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Abstract: The effects of thermal annealing on La2O3 gate dielectric of InGaZnO thin-film 

transistor (TFT) are investigated by varying annealing temperature. Due to densification and 

enhanced moisture resistance of the La2O3 film, its surface roughness and interface with InGaZnO 

are improved by the thermal annealing, thus leading to significant improvement in the TFT 

electrical performance. However, higher-temperature (450 oC) annealing deteriorates the dielectric 

roughness and induces more traps associated with grain boundaries in the La2O3 film. The TFT 

with an appropriate annealing (350 oC) shows the best performance with smallest sub-threshold 

swing (0.276 V/dec), lowest threshold voltage (3.01 V), highest field-effect mobility (23.2 cm2/V.s) 

and largest on-off current ratio (3.52×108).  
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Compared with conventional Si-based thin-film transistors (TFT), InGaZnO TFTs have 

advantages including low processing temperature, high field-effect mobility as well as good 

uniformity, and thus have received intensive attention over the last decade. 1 Recently, high-k 

dielectrics, such as Ta2O5, HfO2, ZrO2, AlZrO and Lu2O3, have been widely investigated to replace 

SiO2 or Si3N4 as gate dielectrics in InGaZnO TFTs for improving their driving ability and reducing 

their operating voltage and power consumption. 2-6 Among various high-k materials, La2O3 

displays high dielectric constant (~ 30), large band gap (~ 6.0 eV) and good thermodynamic 

stability with InGaZnO, and thus should be a promising candidate as the gate dielectrics of 

InGaZnO TFTs. 7,8 It has been demonstrated that Ta incorporated in La2O3 (LaTaO) can further 

improve the TFT performance by suppressing moisture absorption of the La2O3 film; however, the 

TFT performance is quite sensitive to Ta content in the LaTaO film, thus leading to uniformity 

issues. 8 It must be noted that not only the dielectric itself but also the thermal treatment plays a 

key role in the device performance. Therefore, this work aims to study the thermal and electrical 

characteristics of InGaZnO TFTs with La2O3 gate dielectric prepared at different annealing 

temperatures.  

TFT devices with bottom-gate top-contact configuration were fabricated on heavily p-type Si 

substrate. The substrate was cleaned by a standard RCA cleaning: firstly, the substrate was 

submerged in solution I (H2O:H2O2:NH4OH=5:1:1) at 80 oC for 10 min to remove organics and 

particles; then, the substrate was cleaned in solution II (H2O:H2O2:HCl=5:1:1) at 80 oC for 10 min 

to remove metallic contaminants; finally, the substrate was dipped in 2% hydrofluoric acid for 1 

min to remove native oxide. After the cleaning, 40-nm La2O3 was deposited on the substrate by 

radio-frequency sputterer using a La2O3 target in an Ar/O2 ambient. Then, the samples were 

divided into four groups: two of the groups went through post-deposition annealing (PDA) in N2 

at 350 oC and 450 oC for 10 min respectively, denoted as LaO_350 and LaO_450 samples; the 

third and fourth groups did not receive PDA，denoted as the as_deposited and control samples 

respectively. Following that, a 60-nm IGZO active layer was deposited by sputterer using an 

InGaZnO target in an Ar/O2 ambient. Then, source/drain (S/D) electrodes consisting of 20-nm 

Ti/80-nm Au were formed by electron-beam evaporation combined with lift-off technique, where 

Ti was used to enhance the electrode adhesion and also reduce the barrier height between the 

electrodes and InGaZnO. The channel width (W) and length (L) were 100 μm and 20 μm 



respectively. Finally, the LaO_350, LaO_450 and control samples received a post-metallization 

annealing (PMA) in forming gas (H2/O2=5%/95%) at 350 oC for 20 min to improve the electrical 

contacts. The samples with different annealing conditions are summarized in Table 1.  

Fig. 1 shows the X-ray diffraction (XRD) patterns of the samples with various annealing 

conditions measured under theta-theta mode, where all the samples display a polycrystalline 

structure and consists of La2O3 and La(OH)3 in the La2O3 film. La(OH)3 is formed by the reaction 

of La2O3 with moisture due to the hydroscopic nature of La2O3. 8 For the LaO_350 and LaO_450 

samples, the peak (3 1 1) of La(OH)3 decreases significantly relative to that of the sample with no 

PDA, indicating suppressed formation of La(OH)3 and thus enhanced moisture resistance of La2O3 

by the thermal annealing. In addition, compared with the LaO_350 sample, the intense peak (1 1 0) 

attributed to La2O3 component for the LaO_450 sample exhibits stronger intensity and smaller 

FWHM (full width at half maximum), indicating more crystallized structure with larger grain size 

and more grain boundaries induced by the higher-temperature annealing. Moreover, compared 

with the LaO_350 sample, the more grain boundaries in the LaO_450 one facilitate the diffusion 

of moisture in the dielectric film, thus enhancing the formation of La(OH)3.   

Fig. 2 shows the atomic force microscopy (AFM) images of the samples, where the 

root-mean-square (RMS) roughness is 1.39 nm, 0.90 nm and 1.11 nm for the as_deposited, 

LaO_350 and LaO_450 samples respectively. Both of the LaO_350 and LaO_450 samples have 

smoother surface than the as_deposited one because of densification as well as enhanced moisture 

resistance of the La2O3 film induced by the thermal annealing, which is helpful to suppress the 

volume expansion of the La2O3 film caused by moisture absorption and thus the formation of 

La(OH)3. 8 Moreover, the rougher surface of the LaO_450 sample than the LaO_350 one is mainly 

ascribed to larger grain size induced by the higher-temperature annealing.  

Fig. 3 shows the transfer characteristics of the devices. The sub-threshold swing SS, 

saturation carrier mobility μsat, threshold voltage Vth, on-current Ion (defined as ID at VG = 10 V 

and VD = 5 V) and on-off current ratio Ion/Ioff of the devices are extracted from Fig. 3 and 

summarized in Table 2. In terms of the parameters listed in Table 2, the control sample shows 

better performance than the as_deposited one mainly due to the improved electrical contacts and 

InGaZnO film by PMA. Moreover, the LaO_350 and LaO_450 samples exhibit much better 

performance than the control one, suggesting that PDA plays a key role in the device performance. 



The smaller SS of the LaO_350 and LaO_450 samples (LaO_350 ~ 0.276 V/dec; LaO_450 ~ 0. 

411V/dec) than the control one (~ 2.11 V/dec) suggests fewer interface states at the 

dielectric/semiconductor interface, demonstrating that the thermal annealing can effectively 

improve the interface quality by densifying the dielectric film and improving the interface 

roughness. Additionally, for the LaO_350 and LaO_450 samples, the better dielectric 

/semiconductor interface with fewer interface states can suppress the trapping of charge carriers 

and the trap-related scattering of charge carriers in the conduction channel, thus resulting in lower 

Vth (LaO_350 ~ 3.01 V; LaO_450 ~ 4.01 V; control ~ 5.00 V) and higher μsat (LaO_350 ~ 23.2 

cm2/V.s; LaO_450 ~ 5.63 cm2/V.s; control ~ 2.11 cm2/V.s) than the control one. Moreover, it is 

known that the by-product La(OH)3 formed by the reaction of La2O3 with moisture increases the 

negative charge in the dielectric film due to OH- replacing O2-. 9 This increased negative charge 

density in the dielectric film screens the electric field from the gate, and thus larger gate voltage is 

required to induce a conduction channel; also, the increased charge density can induce Coulombic 

scattering on the charge carriers, thus degrading μsat. Consequently, the suppressed formation of 

La(OH)3 for the LaO_350 and LaO_450 samples further contributes to their lower Vth and higher 

μsat. Owing to the lower Vth and higher μsat, the LaO_350 and LaO_450 samples achieve much 

higher Ion (LaO_350 ~ 495 μA; LaO_450 ~ 118 μA) than that of the control one (~ 24.7 μA). 

Moreover, the higher Ion and suppressed off-state leakage path by thermal annealing of the 

LaO_350 and LaO_450 samples lead to higher Ion/Ioff ratio (LaO_350 ~ 3.52×108; LaO_450 ~ 

4.29×106) than the control one (~ 1.72×106). The control sample displays much larger current 

under negative VG than the other samples. For the control sample, the PMA would lead to Ti 

diffusion in the gate dielectric film, thus degrading the quality of the dielectric film and resulting 

in large leakage current under negative VG. 10 The as_deposited sample did not receive PMA, thus 

leading to smaller leakage under negative VG than the control one. Although the LaO_350 and 

LaO_450 samples received the same PMA as the control one, the PDA before the PMA could 

densify the dielectric film, thus suppressing the Ti diffusion in the dielectric film. Therefore, they 

also have smaller leakage than the control one. The above analysis needs to be further confirmed. 

Compared with the LaO_350 sample, the LaO_450 one with higher annealing temperature 

displays worse performance mainly due to larger grains formed in the dielectric at higher 

annealing temperature, resulting in more traps along the grain boundaries as well as degraded 



dielectric/semiconductor interface associated with rougher dielectric film (shown in AFM results 

in Fig. 2). 7 Therefore, it is believed that the superior performance of the LaO_350 sample is 

mainly ascribed to the high quality of both the dielectric bulk itself and its interface with the 

semiconductor achieved by appropriate annealing temperature. Moreover, the LaO_350 sample 

displays similar μsat (~ 23.2 cm2/V.s) as that (~ 23.4 cm2/V.s) of the TFT with LaTaO gate 

dielectric, but much higher Ion/Ioff ratio (~ 3.52×108) than the latter (~ 2.60×107), demonstrating 

that the appropriate annealing is an effective way to improve the TFT performance. 8 

Fig. 4(a) shows the Vth shift (ΔVth) of the samples as a function of stress time under positive 

gate-bias stress (PGBS). The Vth of the control sample exhibits a positive shift with increasing 

stress time. However, the LaO_350 sample displays a positive Vth shift initially, but then a 

negative Vth shift with the stress time. There are two mechanisms responsible for Vth shift under 

PGBS: electrons move towards the InGaZnO/dielectric interface and are trapped at the interface 

(denoted as electron trapping), leading to reduced electrons in the InGaZnO film and thus positive 

Vth shift; On the other hand, adsorbed H2O molecules on the back channel can act as donors 

(denoted as electron injection), resulting in increased electrons in the InGaZnO film and thus 

negative Vth shift. 11 It is known that OH- group at dielectric interface usually acts as electron trap. 

12 Due to severer moisture absorption of the La2O3 film for the control sample, it has much more 

OH- groups than the LaO_350 one. Therefore, electron trapping at the dielectric/semiconductor 

interface is dominant over electron injection from the back channel under PGBS for the control 

sample, thus leading to the continual positive ΔVth with the stress time and severer Vth instability. 

For the LaO sample, the insertion of a passivation layer between the InGaZnO and ambient should 

effectively suppress the Vth instability by blocking the H2O adsorption on the back channel. Fig. 

4(b) shows the output characteristics of the LaO_350 sample, where a high drain current of 534 

μA can be obtained with the device biased at VG = 10 V and VD = 6V, demonstrating its strong 

driving ability for high-speed applications. The current crowding at low VD should be due to 

parasitic resistance from the source/drain contacts. 13 

In summary, the impact of thermal annealing on La2O3 gate dielectric of InGaZnO TFT has 

been studied. Compared with the TFT with no or higher-temperature (450 oC) PDA, the one with 

suitable annealing temperature (350 oC) displays better electrical performance mainly due to 

smoother dielectric/semiconductor interface with fewer interface states as well as higher quality of 



the bulk dielectric film with lower charge density and fewer grain boundaries. Therefore, La2O3 

film with appropriate thermal annealing is a promising gate dielectric for high-performance 

InGaZnO TFT. 

Acknowledgments This work was financially supported by the Natural Science Foundation 

of Jiangsu Province (No. BK20140639), the Fundamental Research Funds for the Central 

Universities (No. 2242014K10016), RGC of HKSAR, China (No. HKU 17203814) and the 

University Development Fund (Nanotechnology Research Institute, No. 00600009) of the 

University of Hong Kong. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reference 

1) T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mater., 11, 044305 (2010). 

2) C. J. Chiu, S. P. Chang, and S. J. Chang, IEEE Electron Device Lett., 31,1245 (2010) 

3) J. S. Lee, S. Chang, S. M. Koo, and S. Y. Lee, IEEE Electron Device Lett., 31, 225 (2010). 

4) T. M. Pan, C. H. Chen, J. L. Her, and K. Koyama, J. Appl. Phys., 116, 194510 (2014). 

5) I. K. Lee, S. W. Lee, J. G. Gu, K. S. Kim, and W. J. Cho, Jpn. J. Appl. Phys., 52, 06GE05  

(2013). 

6) Y. Gao, X. Li, L. Chen, J. Shi, X. Wei, and J. Zhang, IEEE Electron Device Lett., 35, 554    

(2014). 

7) J. Robertson, Rep. Prog. Phys., 69, 327(2006). 

8) L. X. Qian, P. T. Lai, and W. M, Tang, Appl. Phys. Lett., 104, 123505 (2014). 

9) J. Molina, K. Tachi, K. Kakushima, P. Ahmet, K. Tsutsui, N. Sugii, T. Hattori, and H. Iwai, J. 

Electrochem. Soc., 154, G110 (2007). 

10) S. H. Choi, M. H. Lim, W. S. Jung, and J. H. Park, IEEE Electron Device Lett., 35, 835    

(2014). 

11) F. H. Chen, T. M. Pan, C. H. Chen, J. H. Liu, W. H. Lin, and P. H. Chen, IEEE Electron 

Device Lett., 34, 635 (2013). 

12) S. Owgawa, Y. Kimura, and M. Niwano, Appl. Phys. Lett., 90, 033504 (2007). 

13) M. C. Hamilton, S. Martin, and J. Kanicki, IEEE Trans. Electron Device, 51, 877 (2004). 

 

 

 

 

 

 

 

 

 

 

 



Captions 

Fig. 1. XRD patterns of the La2O3 films on the Si substrate with various annealing temperatures, 

where the diffraction peaks are also indexed (JCPDS No. 40－1281; 06－0588). 

 

Fig. 2. AFM images of the La2O3 films on the Si substrate with various annealing temperatures: 

(a) as-depostied, (b) 350 oC and (c) 450 oC. 

 

Fig. 3. Transfer characteristics of the TFTs with various annealing conditions. 

 

Fig. 4. (a) ΔVth of the control and LaO_350 samples as a function of stress time under PGBS (VGS=+7 

V, VDS=0 V).  (b) Output characteristics of the LaO_350 sample. 

   

 

 

 

 

 

 

 

 

 

 



 

 

Table 1. Comparison of the annealing conditions for each sample 

Sample  As_deposited Control LaO_350 LaO_450 
PDA  no no 350 oC, 10 min 450 oC, 10 min 
PMA no 350 oC, 20 min 350 oC, 20 min 350 oC, 20 min 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2. Key parameters extracted from the transfer characteristics in Fig. 3 for the TFTs.  

Sample  As_deposited Control LaO_350 LaO_450 
SS (V/dec) 0.456 0.454 0.276 0.411 
μsat (cm2/V.s) 0.623 2.11 23.2 5.63 
Vth (V) 5.22 5.01 3.01 4.02 
Ion (μA) 5.13 24.7 495 118 
Ion/Ioff 8.44×105 1.72×106 3.52×108 4.29×106 
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Fig. 2  
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Fig. 3  
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Fig. 4  
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