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INFORMAT ION DIS TRIBUTIO N WITHI N MUS ICAL SEGMENTS

ANTON I B. CHA N

City University of Hong Kong, Kowloon Tong,
Hong Kong

JA NE T H. HSIAO

University of Hong Kong, Pok Fu Lam, Hong Kong

IN RESEARCH ON WORD RECOGNITION, IT HAS BEEN

shown that word beginnings have higher information
content for word identification than word endings; this
asymmetric information distribution within words has
been argued to be due to the communicative pressure to
allow words in speech to be recognized as early as pos-
sible. Through entropy analysis using two representa-
tive datasets from Wikifonia and the Essen folksong
corpus, we show that musical segments also have higher
information content (i.e., higher entropy) in segment
beginnings than endings. Nevertheless, this asymmetry
was not as dramatic as that found within words, and the
highest information content was observed in the middle
of the segments (i.e., an inverted U pattern). This effect
may be because the first and last notes of a musical
segment tend to be tonally stable, with more flexibility
in the first note for providing the initial context. The
asymmetric information distribution within words has
been shown to be an important factor accounting for
various asymmetric effects in word reading, such as the
left-biased preferred viewing location and optimal view-
ing position effects. Similarly, the asymmetric informa-
tion distribution within musical segments is a potential
factor that can modulate music reading behavior and
should not be overlooked.
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Key words: Entropy analysis, musical segments, music
reading, information distribution, optimal viewing
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I N SPEECH RECOGNITION, IT HAS BEEN SHOWN

that word beginnings usually convey more informa-
tion than word endings in terms of entropy from

information theory (Shannon, 1948). In other words,
there is greater uncertainty/variability at word begin-
nings, and thus it is easier to differentiate words using

word beginnings than word endings. For example,
Yannakoudakis and Hutton (1992) analyzed words in
a large lexicon with 11,031 different words obtained
from six very different texts and transcribed them into
phonetic codes (Elovitz, Johnson, McHugh, & Shore,
1976; Yannakoudakis & Hutton, 1987); they found that
in general, beginning positions in the words had higher
entropy (i.e., higher information content) than ending
positions, and that short words generally had higher
entropy than long words (cf. Bourne & Ford, 1961).
Shillcock, Hicks, Cairns, Charter, and Levy (1996) used
a phonological transcription of the London-Lund Cor-
pus of spoken English, a corpus of orthographically
transcribed conversational English speech that contains
more than 450,000 word tokens (Svartvik & Quirk,
1980), and showed that in general beginning segments
of spoken words have higher information content than
ending segments. This asymmetric information distri-
bution is also reflected in written English words. For
example, Shillcock, Ellison, and Monaghan (2000) cal-
culated the entropy distribution across different letter
positions with left-justified English words taken from the
CELEX lexical database (Baayen, Pipenbrock, & Gulikers,
1995; in total 34,154 words containing derived but not
inflected words); they showed that the entropy gradually
decreased from beginning positions to ending positions.
Consistent with this observation, in English there are
more suffixes than prefixes (Carstairs-McCarthy, 2002;
words with suffixes typically have more information in
the word beginning; vice versa for those with prefixes). It
has been argued that this asymmetric information distri-
bution in English words is due to a communicative pres-
sure to maximize the amount of information in word
beginnings (or more specifically, to increase the variabil-
ity of word beginnings) so that spoken words can be
recognized efficiently before the end of the pronuncia-
tion, allowing time for other processes such as syntax
processing (e.g., Brysbaert & Nazir, 2005; Shillcock,
et al., 2000).

The asymmetric information distribution in English
words also influences how people read written words. In
reading isolated English words with a single fixation, it
has been shown that people have the best word recogni-
tion performance when their fixation is initially directed
to the left of the word center, closer to the word begin-
ning than the word end (the optimal viewing position,
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OVP; O’Regan, 1990; O’Regan, Lévy-Schoen, Pynte, &
Brugaillère, 1984). This asymmetric pattern has also been
observed in reading continuous texts: readers most often
fixate on word beginnings (the preferred viewing loca-
tion, PVL; Rayner, 1979; see also Ducrot & Pynte, 2002;
note that in English words the PVL is slightly more to the
left than the OVP; Legge, Klitz, & Tian, 1997). The left-
ward biased OVP and PVL phenomena in English word
reading have been proposed to be related to the asym-
metric information distribution within words, in addition
to the possible influence from left hemisphere lateraliza-
tion in language processing and reading direction (e.g.,
Brysbaert & Nozir, 2005; Brysbaert, Vitu, & Schroyens,
1996; Legge et al., 1997).

Similar to speech, music is a medium of communica-
tion. Although an exact analogy cannot be drawn
between the structures of speech and music, musical
notes may be considered as analogous to phonemes in
speech, while musical segments (e.g., a self-contained
music fragment, a motif) and musical phrases (e.g., an
8-bar melody) are analogous to words and sentences. It
remains unclear whether an asymmetric information
distribution can be found within musical segments. In
contrast to English words, musical segments do not
follow strict morphological/orthographical rules, and
do not have clearly defined segment boundaries and
meanings. Music is frequently considered art and a form
of creativity, and thus the structures of musical seg-
ments in songs may vary significantly across different
songwriters (see, e.g., Knopoff & Hutchinson, 1983;
Youngblood, 1958). Nevertheless, some consistent pat-
terns of information structure may exist in musical seg-
ments. For example, melodies in Western music
typically end with a tone that is stable (e.g., the perfect
cadence) and thus is more predictable (Aarden, 2003),
suggesting that there may be more information in musi-
cal segment beginnings than endings. Consistent with
this speculation, Wong and Hsiao (2012) observed that
in reading musical segments with a single fixation,
musicians had better performance when their fixation
was directed to musical segment beginnings than to
endings (i.e., an asymmetric OVP pattern), suggesting
that musical segment beginnings may have more infor-
mation content for segment identification than endings.
An examination of information distribution within
musical segments not only will promote our under-
standing of how music is produced, but also the way
we perceive, process, and perform music. For example,
if musical segments have an asymmetric information
distribution, musicians may consequently look at the
side of a musical segment with higher information con-
tent more often when reading music scores. In contrast,

if musical segments have a symmetric information dis-
tribution, the asymmetric OVP pattern observed in
music reading (Wong & Hsiao, 2012) is unlikely to
be due to the information distribution within musical
segments. Thus, this examination will help us tease
apart confounding factors that may influence eye fix-
ation patterns in reading (Brysbaert & Nazir, 2005). In
addition, the knowledge of information distribution
within musical segments has important implications
for studies of music perception, music acquisition, and
human communication.

Another line of research focuses on discovering the
regularities underlying the transitions of musical notes
(e.g., Abdallah & Plumbley, 2009; Conklin & Witten,
1995; Pearce & Wiggins, 2006; Pearce, Ruiz, Kapasi,
Wiggins, Bhattacharya, 2010), which promotes the
understanding of melodic structures and the influence
of statistical learning of these structures on music acqui-
sition and expectation (e.g., Krumhansl & Kessler, 1982;
Pearce & Wiggins, 2006; Rohrmeier & Rebuschat, 2012;
Witten, Manzara, & Conklin, 1994). Most computa-
tional models of note transitions are based on n-gram
models, where a conditional probability distribution
predicts the nth note given the n�1 preceding notes.
A note can be represented by its pitch only (Abdallah
and Plumbley, 2009), or in conjunction with other
musical features, e.g., rhythm, onset, interval, etc. (Con-
klin & Witten, 1995; Pearce & Wiggins, 2006). In Pearce
and Wiggins’ IDyOM model, the prediction of a note is
based on both a long-term model, which is estimated
from a training corpus and reflects a person’s prior
knowledge of musical patterns, and a short-term model,
which is estimated from the previous notes in the cur-
rent melody and reflects the person’s adaptation to the
current melodic context (Conklin & Witten, 1995;
Pearce & Wiggins, 2006). N-gram models have been
used to explain human data of music perception. For
example, Abdallah and Plumbley (2009) use the predic-
tive information rate (conditional mutual information)
as a measure of ‘‘surprise,’’ while Witten et al. (1994),
Pearce and Wiggins (2006), and Pearce, Ruiz, Kapasi,
Wiggins, and Bhattacharya (2010) found similarities
between the entropies of the conditional distributions
of predicted notes and human note expectancy (mea-
sured in entropy). The n-gram models in the previous
studies are typically based on short sequences of notes
(e.g., 2 or 3), not whole musical segments, and on mea-
suring the entropy of the conditional distribution of the
predicted note given the previous notes. Hence, none of
these previous studies examined the overall information
distribution within musical segments, as measured by
the entropy of each position in the sequence (similar to
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words). The overall information distribution within
musical segments, and its consequences for how people
perceive music, remain unclear.

In the research on music perception, it has been pro-
posed that listeners’ melodic expectations are influenced
by two distinct cognitive systems: one is an innate and
universal bottom-up perception system governed by
Gestalt-like principles, whereas the other is a top-down
system that is influenced by experience with music in
different styles (i.e., the implication-realization theory,
or IR theory; Narmour, 1990, 1992). While the nature
of the innate mechanism remains controversial (see, e.g.,
Elman et al., 1996; Pearce & Wiggins, 2006), it has been
consistently reported that experience with music struc-
tures modulates music perception. For example, Trainor
and Trehub (1992) showed that adult listeners of Western
tonal melodies performed better in detecting a change in
one note when it was outside the key than when it was
within the key; in contrast, infants (who did not have as
much experience with Western tonal melodies) per-
formed equally well in the two cases. In another study,
Trainor and Trehub (1993) showed that the advantage in
discriminating a melody change in the context of related
keys over unrelated keys was observed in both proto-
typical and non-prototypical Western melodies in
infants; in contrast, this advantage was observed only
in prototypical but not in non-prototypical Western
melodies in adults. These studies suggest a modulation
effect of experience with Western tonal melodies on
music perception (see also Trainor & Trehub, 1994).
Thus, the information of statistical properties of music
may be important for the understanding of effects of
experience in music perception.

In the current study, we aim to investigate statistical
properties of music through examining the information
distribution within musical segments. More specifically,
we analyze two large databases of over 13,000 songs
(obtained from the Essen folksong dataset and Wikifo-
nia, www.wikifonia.org) and examine the information
distribution within musical segments of Western tonal
music. Here by ‘‘musical segment’’ we mean the lowest
level of the grouping structure of music (Lerdahl &
Jackendoff, 1983). We consider musical segments pre-
dicted by four automatic methods, which are based on
various principles of music perception, as well as musi-
cal segments annotated by humans. We then calculate
the entropy and conditional entropy at different note
positions separately for musical segments of different
lengths (cf. Shillcock et al., 2000; Yannakoudakis &
Hutton, 1987), and examine whether the information
distribution within musical segments has asymmetric
patterns similar to those observed in English words in

speech. It should be noted that the identification of the
lowest-level groupings tends to be ambiguous and sub-
jective, as it is sometimes not clear where a group starts
or ends. The segmentation methods used here may not
always identify the lowest-level grouping, or even the
same level of grouping. Nonetheless, asymmetric pat-
terns in the information distribution of musical seg-
ments may appear in multiple levels of grouping, and
thus it is constructive to consider several segmentation
methods.

Method

SONG DATASETS

The current study is based on two song datasets, the
Essen folksong corpus and the Wikifonia corpus. To
facilitate a meaningful analysis, only songs written in
major keys (according to the metadata in the datasets)
were selected. The Essen folksong corpus (Schaffrath,
1995) consists of 7,704 transcribed folksongs, and the
Wikifonia dataset consists of 5,843 transcribed songs
downloaded from Wikifonia (www.wikifonia.org),
which is a community-run database of ‘‘music lead
sheets.’’ Each song contains the monophonic melody
and metadata, such as musical key and time signature.
Each song in the Essen corpus contains human annota-
tions of musical segments, whereas the Wikifonia cor-
pus does not. The distributions of songs over different
regions for Essen and different genres for Wikifonia are
listed in Table 1. In the Essen dataset, about 60% of the
songs are from German folksongs, followed by 29%
from China. In the Wikifonia dataset, about one third
of the songs were in the ‘‘jazz’’ or ‘‘pop’’ categories, and
most of the songs are in popular genres. In the Essen
dataset, the median song length was 47 notes and the
average length was 53 notes with standard deviation of
30. The lengths of songs ranged from 8 to 502, with 95%
of songs between 21 and 126 notes. In the Wikifonia
dataset, the median song length was 153 notes and the
average length was 174 notes with standard deviation of
102. The lengths of songs ranged from 8 to 1050, with
95% of songs between 45 and 421 notes. A song can be
written in any musical key, e.g., to fit the target instru-
ments. In order to facilitate a meaningful analysis of the
notes relative to the key (the root note, tonic), each song
was transposed into the common key of C major using
the key information provided in each song file. Songs in
minor keys were excluded in the analysis.

MUSIC SEGMENTATION

Each song melody was automatically segmented into
a set of musical segments, consisting of short contiguous
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groups of musical notes, i.e., the lowest-levels of the
grouping structure (Lerdahl & Jackendoff, 1983). The
musical segments are analogous to words in speech, and
the notes analogous to phonemes in speech. In the lit-
erature, there have been studies on cognitive modeling
of word segmentation using probabilistic approaches
(e.g., Brent, 1999a, 1999b; Cohen, Adams, & Heeringa,
2007; Saffran, Newport, Aslin, Tunick, & Barrueco,
1996). Since the perception of music is subjective, there
have been many algorithms proposed to segment music
into groups of notes, which are based on different
underlying principles. Here we considered four auto-
matic approaches, of varying complexity, to segment
each song. For Essen, we also use the human annota-
tions of note groupings.

Temporal proximity (TP). We define a musical segment
as a set of notes in close temporal proximity. The
assumption is that longer time intervals between notes
indicate pauses or focal points in the melody, which in
turn indicate the end of a musical segment, and a begin-
ning of a new one. Specifically, a note with an interonset
interval (IOI)1 longer than a threshold T forms the
beginning of a musical segment. We define the thresh-
old T as the main beat (tactus) induced by the time
signature (meter) of the song. Most of the time signa-
tures use the quarter note as the main beat. The excep-
tion is with compound meters (e.g., 9/8), where the
dotted-quarter note is assumed to be the main beat, and
hence the threshold is three beats.

The TP method is conceptually similar to the 2nd

Grouping Preference Rule (GPR2b) of the Generative
Theory of Tonal Music (GTTM, Lerdahl & Jackendoff,
1983). The main difference is that TP uses an absolute
threshold of the IOI for determining the segment
boundary, while GPR2b uses a threshold relative to the
IOIs of the neighboring notes.

Local boundary detection model (LBDM). The LBDM by
Cambouropoulos (1997) is based on detecting bound-
aries between musical segments using the relative
change in three note properties: IOI, pitch interval, and
rest time (time between offset of a note and onset of
a new note). The probability of a boundary at a partic-
ular note is the weighted sum of the relative changes
with its neighbors. We used the implementation of
LBDM from the MIDI toolbox software package (Eerola
& Toiviainen, 2004), and set the probability threshold
for a boundary to 0.4, as suggested by experiments by de
Nooijer, Wiering, Volk, & Tabachneck-Schijf (2008).

Grouper (GRP). The Grouper model was introduced by
Tempereley (2001) and calculates a grouping of the
melody using a set of Phrase Structure Preference Rules
(PSPRs), which are based on temporal proximity, pre-
ferred phrase length, and consistency in relation to the
meter. The note features used by Grouper consist of
onset time, off time, chromatic pitch, and level in the
metrical hierarchy. We used the Melisma Music Ana-
lyzer (Sleator & Temperley, 2003) to calculate the met-
rical hierarchy and Grouper segmentation, using the
default parameters.

Information dynamics of music (IDyOM). The IDyOM
model was proposed by Pearce, Müllensiefen, and Wig-
gins (2010), and is based on the principle that group

TABLE 1. Distribution of Songs in the Essen and Wikifonia Datasets According to Genre Labels

Essen Wikifonia

America - Mexico 4 Europa - Lothringen 42 blues 91
America - misc 2 Europa - Luxemburg 8 broadway 437
America - USA 7 Europa - Hungary 34 children 40
Asia - China 2238 Europa - misc. 24 classic 207
Asia - misc. 3 Europa - Netherlands 51 folk 302
Europa - Czech 34 Europa - Austria 103 holiday 198
Europa - Denmark 3 Europa - Poland 15 jazz 1171
Europa - Germany 4755 Europa - Romania 21 movies 435
Europa - Alsace 87 Europa - Russia 33 none 1177
Europa - England 3 Europa - Switzerland 85 pop 948
Europa - France 9 Europa - Sweden 2 rock 186
Europa - Italy 7 Europa - Tirol 14 television 29
Europa - Yugoslavia 108 Europa - Ukraine 12 traditional 370

TOTAL 7704 TOTAL 5843

1 The interonset interval (IOI) of a note is defined as the time interval
between the onset of the note and that of the previous note. The IOI
includes the duration of the previous note and the rest between the
previous note and the note.

Information Distribution Within Musical Segments 221



boundaries are perceived before events that are unex-
pected given the context of the melody. Specifically, the
model estimates the conditional probability distribution
of a note given all previous notes, p(xi|xi�1, . . . , x1), and
calculates its self-information (or surprisal),
h(xi|xi�1, . . . , x1) ¼ �log2 p(xi|xi�1, . . . , x1), which is
a measure of unexpectedness or surprise of the note.
Group boundaries are indicated by high values of self-
information, relative to its linearly decaying weighted
average. We used the implementation provided by the
IDyOM project (Pearce, 2014) to estimate the condi-
tional probability distributions2 of a note’s features
(chromatic pitch, IOI, offset-onset interval) on each
dataset. On Essen, we use 50th order model (i.e., 50
notes are used as sequential context), while a 20th order
model was used for Wikifonia. In the next section our
analysis of information content in musical segments is
based on the entropy of scale degrees in segments. As
entropy is the expected value of self-information,
IDyOM segments may naturally contain high entropy
(information content) in the beginning of their seg-
ments. Note that IDyOM is based on different note
features (chromatic pitch, IOI, and offset-onset interval
vs. scale degrees) and model order (50th or 20th vs. 0th or
1st) from our entropy analysis, and hence this effect will
be tempered somewhat.

Human annotations (H). The Essen corpus provides
human annotation of musical phrases in each song. The
phrases are non-overlapping and contiguous, and thus
form a grouping structure of the song. Note that using
these annotations does not resolve the subjectivity or
ambiguity of groupings, since it only represents one
person’s intuition about a song.

We applied the above segmentation methods to the
two musical datasets. We first quantified the agreement
(or disagreement) between the segmentation methods.
The segments of one method are used as the ‘‘reference
segmentation,’’ to which the other segmentation meth-
ods are compared. Specifically, the boundary notes pre-
dicted by a segmentation method are compared with the
boundary notes of the reference segmentation via pre-
cision (P), recall (R), and F-measure. Precision is the
percentage of boundary note predictions that match
a reference boundary note, while recall is the percentage
of reference boundary notes that were predicted cor-
rectly. F-measure is the harmonic mean of precision and
recall. Table 2 shows the P, R, and F values when each
segmentation method is the reference on the Essen
corpus.

To determine the relationship among the 4 automatic
methods, consider the following two observations. First,
when method A has low recall and high precision
against reference method B, it indicates that A’s bound-
ary notes are aligned with B’s boundary notes (high
precision), but method A does not predict some of B’s
boundary notes (low recall). In other words, A’s bound-
ary notes are a subset of B’s. Second, when method A
has high recall and low precision against reference
method B, it indicates that method A predicted all
boundary notes of B (high recall) but with some extra
predictions not found in B (low precision), and there-
fore the boundary notes of B are a subset of A’s. Using
these two observations, an examination of the precision
and recall values in Table 2 suggests that the predicted
boundary notes of the automatic segmentation methods
form a nested set (up to some noise). TP, LBDM, and
IDyOM have high precision (> 0.8) and relatively lower
recall (< 0.7) when GRP is the reference method, which
suggests that the majority of boundary notes of TP,
LBDM, and IDyOM are a subset of GRP’s boundary
notes. TP has high recall (> 0.8) when GRP is the

TABLE 2. Comparison of Segmentation Methods on the Essen Folksong Corpus

Reference segments

GRP TP LBDM IDyOM H

F P R F P R F P R F P R F P R

GRP – – – .63 .64 .81 .69 .64 .86 .54 .41 .93 .65 .64 .69
TP .63 .81 .64 – – – .72 .80 .83 .64 .59 .91 .58 .74 .60
LBDM .69 .86 .64 .72 .83 .80 – – – .66 .58 .93 .65 .78 .62
IDyOM .54 .93 .41 .64 .91 .59 .66 .93 .58 – – – .54 .91 .42
H .65 .69 .64 .58 .60 .74 .65 .62 .78 .54 .42 .91 – – –

Note: In each column, segments from different segmentation methods are used as the reference, to which the F-measure, precision (P), and recall (R) of the other methods are
calculated. Bold values indicate high levels of precision or recall (>.80).

2 Specifically, we learn the IDyOM ‘‘long-term model’’ on the original
(non-transposed) songs. This gave slightly better results than using the
transposed songs.
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reference, indicating that most of TP’s boundary notes
are a subset of GRP. Likewise, the boundary notes of
LBDM are mostly a subset of TP and GRP (recall both
over 0.8). Finally, most of the boundary notes of IDyOM
are subsets of all three methods (recall all over 0.9). The
nested set of boundary notes suggests that each segmen-
tation method identified a different level of the grouping
structure, with GRP at the lowest-level (shorter seg-
ments), followed by TP and LBDM at the next two
higher-levels, and finally IDyOM at the highest level
(longest segments).

Compared to the human annotations, GRP has the
highest recall and lowest precision among the segmen-
tation methods, which suggests that GRP can identify
more of the human annotated boundary notes but also
predicts more boundary notes that do not agree with the
human annotation. In contrast, IDyOM has the highest

precision and lowest recall, which suggests that IDyOM
predicts boundary notes more conservatively, but any
predictions tend to agree with the human annotation.
LBDM and TP are in between, but more similar to
IDyOM, in that the precision is higher than recall.

For each method, the musical segments were grouped
according to their lengths. Segment length groups with
less than 144 samples were discarded, since there would
not be enough samples to reliably estimate the note
probabilities for those lengths. Table 3 presents the sta-
tistics of the extracted musical segments on the two
datasets. Overall, TP and GRP tend to parse the melody
into large sets of short segments (average lengths
between 5 and 9). In contrast, LBDM and IDyOM seg-
ment the melodies into smaller sets of long segments
(average lengths between 10 and 19). Figure 1 plots the
total numbers of musical segments of different lengths

TABLE 3. Statistics of the Musical Segments Extracted Using the Segmentation Methods

Essen GRP TP LBDM IDyOM H

Total number 45,841 37,288 32,257 16,115 43,049
Maximum length 16 30 31 37 22
Average length 8.93 8.12 10.51 15.89 9.33
Standard deviation 2.26 6.23 6.75 8.51 3.31
Median length 9 6 9 14 9

Wikifonia GRP TP LBDM IDyOM

Total number 109,165 157,318 45,920 34,802
Maximum length 19 28 48 53
Average length 9.31 5.65 14.44 19.33
Standard deviation 2.77 4.16 10.48 12.33
Median length 9 4 11 16
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FIGURE 1. Distribution of musical segments of different lengths using the segmentation methods and human phrase annotations.
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found using each segmentation method (see online PDF
for color versions of all figures). The distributions are
heavily concentrated on short sequences. A similar phe-
nomenon was also observed in language; for example,
according to an English word database developed by
Brysbaert and New (2009), among the most frequent
25,000 (written) English words in the database, the
lengths of the words range from 1 to 18, with the aver-
age length 7.17 and the median length 7.

The analysis of English words in Yannakoudakis and
Hutton (1992) considered unique words extracted from
a variety of sources (i.e., duplicate words are removed
from the corpus). In language, there are specific rules
about what letter combinations can appear together,
which are reflected in the spelling of words. Music also
has similar rules about what notes sound better together
(more pleasing, less dissonant) in a musical segment.
However, these are not hard rules, and hence any com-
bination of notes could be played in a segment. None-
theless, ‘‘good’’ note combinations will appear more
frequently in music, and hence these musical rules can
be inferred by considering all musical segments present
in the dataset. That is, in this study, we do not restrict
our analysis by removing duplicate musical segments.
Rather, we feel it is more representative to look at all the
musical segments in the dataset in order to infer its
information distribution. Estimation from all segments
also fits well with ideas from implicit learning of music,
where it is theorized that a person acquires statistical
models of note patterns through exposure to music
throughout their lifetime (Rohrmeier & Rebuschat,
2012).

ENTROPY AND CONDITIONAL ENTROPY

Entropy is a measure of information content (Shannon,
1948): higher entropy indicates more information con-
tent, or in other words, more uncertainty/unpredict-
ability. It has been shown to be able to capture several
behavioral phenomena related to how humans process
sequences of sensory input, such as language and
music (e.g., Knopoff & Hutchinson, 1983; Reichle,
Rayner, & Pollatsek, 2003; Shillcock et al., 2000). For
example, in music perception, entropy and its related
measures have been used as reflecting perceivable
musical style (e.g., Knopoff & Hutchinson, 1983;
Youngblood, 1958) and for modelling music listeners’
internal representation of music structures and musi-
cal expectations (e.g., Abdallah & Plumbley, 1999;
Pearce et al., 2010; Pearce & Wiggins, 2006). Thus in
the current study we used entropy as the measure to
uncover the information distribution of musical seg-
ments in the song datasets.

It should be noted that entropy is a property of a sta-
tistical distribution that is assumed to model the data
source. In their analysis of English words, Yannakouda-
kis and Hutton (1992) calculated the entropy assuming
a zeroth-order (unigram) model to represent the fre-
quency of phonemes in each position of the words (i.e.,
the context around the position is not considered). In
research on musical expectation, higher-order models are
typically assumed (i.e., the context of the previous notes
is included) since the aim is to measure the expectedness
of a note while listening to a melody (e.g., Conklin &
Witten, 1995; Manzara, Witten, & James, 1992; Pearce &
Wiggins, 2006; Witten et al., 1994). In our analysis, we
will consider both the zeroth-order (unigram) model, in
order to parallel the linguistics study, as well as a first-
order (bigram) model, following research on musical
expectation. Due to lack of data, it was not possible to
reliably estimate models with orders larger than 1.

For each set of musical segments of a given length, we
calculated the entropy of notes at each position in the
segment. We represent each note with its scale degree,
i.e., its relationship with the tonic note. We define
�¼f1, #1, 2, b3, 3, 4, #4, 5, b6, 6, b7, 7g as the set of
12 scale degrees, where we use integers 1 through 7 for
the major scale degrees, with 1 as the tonic. For the
zeroth-order model, we denote the probability of each
of the 12 scale degrees in the i-th position (i ¼ 1, . . . , L)
as pðxL

i Þ, where xL
i 2 � is the random variable of the

scale degree at the i-th position in a length L segment.
The probabilities are estimated using the relative fre-
quency of occurrence in all length-L segments in the
dataset. The entropy at each position i ¼ 1, . . . , L is
then calculated as

HðxL
i Þ ¼ �

X

j 2�
pðxL

i ¼ jÞ log2 pðxL
i ¼ jÞ: ð1Þ

The entropy is a measure of the randomness in a prob-
ability distribution, in this case the distribution of scale
degrees at a particular position. A value of Hmin¼0
indicates no randomness, e.g., a single scale degree is
always played, whereas the maximum value of
Hmax ¼ log2 12 � 3:58 indicates a uniform distribution,
i.e., all scale degrees are equally likely. Since the maxi-
mum value of entropy is bounded, we define the nor-
malized entropy as

ĤðxL
i Þ ¼

HðxL
i Þ

Hmax
ð2Þ

which takes values from 0 to 1.
For the first-order model, we denote the conditional

probability of the i-th note in a length L segment as
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pðxL
i jxL

i�1Þ, where xL
i�1 is the previous note in the seg-

ment. The specific conditional entropy is defined as the
entropy of the conditional distribution when the previ-
ous note is known and takes a specific value xL

i�1 ¼ k,

HðxL
i jxL

i�1 ¼ kÞ ¼
�
X

j 2�
pðxL

i ¼ jjxL
i�1 ¼ kÞ log2 pðxL

i ¼ jjxL
i�1 ¼ kÞ: ð3Þ

The conditional entropy is then defined as the specific
conditional entropy averaged over all possible values of
the previous note (Cover & Thomas, 1991),

HðxL
i jxL

i�1Þ ¼
X

k2X

pðxL
i�1 ¼ kÞHðxL

i jxL
i�1 ¼ kÞ; ð4Þ

where pðxL
i�1Þ is the probability distribution of the pre-

vious note at position i�1. The conditional entropy in
Equation 4 is a measure of the uncertainty (information
content) in the i-th note when the previous note (i�1) is
known. Similar to normalized entropy, we define the
normalized conditional entropy as

ĤðxL
i jxL

i�1Þ ¼
HðxL

i jxL
i�1Þ

Hmax
ð5Þ

which ranges from 0 to 1. If the normalized conditional
entropy is 0, then the i-th note is completely determined
by the (i�1)-th note.

To compare with the information distribution of
English words, we conducted similar analyses with the
data from Yannakoudakis and Hutton (1992).3 Accord-
ing to Rothschild (1986), the distribution of written
English word lengths (in terms of number of letters)
can be fitted with a shifted Poisson distribution with
the mean 6.94 and the variance 5.80 letters (see also
Bagnold, 1983). Although in Yannakoudakis and Hut-
ton’s (1992) data, word length information was based
on number of phonemes instead of letters, we used
Rothschild’s (1986) data of written words as an estimate
of a representative sample of English words and ana-
lyzed the data of words with lengths ranging from 2 to
12 in Yannakoudakis and Hutton’s (1992) data (i.e., the
mean word length minus/plus two standard deviations
according to Rothschild, 1986).

In the above analysis, we used scale degrees to repre-
sent each note in order to align with the prior analyses
of English letters/phonemes. On the other hand, in
music, relative pitch, i.e., the pitch interval between two

consecutive notes, is also important for mental encod-
ing and recognition of melodies (e.g., Cuddy & Cohen,
1976; Fujioka, Trainor, Ross, Kakigi, & Pantev, 2004;
Peretz & Babaı̈, 1992). Hence, in a second analysis, we
represent each note in a musical segment by the pitch
interval, in semitones (half steps), between the note and
its preceding note. The first note in the musical segment
is ignored since it has no preceding note in the segment.
Intervals that are an octave or greater (less than �11 or
greater than þ11) are mapped back to within one
octave, while keeping the same decreasing/increasing
direction. We define the set of 23 pitch intervals as
� ¼ f�11, . . . , �1, 0, þ1, . . . , þ11g, where the integer
value represents the number of semitones from the pre-
vious note. Using the interval representation, the calcu-
lation of entropy and conditional entropy are the same
as with scale degrees, except that the maximum entropy
value is now Hmax ¼ log223 � 4:52.

Results

ZEROTH-ORDER INFORMATION DISTRIBUTION OF SCALE DEGREES

We first examine the asymmetry in the zeroth-order
information distribution of phonemes/scale degrees in
words/musical segments. Figure 2 shows the zeroth-
order information distribution (according to normalized
entropy) within musical segments (using the above seg-
mentation algorithms on the Essen and Wikifonia data-
set, and scale degree representation) and words (from
Yannakoudamis and Hutton’s, 1992, data) of different
lengths. We plotted the distributions using both the abso-
lute position of the notes, and the normalized position,
which is relative to the length of the segment/word. The
plots show the overall average entropy (dashed black
line), as well as the average entropy at each position (solid
black line), which is calculated by taking the average over
regularly-spaced bins along the x-axis.

To examine the asymmetry in the shape of the infor-
mation distribution, we compared the average normal-
ized entropy in four subsegments of the musical
segments/words: the first note/letter, last note/letter, left
half excluding first note/letter (denoted as left exclu-
sive), and right-half excluding last note/letter (denoted
as right exclusive). Figure 3 shows the comparisons over
the two music datasets and words. For words, the infor-
mation content has a ‘‘cliff ’’ shape, F(3, 8) ¼ 75.31, p <
.001, �p

2 ¼ .90. Specifically, the information content of
the last letter is significantly less than that of the other
subsegments; last vs. first: t(8) ¼ 11.07, p < .001; last vs.
left exclusive: t(8) ¼ 7.81, p < .001; last vs. right exclu-
sive: t(8) ¼ 18.24, p < 0.001, whereas there is no differ-
ence in information content between the other three

3 Note that Yannakoudakis and Hutton (1992) did not report the
number of words used to calculate the entropy distribution in each
word length condition.
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FIGURE 2. Entropy distribution of phonemes/scale degrees in words/musical segments of different length, using (left) absolute positions and (right)

normalized positions. For music datasets, different music segmentation methods are presented in each row: Temporal Proximity (TP), Local Boundary

Detection Model (LBDM), Grouper (GRP), Information Dynamics of Music (IDyOM), and human annotations (H). Each gray-level represents the

distribution for phrases of a particular length. Dashed black line is the overall average entropy. Solid dashed line is the positional average entropy.
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FIGURE 2. [Continued]
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subsegments (first, left exclusive, and right exclusive).
For musical segments extracted from the Essen dataset,
the information content follows an asymmetric inverted
U shape; GRP: F(3, 12)¼ 114.12, p < .001, �p

2¼ .91; TP:
F(3, 26)¼ 157.14, p < .001, �p

2¼ .86; LBDM: F(3, 27)¼
269.07, p < .001, �p

2 ¼ .91; IDyOM: F(3, 33) ¼ 342.51,
p < .001, �p

2 ¼ .91; H: F(3, 18) ¼ 85.87, p < .001, �p
2 ¼

.83. The information content increases in the first three
subsegments; e.g., Essen H, first to left exclusive: t(18)¼
�7.82, p < .001; left exclusive to right exclusive: t(18) ¼
�7.84, p < .001, and then the information content of the
last note drops to below that of the first note; e.g., Essen
H: t(18) ¼ 2.48, p ¼ .02. This shape of the entropy
distribution is consistent regardless of the segmentation
method used to obtain the musical segments from Essen
(see Figure 3a). For musical segments extracted from
the Wikifonia dataset, the information distribution also
follows an asymmetric inverted U shape; GRP: F(3, 15)
¼ 235.44, p < .001, �p

2 ¼ .94; TP: F(3, 24) ¼ 124.61, p <
.001, �p

2 ¼ .84; LBDM: F(3, 44) ¼ 361.24, p < .001, �p
2

¼ .89; IDyOM: F(3, 49) ¼ 368.79, p < .001, �p
2 ¼ .88,

but with one key difference: the information content of

the left exclusive and right exclusive subsegments are
not different, i.e., the information content of the mid-
dle notes is flat. Specifically, the information content
increases from the first note to the left exclusive half;
e.g., Wiki GRP: t(15) ¼ �12.61, p < .001, remains the
same in the right exclusive half, and then the informa-
tion content of the last note drops below that of the
first note, t(15) ¼ 6.90, p < .001. Again, this shape of
the information distribution is consistent regardless of
the segmentation method used to extract the musical
segments (see Figure 3b). In both musical segments
and words, the first note/letter has higher information
content (higher entropy) than the last note/letter;
words: t(8) ¼ 11.07, p < .001; Essen-GRP: t(12) ¼
2.41, p ¼ .03; Essen-TP: t(26) ¼ 5.92, p < .001;
Essen-LBDM: t(27) ¼ 4.47, p < .001; Essen-IDyOM:
t(33) ¼ 4.27, p < .001; Essen-H: t(18) ¼ 2.48, p ¼ .02;
Wiki-GRP: t(15) ¼ 6.90, p < .001; Wiki-TP: t(24) ¼
5.76, p < .001; Wiki-LBDM: t(44)¼ 9.90, p < .001; Wiki-
IDyOM: t(49) ¼ 9.59, p < .001. However, words have
a larger difference in information content between the
first and last letters than musical segments; words vs.
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Essen-GRP: t(20)¼ 8.40, p < .001; vs. Essen-TP: t(34) ¼
7.77, p < .001; vs. Essen-LBDM: t(35) ¼ 8.45, p < .001;
vs. Essen-IDyOM: t(41) ¼ 5.12, p < .001; vs. Essen-H:
t(26) ¼ 6.43, p < .001; vs. Wikifonia-GRP: t(23) ¼
11.74, p < .001; vs. Wikifonia-TP: t(32) ¼ 11.12, p <
.001; vs. Wikifonia-LBDM: t(52) ¼ 7.30, p < .001; vs.
Wikifonia-IDyOM: t(57) ¼ 6.70, p < .001.

To further examine the asymmetry in the information
distribution within words and musical segments,
we compare the average normalized entropy in the
beginning and ending halves (left and right) of words
and musical segments in Figure 4. In words, the

beginning half has higher information content than the
ending half, t(10) ¼ 7.80, p < .001. However, the left
exclusive and right exclusive halves do not have a signif-
icant difference, t(8)¼ 0.50, p¼ .63, which suggests that
the asymmetric information distribution in words is
mainly due to the difference in entropy between the first
and last letters. For Wikifonia musical segments, the left
half has higher information content than the right
half for TP, LBDM, and IDyOM; TP: t(26) ¼ 2.06, p <
.05; LBDM: t(46)¼ 3.77, p < .001; IDyOM: t(51)¼ 3.47,
p ¼ .001, whereas for GRP, the difference between left
and right halves did not reach significance, t(17)¼ 1.91,
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scale degrees in the first, left half excluding first, right half excluding

last, and last positions of words/musical segments. Brackets at the top

indicate significant differences between pairs (*p < .05, **p < .01, ***p <

.001).

words GRP TP LBDM IDyOM
0.6

0.65

0.7

0.75

0.8

0.85

0.9
*** * *** **

no
rm

al
iz

ed
 e

nt
ro

py

left half
right half

words GRP TP LBDM IDyOM H
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(a) Essen

(b) Wikifonia

***

no
rm

al
iz

ed
 e

nt
ro

py

left half
right half

FIGURE 4. Comparison of average normalized entropy of phonemes/

scale degrees in the left half and right half of words and musical

segments (*p < .05, **p < .01, ***p < .001).

Information Distribution Within Musical Segments 229



p ¼ .07. Since the left exclusive and right exclusive
halves of the musical segments did not have a significant
difference in entropy in Wikifonia, this again suggests
the asymmetric information distribution is due to the
difference in entropy (information content) in the first
and last notes, similar to words. However, words have
more asymmetric left and right halves than musical seg-
ments; words vs. Wikifonia-GRP: t(27) ¼ 3.75, p < .001;
vs. Wikifonia-TP: t(36) ¼ 8.90, p < .001; vs. Wikifonia-
LBDM: t(56) ¼ 10.08, p < .001; vs. Wikifonia-IDyOM:
t(61) ¼ 10.18, p < .001. Finally, for musical segments
extracted from the Essen dataset, there is no significant
difference in entropy between the left and right halves
(see Figure 4a). Since the information distribution in the
Essen dataset has an asymmetric inverted U shape (see
Figure 3a), this suggests that the decrease in entropy
between the first and last notes is the same magnitude
as the increase in entropy between the left exclusive and
right exclusive halves.

SCALE DEGREE DISTRIBUTIONS FOR ZEROTH-ORDER MODEL

The analysis in the previous section indicates that the
information content of musical segments follows an
inverted U shape. We next examine the distributions
of scale degrees within musical segments. The probabil-
ities of each scale degree occurring in the four subseg-
ments (first note, left exclusive, right exclusive, and last
note) for the Essen musical segments from human
annotations (H) are shown in Figure 5.4

There are three main observations. First, the proba-
bility profiles of scale degrees 1 and 5 follow an asym-
metric U shape, where these scale degrees occur less
frequently in the middle of the segment and more

frequently in the first and last note; 1: F(3, 18) ¼
15.60, p < .001, �p

2 ¼ .46; 5: F(3, 18) ¼ 28.43, p <
.001, �p

2 ¼ .61. Scale degree 1 is more likely to occur
as the last note than the first note, t(18) ¼ �3.12, p ¼
.01, whereas in contrast, there is no difference in likeli-
hood of scale degree 5 appearing in the first or last note,
t(18) ¼ 0.44, p ¼ .67. In the middle of the musical
segment, both scale degrees 1 and 5 are more likely to
occur in the left exclusive half than in the right exclu-
sive; 1: t(18) ¼ 2.67, p ¼ .02; 5: t(18) ¼ 8.51, p < .001.
Second, a large number of other scale degrees (2, b3, 4,
#4, 6, b7, 7) have an asymmetric inverted U shape; 2:
F(3, 18)¼ 13.99, p < .001, �p

2¼ .44; b3: F(3, 18)¼ 8.02,
p < .001, �p

2 ¼ .31; 4: F(3, 18) ¼ 23.86, p < .001, �p
2 ¼

.57; #4: F(3, 18) ¼ 12.68, p < .001, �p
2 ¼ .41; 6: F(3,

18) ¼ 19.42, p < .001, �p
2 ¼ .52; b7: F(3, 18) ¼ 6.35, p <

.001, �p
2 ¼ .26; 7: F(3, 18) ¼ 42.58, p < .001, �p

2 ¼ .70.
The probability of these scale degrees increases from
the first note to the left exclusive subsegment; 2:
t(18) ¼ �4.82, p < .001; b3: t(18) ¼ �2.27, p ¼ .04;
4: t(18)¼�4.08, p < .001; #4: t(18)¼�4.60, p < .001; 6:
t(18) ¼ �4.70, p < .001; b7: t(18) ¼ �3.06, p ¼ .007; 7:
t(18) ¼ �8.94, p < .001, and further increases in the
right exclusive; 2: t(18) ¼ �3.65, p ¼ .002; 4: t(18) ¼
�2.25, p ¼ .04; #4: t(18) ¼ �2.38, p ¼ .03; 6:
t(18) ¼ �3.77, p ¼ .001; b7: t(18) ¼ �2.14, p ¼ .05;
7: t(18) ¼ �3.99, p < .001. Then, the probability of the
scale degree in the last note decreases to the same level
of the first note, i.e., there was no significant difference
in the probability of the scale degree occurring in the
first or last note; 2: t(18) ¼ �1.38, p ¼ .19; b3: t(18) ¼
1.41, p ¼ .18; 4: t(18) ¼ 1.98, p ¼ .06; #4: t(18) ¼ 0.83,
p ¼ .42; 6: t(18) ¼ 0.67, p ¼ .51; b7: t(18) ¼ �0.17, p ¼
.87; 7: t(18) ¼ 0.94, p ¼ .36. Third, the probability
profile of scale degree 3 also has an inverted U shape,
but in contrast to others, it is more likely to occur in the
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4 Similar results were obtained from musical segments of the
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left exclusive half than the right exclusive, t(18) ¼ 3.44,
p ¼ .003, and is more likely to occur in the first note
than the last note, t(18) ¼ 2.66, p ¼ .02.

The analysis of the zeroth-order scale degree proba-
bilities suggests an explanation for the information dis-
tribution in musical segments. The increased entropy in
the middle of the musical segment is due to the
increased likelihood of 8 scale degrees (2, b3, 3, 4, #4,
6, b7, 7), which correspond to notes in various common
scales (e.g., major, Dorian, Lydian, Mixolydian). Within
the middle, the increase in probability of the 8 scale
degrees in the right exclusive subsegment, along with
a corresponding decrease in probability of scale degrees
1 and 5, leads to higher entropy in the right exclusive
half. In contrast, the first and last note have lower
entropy than the middle because of the increased prob-
ability of scale degrees 1 and 5 as a first and last note,
with corresponding decreased likelihoods of all other
scale degrees. Since the probability of scale degree 5 is
similar for the first and last note, the difference in
entropy between the first and last notes is mainly due
to the increased probability of scale degree 1 as the last
note (and correspondingly, a decreased probability of
scale degree 3).

FIRST-ORDER INFORMATION DISTRIBUTION OF SCALE DEGREES

We next examine the first-order information distribu-
tion of scale degrees in musical segments. Figure 6
shows the average normalized first-order conditional
entropy using absolute note positions and normalized
positions (similar to Figure 2) for musical segments
from Essen and Wikifonia.

To examine the asymmetry in the 1st order informa-
tion distribution, we again compare the average condi-
tional entropy in four subsegments (first, left exclusive,
right exclusive, last), which is presented in Figure 7.

For Essen musical segments, the first-order informa-
tion distribution follows a ‘‘cliff ’’ shape; GRP: F(3, 11)¼
231.99, p < .001, �p

2 ¼ .96; TP: F(3, 25) ¼ 258.75,
p < .001, �p

2 ¼ .91; LBDM: F(3, 26) ¼ 452.11, p <
.001, �p

2 ¼ .95; IDyOM: F(3, 32) ¼ 563.72, p < .001,
�p

2 ¼ .95; H: F(3, 17) ¼ 226.07, p < .001, �p
2 ¼ .93.

Specifically, the last note has significantly lower entropy
than the rest of the musical segments; e.g., for H, last vs.
first: t(17) ¼ 16.80, p < .001; last vs. left exclusive:
t(17) ¼ 17.18, p < .001; last vs. right exclusive: t(17) ¼
2.57, p ¼ .02. This observation is consistent for all seg-
mentation methods on Essen (see Figure 7). There are
also some differences in conditional entropy between
the first, left exclusive and right exclusive halves, but
it depends on the segmentation method used; GRP: first
vs. left exclusive: t(11) ¼ 2.34, p ¼ .04; TP: left exclusive

vs. right exclusive: t(25) ¼ �2.51, p ¼ .02; IDyOM: left
exclusive vs. right exclusive: t(32) ¼ 2.58, p ¼ .01; H:
first vs. right exclusive: t(17) ¼ 2.57, p ¼ .02. However,
these differences are small in magnitude when com-
pared with the decrease in conditional entropy of the
last note. For the musical segments extracted from
Wikifonia, the 1st order information distribution
follows an inverted U shape; GRP: F(3, 14) ¼ 50.21,
p < .001, �p

2 ¼ .78; TP: F(3, 23) ¼ 17.57, p < .001,
�p

2 ¼ .43; LBDM: F(3, 43) ¼ 165.46, p < .001, �p
2 ¼

.79; IDyOM: F(3, 48) ¼ 272.93, p < .001, �p
2 ¼ .85, with

small increases from the first to right exclusive regions;
GRP: t(14) ¼ �5.85, p < .001; TP: t(23) ¼ �4.66, p <
.001; LBDM: t(43) ¼ �5.93, p < .001; IDyOM: t(48) ¼
�4.24, p < .001, before dropping significantly in the last
note; GRP: t(14) ¼ 4.40, p < .001; TP: t(23) ¼ 2.12, p <
.05; LBDM: t(43) ¼ 9.75, p < .001; IDyOM: t(48) ¼
15.68, p < .001.

Finally, we examine the asymmetry in the 1st order
information distribution by comparing the left and right
halves of the musical segments (Figure 8). On Essen, the
left half has higher 1st order information content than
the right half for all segmentation methods; GRP:
t(13) ¼ 3.95, p ¼ .002; TP: t(27) ¼ 13.16, p < .001;
LBDM: t(28) ¼ 8.04, p < .001; IDyOM: t(34) ¼ 7.97,
p < .001; H: t(19) ¼ 4.65, p < .001. On Wikifonia, the
results are mixed. For LBDM and IDyOM, the left half
has higher 1st order information content than the right
half; LBDM: t(45) ¼ 3.05, p ¼ .004; IDyOM: t(50) ¼
6.27, p < .001. On the opposite, for TP segments, the left
half has lower information content than the right half,
t(25) ¼ �2.33, p ¼ .03. Finally, there is no significant
difference between left and right halves for GRP
segments.

INFORMATION DISTRIBUTIONS OF PITCH INTERVALS

Here we examine the asymmetry in the shape of the
information distribution of pitch intervals in musical
segments. Figure 9 shows the zeroth-order information
distribution of pitch intervals in the four subsegments
(first, left exclusive, right exclusive, last) and left/right
halves of musical segments.

On Essen, the information distribution of pitch inter-
vals in musical segments by LBDM, IDyOM, and
Humans have an inverted U shape; LBDM: F(3, 26) ¼
78.30 p < .001, �p

2¼ .75; IDyOM: F(3, 32)¼ 126.63, p <
.001, �p

2 ¼ .80; H: F(3, 17) ¼ 35.67, p < .001, �p
2 ¼ .68,

while those by GRP and TP have a ‘‘cliff ’’ shape; GRP:
F(3, 11) ¼ 6.16, p ¼ .002, �p

2 ¼ .36; TP: F(3, 25) ¼
35.13, p < .001, �p

2 ¼ .58. For all 5 sets of musical
segments, the last pitch interval had lower entropy
than the other 3 subsegments; e.g., for H, first vs. last:
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Music – Essen dataset – LBDM
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FIGURE 6. First-order conditional entropy distribution of scale degrees in musical segments of different length, using (left) absolute positions and

(right) normalized positions. Different music segmentation methods are presented in each row: Temporal Proximity (TP), Local Boundary Detection

Model (LBDM), Grouper (GRP), Information Dynamics of Music (IDyOM), and human annotations (H). Each gray-level represents the distribution for

phrases of a particular length. Dashed black line is the overall average entropy. Solid dashed line is the positional average entropy.
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FIGURE 6. [Continued]

Information Distribution Within Musical Segments 233



t(17)¼ 5.36, p < .001; left exclusive vs. last: t(17)¼ 9.65,
p < .001; right exclusive vs. last: t(17) ¼ 10.05, p < .001.
This suggests that the resolution of the penultimate note
to the last note is more predictable (less entropy) than
other notes in the musical segments in Essen. On Wiki-
fonia, the information distributions also have an inverted
U for LBDM and IDyOM; LBDM: F(3, 43) ¼ 62.53, p <
.001, �p

2¼ .59; IDyOM: F(3, 48)¼ 32.02, p < .001, �p
2¼

.40, but with the last note having higher entropy than the
first note; e.g., LBDM, first vs. last: t(43) ¼ �6.65, p <
0.001, which is in contrast to Essen. For GRP and TP, the
information distributions in Wikifonia have an increas-
ing trend; GRP: F(3, 14)¼ 69.23, p < .001, �p

2 ¼ .83; TP:
F(3, 23) ¼ 94.65, p < .001, �p

2 ¼ .81, with the last
note having the highest entropy; e.g., for GRP, first vs.
last: t(14)¼�9.43, p < .001; left exclusive vs. last: t(14)¼
�9.06, p < .001; right exclusive vs. last: t(14) ¼ �3.76,
p ¼ .002. These results suggest an interesting phenome-
non in Wikifonia: although the final notes (scale degrees)
are most predictable (lowest entropy, see Figure 3b) in
both Wikifonia and Essen, the resolution from the pen-
ultimate note to the final note is less predictable than in
Essen. Indeed, the average normalized entropy of scale
degrees in musical segments from Wikifonia is higher
than that in Essen; GRP: 0.85 + 0.02 vs. 0.74 + 0.03,
t(31) ¼ �12.22, p < .001; TP: 0.85 + 0.01 vs. 0.75 +
0.01, t(54) ¼ �29.33, p < .001; LBDM: 0.84 + 0.01 vs.
0.75 + 0.01, t(75) ¼ �46.05, p < .001; IDyOM: 0.84 +
0.01 vs. 0.74 + 0.01, t(86) ¼ �37.24, p < .001.

Next we examine at the pitch interval probabilities.
Figure 10 shows the probabilities for each pitch interval
within the four subsegments of a musical segment using
human-annotated musical segments.

The probability decreases for larger pitch intervals,
reflecting the well-known property of pitch proximity

(Narmour, 1990; Temperley, 2014; von Hippel, 2000).
Further examining the pitch interval probabilities
within musical segments can help to explain the reduc-
tion in entropy of the last pitch interval. In particular,
a small set of pitch intervals (�9, �7, �5, �4, �2, þ1)
have increased probability at the end of the segments
(see Figure 10). In contrast, the other pitch intervals
(�10, �8, �3, �1, 0, þ2, þ3, þ4, þ5, þ7, þ8, þ9)
have decreased probability at the end of the segments
(see Figure 10). As a result of these two trends, the
entropy of the last pitch interval decreases (see Figure
9a). In addition, looking at the trend within musical
segments, many negative pitch intervals (�9, �7, �5,
�4, �3, �2, þ1) have probabilities that increase
towards the segment endings (see Figure 10). In con-
trast, positive pitch intervals (0, þ3, þ4, þ5, þ7, þ9)
have probabilities decreasing towards the segment end-
ings (see Figure 10). These phenomena are consistent
with ‘‘melodic arches’’ observed in the literature
(Huron, 2006): the overall pitch contour tends to rise
and then fall over the course of a melodic phrase. In
other words, falling pitch intervals are more likely in the
end of the segments, while rising pitch intervals are
more likely in the beginning of the segments.

Finally, we examine the asymmetry in the 1st order
information distribution of pitch intervals. Figure 11
shows the average conditional entropy in the four sub-
segments in Essen and Wikifonia.

On Essen, the first-order conditional entropy has an
inverted U shape; �10: F(3, 17) ¼ 6.08, p ¼ .001, �p

2 ¼
.26; �9: F(3, 17) ¼ 14.55, p < .001, �p

2 ¼ .46; �8: F(3,
17) ¼ 12.43, p < .001, �p

2 ¼ .42; �7: F(3, 17) ¼ 14.14,
p < .001, �p

2 ¼ .45; �6: F(3, 17) ¼ 5.52, p ¼ .002, �p
2 ¼

.25; �5: F(3, 17) ¼ 28.58, p < .001, �p
2 ¼ .63; �4: F(3,

17) ¼ 20.88, p < .001, �p
2 ¼ .55; �3: F(3, 17) ¼ 24.94,
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FIGURE 6. [Continued]

234 Antoni B. Chan & Janet H. Hsiao



p < .001, �p
2 ¼ .60; �2: F(3, 17) ¼ 266.91, p < .001,

�p
2 ¼ .94; �1: F(3, 17) ¼ 10.75, p < .001, �p

2 ¼ .39; 0:
F(3, 17) ¼ 80.04, p < .001, �p

2 ¼ .83; þ1: F(3, 17) ¼
13.23, p < .001, �p

2¼ .44;þ2: F(3, 17)¼ 48.59, p < .001,
�p

2 ¼ .74; þ3: F(3, 17) ¼ 19.91, p < .001, �p
2 ¼ .54; þ4:

F(3, 17) ¼ 34.66, p < .001, �p
2 ¼ .67; þ5: F(3, 17) ¼

45.38, p < .001, �p
2¼ .73;þ7: F(3, 17)¼ 61.09, p < .001,

�p
2 ¼ .78; þ8: F(3, 17) ¼ 12.92, p < .001, �p

2 ¼ .43; þ9:
F(3, 17) ¼ 11.40, p < .001, �p

2 ¼ .40, similar to the
zeroth order entropy on Essen. In particular, for all
segmentation methods, the normalized conditional
entropy of the first and last notes are lower than the

middle notes; e.g., for H, first vs. left exclusive: t(16) ¼
�7.78, p < .001; first vs. right exclusive: t(16) ¼ �4.54,
p < .001; left exclusive vs. last: t(16)¼ 20.15, p < .001; right
exclusive vs. last: t(16) ¼ 14.64, p < .001, while the last
note has lowest conditional entropy; for H, first vs. last:
t(16) ¼ 5.71, p < .001. In addition, the right-half of the
musical segments have lower conditional entropy than
the left half; e.g., for H, t(18) ¼ 6.04, p < .001. On Wiki-
fonia, the conditional entropy for pitch intervals also has
similar shapes to the zeroth order entropy within a musi-
cal segment. In particular, for GRP and TP segmentations,
the conditional entropy increases from the beginning to

GRP TP LBDM IDyOM H
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

* ***

***
***

* ***

***
***

***

***
***

* ***

***
***

***
*

***
***

no
rm

. c
on

d.
 e

nt
ro

py
 (

1s
t o

rd
er

)

GRP TP LBDM IDyOM
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
*** ***

***
***

***

* *** ***
***

***
*

*** ***
***

***
***

*** ***
***

***
***

no
rm

. c
on

d.
 e

nt
ro

py
 (

1s
t o

rd
er

)

(a) Essen

(b) Wikifonia

first left excl. first right excl. last last

first left excl. first right excl. last last
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the end of the segment; GRP: F(3, 13)¼ 123.81, p < .001,
�p

2¼ .91; TP: F(3, 22)¼ 148.88, p < .001, �p
2¼ .87, while

for LBDM and IDyOM, the conditional entropy has an
inverted U shape; LBDM: F(3, 42) ¼ 169.88, p < .001,
�p

2 ¼ .80; IDyOM: F(3, 47) ¼ 97.26, p < .001, �p
2 ¼

.67. On Wikifonia, the right half of the musical segments
has higher 1st order conditional entropy than the left half
for all segmentation methods; GRP: t(15) ¼ �6.97, p <
.001; TP: t(24)¼�5.83, p < .001; LBDM: t(44)¼�5.45,
p < .001; IDyOM: t(49) ¼ �2.80, p ¼ .007.

Discussion

Here we investigated the information distribution
within musical segments by analyzing the entropy at
different locations of the segments obtained from two
representative song datasets, Essen and Wikifonia,
which predominantly contain folksongs and popular
music, respectively. We used four computational meth-
ods to extract musical segments from the songs, and
showed that these four methods roughly form different
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pairs (*p < .05, **p < .01, ***p < .001).
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levels in the grouping structure hierarchy. The results
showed that, regardless of the segmentation method
used, the zeroth-order information distribution within
musical segments exhibited an inverted U shape pattern,
with the highest entropy in the middle of the segment,
followed by the segment beginnings (first note);
whereas the lowest entropy was observed in the segment
endings, i.e., last note (Figure 3). The general shape of
the inverted U was found in both datasets, but with a key
difference in the middle of the segments – in Essen
folksongs, higher entropy was observed in the right half
of the middle than the left half, whereas in Wikifonia
songs, both sides of the middle had the same entropy.
The asymmetry in information distribution between
segment beginnings and endings was similar to that
observed in English words reported in the literature
(e.g., Carstairs-McCarthy, 2002; Shillcock et al., 1996,
2000; Yannakoudakis & Hutton, 1992). In addition, the
asymmetric information distribution within both musi-
cal segments and words was driven mainly by the
entropy (information) difference between the first and
the last notes/letters, as no significant asymmetry was
observed when we excluded the first and the last notes/
letters (Figure 3). Note however that there were some
key differences between the information distributions
within words and musical segments: (1) the asymmetry
between the beginning and the ending halves was
larger/more dramatic in words than in musical seg-
ments; and (2) the entropy at the word beginnings was
around the average entropy, whereas the entropy at the
musical segment beginnings was below the average
entropy, with the highest entropy occurring in the mid-
dle of the segments, demonstrating an inverted U pat-
tern (see Figure 2, 3 and 4).

The higher entropy at word beginnings than word
endings has been argued to be related to a communica-
tive pressure to express a maximum amount of infor-
mation at word beginnings to allow a spoken word to be
recognized as early as possible (e.g., Brysbaert & Nazir,
2005; Shillcock et al., 2000). In the case of music, this
argument does not seem plausible; there is no musical
‘‘lexicon’’ of segments, analogous to a lexicon of words,
in relation to which a musical pattern must be looked up
in order to be understood. And in any case, as noted
above, the information distributions in musical seg-
ments and words are rather different. This suggests that
the asymmetry in the information distribution within
musical segments may be due to factors different from
those influencing that in words. In order to be pleasant
to the listener, the ending of a musical segment should
resolve the musical tension created within the segment.
Hence the last note of the musical segment tends to be

tonally stable, i.e., a scale note, and in particular a tonic
triad note. In addition, the beginning of a musical seg-
ment should provide the initial context for the listener
to experience the music, and thus the first note also
tends to be a tonally stable to match the final note.
However, there is more flexibility (i.e., higher entropy)
in the first note because the initial context could be
provided in the first few notes (e.g., if the first note is
an ornamental grace note).

This asymmetric information distribution within
musical segments has important implications for
research in music perception. For example, the asym-
metric information distribution within words has been
shown to be an important factor influencing how people
process written words, such as the optimal viewing posi-
tion (OVP) effect in reading isolated words, the pre-
ferred viewing location (PVL) effect in reading
continuous texts, and visual field (VF) difference effects
in word recognition (e.g., Brysbaert & Nozir, 2005; Brys-
baert et al., 1996; Hsiao & Cheng, 2013; Legge et al.,
1997). Similarly, the asymmetric information distribu-
tion within musical segments may also influence music
notation reading behavior, such as eye movements in
music reading (see, e.g., Madell & Hébert, 2008, for
a review), and the asymmetric OVP pattern/visual field
difference effect observed in reading music sequences
(Wong & Hsiao, 2012). More specifically, Wong and
Hsiao examined the OVP effect in reading three-note
music sequences with a sequential matching paradigm
and showed that music reading experts had the best
performance when their initial fixation was directed to
the sequence beginning, as compared to when it was to
the middle or the ending of the sequence. In addition,
participants had better performance when the music
sequences were presented in the right VF (RVF) than
in the left VF. Similar OVP and VF difference effects have
also been reported in the recognition of English words,
with the OVP located at the left of the word center (e.g.,
Brysbaert & Nazir, 2005; O’Regan, 1990; O’Regan et al.,
1984), and a RVF advantage in English word recognition
(e.g., Bradshaw & Gates, 1978; Brysbaert & d’Ydewalle,
1990; Brysbaert et al., 1996). Wong and Hsiao (2012)
attributed the asymmetric OVP effect and RVF advan-
tage in musical segment processing to the left-to-right
reading direction in music reading, since most of the
notes are typically recognized in the RVF with a left-to-
right reading direction. Nevertheless, in visual word rec-
ognition, it has been shown that the asymmetric OVP
effect and the RVF advantage can be accounted for by the
information distribution within words (in addition to
reading direction and hemispheric asymmetry; e.g., Brys-
baert et al., 1996; Farid & Grainger, 1996; Hsiao & Cheng,
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2013; see also Hsiao, 2011): participants typically have
the best performance when the initial fixation is directed
to the portion of the word with the most information, or
a better performance when a word is presented in the
visual hemifield in which the portion of the word with
the highest information content is closer to the central
fixation than when it is presented in the other visual
hemifield. Thus, our current results suggest that the
asymmetric OVP effect and the RVF advantage in musi-
cal segment processing observed in Wong and Hsiao
(2012) may also be accounted for by the asymmetric
information distribution within musical segments.

In addition to zeroth-order information distribution,
here we also examined first-order information distribu-
tion within musical segments. We observed that in both
information distributions, segment endings have the
lowest entropy regardless of the segmentation method
used. The low entropy at musical segment endings is
consistent with the finding that, in Western music, mel-
odies or musical phrases typically end with a stable har-
monic tone, and thus phrase endings are typically more
predictable (Aarden, 2003). This lower entropy/higher
predictability at phrase endings than beginnings may
also influence musical expectation in listeners. For
example, Manzara et al. (1992) used the computer game
Chorale Casino to investigate predictive probability of
the melodies (derived from Bach Chorales 151 and 61)
from human participants through a gambling game,
and showed that phrase endings were typically associ-
ated with a higher predictability as compared with
phrase beginnings or the middle of phrases. Witten
et al. (1994) further showed that the entropy profile
derived from human participants was very similar to
that produced by a statistical model using 95 Bach chor-
ale melodies (Conklin & Witten, 1995; see also Pearce &
Wiggins, 2006), suggesting that musical expectation of
humans is influenced by the statistics/regularities
underlying the music the listeners are exposed to.

Note that these previous examinations of entropy
profiles are calculated from the conditional probability
of the predicted note given the observation of the pre-
vious notes; that is, the first-order (bigram) model
(Conklin & Witten, 1995; Manzara et al., 1992; Pearce
& Wiggins, 2006; Witten et al., 1994). The conditional
probability is used because their aim is to investigate
musical expectation while listening to a melody. In con-
trast, the entropy profiles in the zeroth-order model are
calculated from the marginal note probabilities for each
position of the segment. Hence, they measure the
a priori information distribution within a musical seg-
ment before observing any notes, and thus are useful for
studies of music perception behavior without contextual

information, such as the OVP phenomenon observed in
music reading (Wong & Hsiao, 2012). Here we show
that in both cases, musical segment endings have the
lowest information content regardless of the segmenta-
tion method used. The significant decrease in informa-
tion content at musical segment endings may have been
used by listeners implicitly for detecting segment
boundaries.

We also examined the distributions of scale degrees
within musical segments. We found that scale degrees 1
and 5 occur more frequently in the first and last note
than in the middle of a segment. This is in contrast to
other scale degrees, most of which occur more often in
the middle of a segment than the beginning or the end
(Figure 5). This difference in scale degree distribution
may also be used by listeners as a cue to detect segment
boundaries. Indeed, it has been shown that listeners use
both pitch and temporal information in music phrase
perception (Palmer & Krumhansl, 1987). Future work
could further examine whether incorporating the infor-
mation of scale degree distribution in music segmenta-
tion models (e.g., as in IDyOM) can better predict
human music segmentation behavior.

In contrast to the entropy profiles of scale degrees, we
found that the entropy profiles of pitch intervals were
less consistent across song datasets and segmentation
methods. Consistent with this finding, it has been
shown that in processing unfamiliar melodies, people
without music training tend to have difficulties in
encoding pitch intervals as compared with pitch con-
tours (e.g., Bartlett & Dowling, 1980; Cuddy & Cohen,
1976; Dowling, 1978; Fujioka et al., 2004). This result
also suggests that pitch intervals may provide less useful
information than contours for listeners to detect seg-
ment boundaries.

Finally, in the previous examinations of entropy pro-
files in melodies/music phrases (Conklin & Witten, 1995;
Manzara et al., 1992; Pearce & Wiggins, 2006; Witten
et al., 1994), the phrases used were typically longer than
the musical segments we defined here. Multiple musical
segments comprise a phrase, by analogy with multiple
words comprising a phrase in language. Although musi-
cal segments are smaller units in music than phrases, the
similarity in their entropy profiles, i.e., the decrease in
entropy at the ending position, is intriguing and may
suggest influence from similar factors, e.g., to have a clo-
sure with harmony/higher predictability to allow the lis-
teners to respond. The cumulative moving average
(CMA) entropy5 for musical expectation obtained from

5 The cumulative moving average entropy is the average of all the note
entropies up until the current note position.
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human data reported in these previous studies typically
showed the highest entropy at the beginning with
decreasing entropy towards the end. This is because the
purpose of their experiments and models was to examine
and simulate human musical expectation given a context:
the beginning of a phrase typically had high entropy due
to the lack of context; as more and more context revealed
to support prediction, the predictability of notes gradu-
ally increased (i.e., the entropy of the conditional distri-
bution gradually decreased). Nonetheless, the inverted U
shape profile can be seen in the instantaneous entropy
profiles of the musical segments6 (as delineated by the
fermatas, i.e., the prolonged notes) in the two Bach Chor-
ales reported in Manzara et al. (1992), even as the CMA
entropy decreases over time. According to our analysis
reported here, the a priori entropy profile of musical
segments without considering context is likely to have
an inverted U shape. Hence, it would be intriguing to
investigate the deviation of the entropy profile with con-
text (i.e, the conditional distribution) from the a priori
entropy profile without context as a measure of musical
expectancy within a musical segment (cf. Abdallah &
Plumbley, 2009; Dubnov, 2006, 2008).

In conclusion, we show that, similar to the information
distribution within English words, musical segments also

have an asymmetric information distribution, with
higher entropy at sequence beginnings than sequence
endings, although the asymmetry is not as dramatic as
that within words. As the asymmetric information dis-
tribution within words has been shown to significantly
influence how words are perceived and processed, this
asymmetric information distribution within musical seg-
ments can also potentially modulate music reading
behavior and thus should not be overlooked in the
research on music perception.
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