TE-SE cycle, TE(2)-SE(2)	
$\left\{\begin{array}{l} y=x+1 \\ 2 x-y-5=0 \end{array}\right.$	Teacher's example (written on the board)
1(a) Solving the simultaneous equations by the method of substitution $\left\{\begin{array}{l} y=x+1 \\ 3 x+4 y=11 \end{array}\right.$	Teacher's example (item on the worksheet)
1(b) Solving the simultaneous equations by the method of substitution $\left\{\begin{array}{l} y=3 x+1 \\ y=x+7 \end{array}\right.$	Students' exercise
1(c) Solving the simultaneous equations by the method of substitution $\left\{\begin{array}{l} x=4 y+7 \\ x+4 y-7=0 \end{array}\right.$	Students' exercise
The second TE-SE cycle, TE(1)-SE(2)	
2 (a) Solving the simultaneous equations by the method of substitution $\left\{\begin{array}{l}2 x+3 y=5 \\ x-y=5\end{array}\right.$	Teacher's example (item on the worksheet)
2 (b) Solving the simultaneous equations by the method of substitution $\left\{\begin{array}{l}2 x+y=9 \\ x-y=3\end{array}\right.$	Students' exercise
2 (c) Solving the simultaneous equations by the method of substitution $\left\{\begin{array}{l} 5 x+7 y=18 \\ x+y=6 \end{array}\right.$	Students' exercise

demonstration was the major feature in the students' private work. There were 60 items of 293
imitation and 73 items of partial imitation, making up a total of 133 out of 136 items of SW 294
regardless of the cognitive domain of the tasks. One possible reason for large number of 295
imitation might be due to the TE-SE pattern in which the TEs were always arranged before the 296
SEs and the TE and SE tasks for each cycle were similar in nature. Furthermore, the teacher 297
demonstrated detailed procedures or instructions, giving a model for students to imitate. These 298
features help the students to recognize and imitate the teacher's methods easily. 299
For example, the teacher used two lessons (L08 and L09) for teaching the method of 300
substitution and he based his lessons on a self-designed worksheet. The worksheet consisted of 301
six questions of different variations of the coefficients and forms of the equations. Each 302
question consisted of three similar items, making up a total of 18 items of very similar format. 303
Each item was a pair of simultaneous equations that might either be a TE or SE. The lesson 304
pattern of L08 consisted three TE-SE cycles (TE(2)-SE(2), TE(1)-SE(2), and TE(1)-SE(2)) 305
where each cycle had two assigned items for SEs. L09 was the second lesson for the topic 306
aiming to give more practice on the method with only one TE-SE cycle, TE(1)-SE(6). That is, 307Q5
in L09, the teacher used one item in the worksheet as TE and assigned six items as SEs. 308
Joanne's notebook was collected by the end of L09, therefore, contained her private work for 309
both L08 and L09. When we examined Joanne's notebook in L09 in details, she did the 310
assigned SE selectively. In L08, she did only one SE (producing one SW) in each TE-SE, and 311
in L09, she produced three SWs out of six SEs in her notebook. In the post-lesson interview, 312
she explained that she discerned between similar methods and seemed to be reluctant to do 313
items with repetitive calculation methods. She said, "The same calculation method, but not the 314
same numbers, just for familiarizing, see whether you understand it or not." Her private work 315
in L09 was coded as imitation (1), partial imitation (1), and students' own method (1). By 316partial imitation, there were some skipping steps in the students' private work, but theseskipping steps did not hinder the students to get the correct answers while repeating theteacher's method. These skipping steps such as missing labels of some equations duringsubstitution sometimes might cause some ambiguity in the presentation of answers.

t6.2	Cognitive domains of the students' exercises		Degrees of imitation in students' private work		
t6.3		Subcategories	Imitation	Partial imitation	Student's own method
t6.4	Knowing	Compute	4	32	1
t6.5		Recognize	2	0	0
t6.6		Retrieve	2	0	0
t6.7	Applying	Select	32	30	1
t6.8		Implement	4	5	0
t6.9		Model	6	4	0
t6.10	Reasoning	Justify	6	2	0
t6.11		Generalize	0	0	0
t6.12		Analyze	4	0	1
t6.13	Total numbe	ferent degree of imitation (\%)	60 (44\%)	73 (54\%)	3 (2\%)
t6.14	Total numbe	d students' private work	136		

The analysis showed that 20 out of 136 items of students' private work were items not 321
assigned by the teacher. Six students in three different lessons worked on extra tasks after they 322
had completed the teacher-assigned exercises. The extra tasks were similar to those assigned 323
SE in nature and belonged to the same topic. For instance, the 14 tasks in worksheets used in 324
Lesson L02 were about the slopes of parallel lines. The first eight assigned SEs were to prove a 325
pair of parallel lines or four points forming a trapezium. Shown in Helen's private work, the six 326
extra tasks demanded the students to solve similar problems (Fig. 3). In the post-lesson 327
interview, Helen explained why she carried out the six extra tasks after completing the eight 328
assigned SEs. She said, "I worked on the later questions in this worksheet because I know how 329to do it." When the interviewer asked whether she could do all these, Helen said, "Yes, I can." 330Upon further probing, Helen added, "If I can't, I will ask my neighbor, because she is strong in331
calculation. So, I ask her most of the time." Helen's case, unfolded how the student might work 332
through the ZPD. At the beginning, her work was mostly imitating the TEs under the teacher's 333
guidance, supplemented with interaction with a more capable peer. Achieving the skills, the 334
student developed her confidence and motivation to do additional exercises on her own. Such 335
phenomenon might happen for students of different degree of fondness for mathematics. 336

5.4 What were the students' perspectives on the instructional practice?

Table 7 summarizes the number of video segments at which the students stopped the video to say the instructional practice at that moment was important. Forty-two percent of the video segments were TE, and 55% of the video segments were SE; therefore, both TE and SE were important while SE was slightly more important than TE. The teacher's exposition was the most important when comparing with seatwork and review. In the further breakdown of the subcategories for exposition, the teacher's demonstration of procedures (D) in TE and SE (16 segments in TE and 15 segments in SE) was important. The fact that the teacher demonstrated

Examples
Examples

1. In each of the following, which pairs of the lines is/are parallel?

The slope of the straight line L_{1} is -2 . The straight line L_{2} passes through the points $C(-8,9)$ and
$D(-1,-5)$. Prove that $L_{1} / / L_{2}$. ${ }^{m} \quad \frac{9-(-5)}{-8-(-1)}=\frac{14}{-7}=-2$,
The slope of the straight line L_{1} is 1 . The straight line L_{2} passes through the points $A(5,4)$ and
$B(-2,-3)$. Prove that $L_{1} / / L_{2}$. me $\frac{L-(-3)}{7-(-2)}$
The slope of the straight line L_{1} is $-\frac{3}{2}$. The straight line L_{2} passes through the points $A(2,3)$ and $B(-4,12)$. Prove that $L_{1} / / L_{2}$.
$\therefore=\frac{3-1}{2(-14)}=\frac{-9}{6}=-\frac{3}{2}$.
Given 4 points $A(2,4), B(3,5), C(-3,1)$ and $D(-5,-1)$. Prove that $A B / / C D$.

Given 4 points $P(7,-1), Q(3,-3), R(-4,2)$ and $S(2,5)$. Prove that $P Q / / R S$. MPR $=\frac{-1+(x)}{7-3}=\frac{7}{4}=\frac{1}{2} \quad$ NRS $=\frac{2-4}{-4 \cdot 2}=\frac{-3}{6}=\frac{1}{4} \frac{1}{2}$
Prove that $A(0,0), B(2,1), C(1,3), D(-2,4)$ form a trapezium.
$n_{A B}=\frac{10}{2-8}-\frac{1}{2}$
$=1, \frac{3}{1-2}+-1$
-1
$=-2$
(a) The vertices of a quadrilateral are $P(2,4), Q(3,5), R(-3,1)$ and $S(-5,-1)$. Find the slope of each side of the quadriateral $P Q R S$. ${ }^{M} P a=\frac{\frac{5-4}{32}}{2}=\frac{1}{1}=1 \quad{ }^{2} Q R=\frac{5-1}{2+22}=\frac{4}{6}=\frac{7}{3}$

9. $A(2,-2), B(3,2), C(-3,-3)$ and $D(h, 1)$ are 4 points. If $A B / / C D$, find the value of h.

the whlue of in. 13 .
Fig. 3 Helen's private work. Tasks 1 to 8 were the assigned SE items, and tasks 9 to 14 were the extra items that Helen worked by her own
detailed procedures in TE and gave detailed instructions prior to students working on SEs had 345
a strong impact on how the students learned. Referring to what the students said in the post- 346
lesson interviews, the students appreciated and learned from the teacher's explanation and 347
demonstration. For example, Iris in L04 said, "Before here I didn't quite understand, after 348
listening the teacher's explanation, I started to understand a little bit." Joanne in L09 thought 349
"The teacher was doing the example. I don't know how to do it without examples. Example is 350
for you to see how to do it." Students believed doing the SEs independently (IW) was 351
important for their learning, for example, "Do it yourself, don't know if you don't do it." 352
(Janice in L06) and "Because you have to work. You have to work it out for sure after the 353
teacher has taught you things." (Gordon in L07). These results showing the strong students' 354
appreciation for teacher's demonstration and explanation and working on SEs were consistent 355with the results for other East Asian classrooms reported in the work of Mok and others (Moket al., 2013)

6 Discussion and conclusions

In our study, the students' private work of an eighth-grade mathematics classroom in Hong Kong was analyzed. The cognitive domains of TEs and SEs were mainly belonged to the knowing and applying, whereas relatively fewer tasks belonged to the domain of reasoning. In the 14 consecutive lessons, the mathematical tasks were arranged as TE-SE cycles of TEs and SEs. Regardless of the cognitive domains of SEs, the methods employed by the students in their private work were mainly the imitation of teacher's methods. This imitation was not only simply determined by the students' choice in learning mathematics, but also influenced by the TE-SE arrangement and the similarities of tasks in each TE-SE cycle. In the students' perspectives, the teacher's demonstration was the most important.

The finding of high proportion of imitation of teacher's methods was not a surprise because education in Hong Kong and other East Asian regions is often reported to be much influenced by the Confucian philosophy (e.g., Watkins \& Biggs, 2001), emphasizing that the teachers are the role models of subject matter (Leung, 2001). Very often, teachers play a significant guiding role in the mathematics classrooms (e.g., Mok, 2009; Leung \& Park, 2002). The teacher facilitated the role of learning by demonstrating the TEs or giving hints before the SEs. Moreover, with the image of scholar-teacher deeply rooted in Confucian culture, it is very likely that the students believed that the methods used in solving the TEs were the best. In East Asian classrooms, the emphasis on practice is an important feature in the pedagogical philosophy. The traditional Chinese beliefs of "practice makes perfect" (Li, 2006) and memorization which could come before understanding (Cai \& Wang, 2010) may explain for the high percentage of SEs (72% of total tasks) in the lessons. However, practice is not equivalent to repetition by rote. The variations embedded in the TEs and SEs, in fact, help students to experience the object of learning in a deep sense leading to an understanding of the mathematical concepts and procedures from multiple perspectives (e.g., Gu, Huang \& Marton, 2004; Huang \& Leung, 2004; Wong, 2006). Huang and Leung (2004) studied the mathematical tasks in Shanghai and Hong Kong classrooms and found that the tasks might serve the purpose of consolidation and help developing proficiency and understanding of the topic.

Another factor shaping the students' learning in mathematics is the cognitive domains of tasks. Examining the cognitive domains of tasks in the SEs across 14 consecutive lessons showed that the majority was knowing and applying tasks, with relatively lower percentage of
Table 7 The students' perspectives of the instructional practice in post-lesson student interviews

	Teacher's examples			Students' exercises			Off tasks			Total
	Exposition EC/D/NK/GI/RE	Seatwork IW/GW/M	Review PK/SP/IF/GA	Exposition EC/D/NK/GI/RE	Seatwork IW/GW/M	Review PK/SP/IF/GA	Exposition EC/D/NK/GI/RE	Seatwork IW/GW/M	Review PK/SP/IF/GA	
No. of segments	4/16/7/0/0	1/0/1	0/1/2/0	2/15/3/0/0	9/4/0	1/5/3/0	0/0/0/2/0	0/0/0	0/0/0/0	
Total no. of segments	32/76 (42 \%)			42/76 (55 \%)			2 (3\%)			76

$E C$ explains/explains clearly, D demonstrates a procedure: "teaches the method" or shows using manipulative a concept/relationship, $N K$ introduces new knowledge, $G I$ gives instructions (assigning homework/how work should be done/when work should be handed in for grading, etc.), $R E$ uses real-life examples during instruction, $I W$ students working individually/copying notes, $G W$ students working in groups/group discussion, M material used as part of instruction (worksheet or any other print resource), $P K$ reviews prior knowledge, $S P$ uses student's presentation or work to give feedback for in class work or homework, $I F$ gives feedback to individuals during lesson, $G A$ gives feedback through grading of written assignments

```
t7.1
\begin{array} { c } { \mathrm { t } 7 . 2 } \\ { \mathrm { t } 7 . 3 } \\ { \mathrm { t } 7 . 4 } \\ { } \\ { \mathrm { t } 7 . 5 } \\ { \mathrm { t } 7 . 6 } \end{array}
```

reasoning tasks. One of the possible reasons for the phenomenon may be due to the nature of 389 the topics. Another possible reason may be the teacher's expectation of students' ability and pedagogical style. Although the opportunity for practice in reasoning was relatively fewer, the proportion of reasoning items in SE was greater than that in TE and also sufficient practice on all three domains was guaranteed by the high amount of exercises. The findings were consistent with the TIMSS 2011 results in which Hong Kong students (eighth grade) got the mathematics high average scores of 591, 587, and 580 for in knowing, applying, and reasoning domains, respectively (Mullis et al., 2012, p. 150).
Seventy-one percentage of students' private work (136 out of 190 items of students' private work, excluding the copies of TEs) were completely recorded, showing students' motivation of engaging themselves in the tasks. This might be due to the belief in effort and illustrated the Chinese dictum "diligence could remedy mediocrity." A high expectation of parents and the competitiveness of examination cultures strongly influence students' belief in working hard as the route of success. Students' conceptions of mathematics and mathematics learning are obviously shaped by their experience of learning (Bishop, 1991). In the student interviews, students showed appreciation for how they learned from the teacher's exposition. They believed that the imitation of the teacher's methods with correct answers in their private work was the key of success in learning mathematics. So, they focused on the methods or procedures in solving the tasks. Although students in East Asian classrooms might have interpreted as passive at the surface, they might have been active in their minds (Biggs, 1998). In our study, six students showed their motivation to work on extra tasks; their private work and the students' post-lesson interviews showed how the teacher's demonstration in the public domain of the lesson might possibly be internalized in the students' learning outcomes. While some celebrated the mastering of skills, in some cases, the partial imitation instances indicated the pitfall. The missing steps might not hinder the students from getting the answers, but the students might lose the chance in developing the mathematical connections. Putting an overemphasis on the teacher's methods as the role models, the motivation for exploring new methods might be lost. To conclude, imitation that might be seen often in East Asian classrooms does not necessarily imply mechanical learning. Suitable use of imitative work, the students might possibly extend their mental capacity under the teacher's guidance and peer influence in the zone of proximal development (Vygotsky, 1978), developing a confidence and motivation in the work and possibly a "deep" approach that brings about understanding beyond memorization (Biggs, 1998).

Acknowledgments The project is funded by General Research Fund, Research Grants Council, Hong Kong SAR, China.

References

Biggs, J. (1998). Chapter 3 Learning from the Confucian heritage: So size doesn't matter? International Journal 426 of Educational Research, 29, 723-738.
Bishop, A. J. (1991). Mathematical enculturation: A cultural perspective on mathematics education. Doedrecht: 428 Kluwer Academic Publisher.
Cai, J., \& Wang, T. (2010). Conceptions of effective mathematics teaching within a cultural context: Perspectives of teachers from China and the United States. Journal of Mathematics Teacher Education, 13(3), 265-287.
Clarke, D., Keitel, C., \& Shimizu, Y. (Eds.). (2006). Mathematics classrooms in twelve countries: The insiders' perspective. Rotterdam: Sense Publishers.

How do students learn from the teacher's examples?

Doyle, W. (1988). Work in mathematics classes: The context of students' thinking during instruction. Educational Psychologist, 23(2), 167-180.
Fried, M. N. (2008). Between public and private: Where students' mathematical selves reside. In L. Radford, G. Schubring, \& F. Seeger (Eds.), Semiotics in mathematics education: Epistemology, history, classroom, and culture (pp. 121-137). Rotterdam: Sense Publishers.
Fried, M. N., \& Amit, M. (2003). Some reflections on mathematics classroom notebooks and their relationship to the public and private nature of student practices. Educational Studies in Mathematics, 53(2), 91-112. doi: 10.1023/a:1025572900956.

Gu, L.-Y., Huang, R.-J., \& Marton, F. (2004). Teaching with variation: A Chinese way of promoting effective mathematics learning. In L. Fan, N. Y. Wong, J. Cai, \& S. Li (Eds.), How Chinese learn mathematics: Perspective from insiders (pp. 309-347). Singapore: World Scientific Publishing Company.
Henningsen, M., \& Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics Education, 28, 524-549.
Hino, K. (2006). The role of seatwork in three Japanese classrooms. In D. Clarke, C. Keitel, \& Y. Shimizu (Eds.), Mathematics classrooms in twelve countries: The insider's perspective (pp. 59-74). Rotterdam: Sense Publishers.
Huang, R., \& Leung, F. K. S. (2004). Cracking the paradox of the Chinese learners: Looking into the mathematics classrooms in Hong Kong and Shanghai. In L. Fan, N. Y. Wong, J. Cai, \& S. Li (Eds.), How Chinese learn mathematics: Perspectives from insiders (pp. 384-381). Singapore: World Scientific Publishing Company.
Jablonka, E. (2006). Student(s) at the front: Forms and function in six classrooms from Germany, Hong Kong and the United States. In D. Clarke, J. Emanuelsson, E. Jablonka, \& I. A. C. Mok (Eds.), Making connections: Comparing mathematics classrooms around the world (pp. 107-126). Rotterdam: Sense Publishers.
Kaur, B. (2009). Characteristic of good mathematics teaching in Singapore grade 8 classrooms: A juxtaposition of teachers' practice and students' perception. ZDM, 41, 333-347. doi:10.1007/s11858-009-0170-z.
Li, S. (2006). Practice makes perfect: A key belief in China. In F. K. S. Leung, K.-D. Graf, \& F. J. Lopez-Real (Eds.), Mathematics education in different cultural traditions: A comparative study of East Asia and the West (pp. 129-138). New York: Springer.
Leung, F. K. S., \& Park, K. (2002). Competent students, competent teachers? International Journal of Educational Research, 37, 113-129.
Leung, F. K. S. (2001). In search of an East Asian identity in mathematics education. Educational Studies in Mathematics, 47, 35-51.
Leung, F. K. S. (2005). Some characteristics of East Asian mathematics classrooms based on data from the TIMSS 1999 video study. Educational Studies in Mathematics, 60, 199-215.
Lui, K. W., \& Leung, F. K. S. (2013). Curriculum traditions in Berlin and Hong Kong: A comparative case study of the implemented mathematics curriculum. ZDM, 45, 35-46. doi:10.1007/s11858-012-0387-0.
Mok, I. A. C. (2009). In search of an exemplary mathematics lesson in Hong Kong: An algebra lesson on factorization of polynomials. $Z D M, 41,319-332$. doi:10.1007/s11858-009-01668-8.
Mok, I. A. C., \& Lopez-Real, F. (2006). A tale of two cities: A comparison of six teachers in Hong Kong and Shanghai. In D. Clarke, C. Keitel, \& Y. Shimizu (Eds.), Mathematics classrooms in twelve countries: The insider's perspective (pp. 237-246). Rotterdam: Sense Publishers.
Mok, I. A. C., Kaur, B., Zhu, Y., \& Yau, K. W. (2013). What really matters to students? A comparison between Hong Kong and Singapore mathematics lessons. In B. Kaur, G. Anthony, M. Ohtani, \& D. Clarke (Eds.), Student voice in mathematics classrooms around the world (pp. 189-208). Rotterdam: Sense Publishers.
Mullis, I. V. S., Martin, M. O., Ruddock, G. J., O’Sullivan, C. Y., \& Preuschoff, C. (2009). TIMSS 2011 assessment frameworks (pp. 40-46). Chestnut Hill: TIMSS \& PIRLS International Study Centre, Boston College.
Mullis, I. V. S., Martin, M. O., Foy, P \& Arora, A. (with Olson, J.F., Preuschoff, C., Erberber, E., Arora, A., \& Galia, J.). (2012) TIMSS 2011 international results in mathematics. (pp. 139-171). Chestnut Hill, MA: TIMSS \& PIRLS International Study Center, Boston College.
National Council of Teacher and Mathematics. (1991). Professional standards for teaching mathematics. Reston, VA: Author.
Nixon, R. S., \& Barth, K. N. (2014). A comparison of TIMSS items using cognitive domains. School Science and Mathematics, 114(2), 65-75.
Organization for Economic Co-operation and Development (OECD). (2010). PISA 2009 results: What students know and can do: Student performance in reading, mathematics and science (Vol. 1). Paris: OECD.
Park, K., \& Leung, F. K. S. (2006). Mathematics lessons in Korea: Teaching with systematic variation. In D. Clarke, C. Keitel, \& Y. Shimizu (Eds.), Mathematics classrooms in twelve countries: The insider's perspective (pp. 247-261). Rotterdam: Sense Publishers.
Serrano, A. M. (2012). A cross-cultural investigation into how tasks influence seatwork activities in mathematics 494lessons. Teaching and Teacher Education, 28, 806-817.495
Stigler, J. W., Gonzales, P., Kawanaka, T., Knoll, S., \& Serrano, A. (1999). The TIMSS videotape classroom 496
study: Methods and findings from an exploratory research project on eighth-grade mathematics instruction 497
in Germany, Japan, and the United States. Washington, D. C.: U.S. Department of Education National 498Center for Education Statistics.499
Stein, M. K., Grover, B. W., \& Henningsen, M. (1996). Building student capacity for mathematical thinking and 500
reasoning: An analysis of mathematical tasks used in reform classrooms. American Educational Research 501Journal, 33(2), 455-488.502
Wong, N. Y. (2006). From "entering the way" to "exiting the way": In search of a bridge to span "basic skills" 503
and "process abilities". In F. K. S. Leung, K.-D. Graf, \& F. J. Lopez-Real (Eds.), Mathematics education in 504
different cultural traditions: A comparative study of East Asia and the West (pp. 111-128). New York: 505
Springer. 506
Watkins, D. A., \& Biggs, J. B. (Eds.). (2001). Teaching the Chinese learner: Psychological and pedagogical 507
perspectives. Hong Kong: Comparative Education Research Centre, The University of Hong Kong. 508
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological process. Cambridge: Harvard 509
University Press. 510

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES.

Q1. Author names and affiliation are taken from the manuscript draft. Please check if captured correctly.
Q2. The sentence "Given that the vertices of $\triangle \mathrm{ABC}$ are $\mathrm{A}(-3,2) \ldots$ " has been edited for clarity. Please check that the intended meaning was retained.
Q3. The sentence "Given that the vertices of $\triangle \mathrm{ABC}$ are $\mathrm{A}(-1,4)$, B $(9,-11) \ldots$.." has been edited for clarity. Please check that the intended meaning was retained.
Q4. The sentence "Using Lesson L08 as an example..." has been edited for clarity. Please check that the intended meaning was retained.
Q5. The sentence "That is, in L09, the teacher used..." has been edited for clarity. Please check that the intended meaning was retained.
Q6. The sentence "The finding of high proportion..." has been edited for clarity. Please check that the intended meaning was retained.
Q7. The sentence "The traditional Chinese beliefs of "practice makes perfect"..." has been edited for clarity. Please check that the intended meaning was retained.

[^0]: Ida Ah Chee Mok
 iacmok@hku.hk

[^1]: ${ }^{1}$ The International Benchmark Test for Mathematics (IBT) is norm-referenced and evaluates student achievement on mathematical content for eighth grade. Items are taken from the TIMSS Student Achievement Study (population 2).

