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SOFTWARE Open Access

COMAN: a web server for comprehensive
metatranscriptomics analysis
Yueqiong Ni, Jun Li and Gianni Panagiotou*

Abstract

Background: Microbiota-oriented studies based on metagenomic or metatranscriptomic sequencing have
revolutionised our understanding on microbial ecology and the roles of both clinical and environmental microbes.
The analysis of massive metatranscriptomic data requires extensive computational resources, a collection of
bioinformatics tools and expertise in programming.

Results: We developed COMAN (Comprehensive Metatranscriptomics Analysis), a web-based tool dedicated to
automatically and comprehensively analysing metatranscriptomic data. COMAN pipeline includes quality control of
raw reads, removal of reads derived from non-coding RNA, followed by functional annotation, comparative
statistical analysis, pathway enrichment analysis, co-expression network analysis and high-quality visualisation. The
essential data generated by COMAN are also provided in tabular format for additional analysis and integration with
other software. The web server has an easy-to-use interface and detailed instructions, and is freely available at
http://sbb.hku.hk/COMAN/

Conclusions: COMAN is an integrated web server dedicated to comprehensive functional analysis of
metatranscriptomic data, translating massive amount of reads to data tables and high-standard figures. It is
expected to facilitate the researchers with less expertise in bioinformatics in answering microbiota-related
biological questions and to increase the accessibility and interpretation of microbiota RNA-Seq data.
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Background
In the era of next-generation sequencing (NGS),
microbiome-oriented studies have recently been the “hot
spot” and have deepened our understanding on the cru-
cial roles of both clinical and environmental microbes.
The field of shotgun metagenomics investigating the
genetic potential of microbiota has blossomed out, shed-
ding light on microbial ecology, evolution and disease
biology. Metatranscriptomics investigates the totality of
the expressed genes in a microbial community under
particular conditions. This RNA-based profiling of mi-
crobial community structure and function can reflect
the actual expressed activity of involved microbiota un-
seen by metagenomics, and has been applied mainly to
environmental microbiota during early stage [1, 2]. The
subsequent application of metatranscriptomics to human
gut microbiota [3, 4] has revealed actively transcribed

core modules, inter-subject and temporal gene expres-
sion variations. More importantly, metatranscriptomics
can also unveil the microbial responses to altered envir-
onmental conditions (e.g. disease versus health) or other
external stimuli. Dietary [5] and xenobiotic treatments
[6] have been found to alter significantly gut microbial
gene expression profiles, while health- and disease-
associated oral microbiota communities displayed de-
fined metabolic differences [7].
The use of NGS in metatranscriptomics generates

large datasets with high degree of complexity, which
needs to be analysed effectively to translate the non-
interpretable raw sequencing reads to biological insights,
in the format of data tables and figures. Although a few
relevant methods or pipelines for processing RNA-Seq
data have been proposed [8–10], the whole analysis
process for such high-throughput data typically involves
many individual steps, the installation and execution of
a wide range of software tools, extensive computational
resources and expertise in programming and NGS
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bioinformatics data analysis. Particularly, Leimena et al.
[9] described in detail a pipeline, or guidelines, for ana-
lysing metatranscriptomic Illumina RNA-seq data, but
did not implement it as a software tool or web-based
server. MetaTrans [11] and SAMSA [12] are the tools
recently developed specifically for metatranscriptomics,
but they require proper local setup on a powerful
computer cluster or offer limited functional analysis.
Therefore, even though metatranscriptomic data are
now routinely generated, it is challenging for wet-lab
researchers to analyse them and generate biological
relevant information. Despite that web-based servers
such as MG-RAST [13] and EBI Metagenomics [14]
can be also adopted for metatranscriptomics, they were
originally designed to process and annotate metagenomic
data with limited functionality in uncovering and elucidat-
ing the active microbial functions and responses to exter-
nal stimuli hidden in metatranscriptomics.
Here we present COMAN, a web-based application

for functional characterisation and comprehensive ana-
lysis of high-throughput metatranscriptomic data.
COMAN processes uploaded raw reads automatically to
ultimately achieve functional assignments, which are
then used to perform comparative statistical analysis,
pathway enrichment and co-expression network analysis,
to relate taxonomy with functional variations and to
visualize the results. With an easy-to-use interface and
extensive instructions, COMAN can be run by experi-
mentalists without programming experience and without
the hassle of changing tools or working environments
for answering their biologically relevant questions. How-
ever, since the essential data are also provided in tabular
format, users with bioinformatics expertise may perform
additional analysis and integration with other software.

Implementation
COMAN accepts as input the Illumina paired-end se-
quencing reads in FASTQ format and a metadata file
specifying the sample conditions for comparative statis-
tical analysis. A sample input dataset is offered to guide
users on data formatting requirements (by clicking the
“SampleData” button in the homepage). It is optional to
upload a file containing the metagenomic taxonomic
abundance profiles, which will only be used for “tran-
scription activation analysis” (as described below). All
uploaded data and results generated by COMAN are re-
stricted to the user who initiated the job. A comprehen-
sive guidance on COMAN usage can be found in the
“Instructions” section of the server homepage.
The whole COMAN metatranscriptome data analysis

pipeline (Fig. 1) mainly involves quality control, removal
of reads derived from non-coding RNAs, functional
annotation, comparative statistical analysis, taxonomy-

associated functional analysis and co-expression network
analysis. Details on key steps are shown below:

Quality control and removal of non-coding RNA
The uploaded NGS reads are subject to an initial quality
control step to remove the adapter regions and low qual-
ity reads following a previously described approach [15].
Afterwards, all the QC-passed reads are mapped, using
BLASTN, to an in-house non-coding RNA database (see
Results for details and evaluation) to filter out the reads
derived from non-coding RNAs, including ribosomal
RNA and tRNA. The reads with best BLAST hits at
e-value < 10−5 are excluded from downstream analysis.

Mapping to reference genomes
In this step, all the high quality reads after depletion of
non-coding RNA are further mapped to a reference gen-
ome database at 1e-5 cutoff, which includes more than
2700 NCBI complete microbial genomes (accessed at
ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/
Bacteria/all.faa.tar.gz). We used a much faster and
highly sensitive tool named DIAMOND [16] within
the COMAN pipeline, since using BLASTX to perform
this task is too time-consuming and not practically feas-
ible, especially for a web-based application.

Functional annotation of genes and reads
Functional annotations of those reference genomes have
been pre-prepared at the COMAN backend. This in-
cludes commonly used annotation systems: Clusters of
Orthologous Groups (COG) [17] and KEGG Ortholog
groups (KO) [18]. The annotation to COG was con-
ducted using RPS-BLAST against the CDD database
(v.3.10) at 1e-5 cutoff, whereas the KO annotation was
through the combinatorial use of DIAMOND and
KOBAS 2.0 annotate program [19]. In addition, we used
PRIAM (with default parameters) [20] to annotate the
genes to enzymes (Enzyme Commission numbers) (ECs)
that are further used to achieve the profiling of MetaCyc
pathways [21].

Comparative statistical analysis
Based on the mapping of reads to reference genomes
and the functional annotation results, COMAN per-
forms functional profiling and calculates the relative
abundance for each functional group and enzyme, as
well as for a higher hierarchy level in the annotation sys-
tem. This high-level profiling includes COG categories,
KEGG pathways, KEGG pathway classes, KEGG mod-
ules, and various levels of MetaCyc pathways.
The clustering of all samples using multidimensional

scaling (MDS) is incorporated within the pipeline. Once
the functional profiling based on COG and KO is com-
pleted, the metadata file will be used to conduct differential
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expression (DE) analysis (Wilcoxon rank sum test, with the
default cutoff of FDR-corrected p-value being 0.10), in
order to characterise the potential functional changes be-
tween two different conditions.
Researchers are often highly interested in the associa-

tions between pathway variations and biological pheno-
types observed. To facilitate such process, we integrate
pathway inference and analysis based on KEGG and
MetaCyc into the COMAN pipeline. Despite certain

overlap and differences [22], they are both commonly
used pathway systems during genomic analysis and
metabolic reconstruction, and users of COMAN will
have access to results derived from both databases. Most
importantly, COMAN uses MinPath [23] to infer the
pathways represented in the submitted microbial com-
munities, based on functional annotations of genes and
the relationship between pathways and functional groups
(KO for KEGG; EC for MetaCyc). Compared with the

Fig. 1 The metatranscriptome analysis pipeline in COMAN. The example output figures from the analysis of a gut microbiome dataset are shown.
Upper left: functional profiling; upper right: taxonomic contribution analysis (complete linkage method for clustering algorithm and Euclidean
distance for dissimilarity metric); lower left: multi-dimensional scaling to illustrate sample clustering; lower right: co-expression network
analysis with different inferred communities (for clarity purpose, the communities with fewer than 3 elements are merged together and
not highlighted here)
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naive one-hit-match mapping approach that may inflate
the number of inferred pathways leading to overesti-
mation of functional diversity, MinPath eliminates some
spurious pathways and achieves a more trustworthy infer-
ence of biological pathways present in the samples [23].
Afterwards, COMAN incorporates GAGE [24] to infer

the significantly enriched or depleted pathways when
comparing two conditions. Users may apply a suitable
threshold of FDR-corrected p-values to identify such
pathways that display coordinated differential expression
over the whole pathway and that can be associated with
the biological phenotypes. This pathway enrichment
analysis is applied to KEGG pathways, KEGG modules
and MetaCyc pathways.
Functional profiling, differential expression and path-

way enrichment analysis elucidate the functional states
and dynamic changes or responses of the involved
microbiota community. It is also useful to relate the ob-
served functional variations with particular taxa [25].
For this purpose, COMAN performs a taxonomic con-
tribution analysis to identify which microbial phylum is
mostly responsible for community-level expression vari-
ation, for each of the most varied functional groups
(Fig. 1). These “most varied functional groups” refer to
either significantly differentially expressed ones based on
user-specified FDR-corrected p-value, or the ones with
highest fold-change (up- 50 and down-regulated 50
groups) when the former is not available. Last but not
least, COMAN incorporates a taxonomic distribution
analysis, where the expression distributions of each func-
tional group among different phyla at both conditions
are calculated.

Transcription activation analysis
If the user has the taxonomic abundance profiles across
all samples generated by metagenomic sequencing and
analysis, this file (phylum-level) can be uploaded to
COMAN at the data uploading process. Afterwards,
COMAN normalises the gene expressions using the
taxonomic abundances, followed by comparison and
visualisation of the normalised expression levels in two
conditions. This further elucidates whether the observed
expression variations of certain genes are derived from
varied transcription levels (transcriptional activation or
repression) or simply caused by bacterial taxonomic
composition differences.

Co-expression network analysis
In co-expression network, genes having similar or
related functions tend to possess similar expression pro-
files and thus tend to be clustered together [26, 27].
COMAN calculates the pairwise correlations (Spear cor-
relation) for the “most varied functional groups” afore-
mentioned, based on their expression profiles among

different samples in one condition, and generates a co-
expression network accordingly. Afterwards, the random
walk algorithm is used to find densely connected sub-
networks, or communities within the network (Fig. 1).
The elements within the same community represent
concordant behaviours, such as similar responses to a
particular stimulus, and thus the similar or closely re-
lated functions.
The results from COMAN co-expression analysis in-

clude TAB-delimited data files presenting the involved
functional groups and their topological properties and
belonged communities, as well as high-quality figures
for network visualisation with deduced communities
(Fig. 1). Moreover, since such network typically contains
extensive information, a web-based interactive network
is provided in the result page for deeper inspection. For
clarity purposes, all detected communities with fewer
than 3 elements are merged into one single residual
module. Users may also investigate the “hub nodes” in
the resulting network, which represent genes or func-
tional groups with extremely high connectivity.
Despite that only the “most varied functional groups”

are involved in COMAN, users may use the abundance
profiles for all functional groups or any subset of interest
(COGs, KOs, or ECs) to construct a global co-
expression network and perform network topological
analysis. Note that to perform a meaningful co-
expression network analysis using COMAN, the minimal
number of samples within one condition has to be
greater than four. However, we recommend the sample
size to be larger than eight in order to generate findings
of more biological relevance with lower false positives.

Profiling of Biosynthetic Gene Clusters for analysis of
microbial secondary metabolites
Biosynthetic gene clusters (BGCs) are physically clus-
tered gene sets responsible for the synthesis of microbial
secondary metabolites, whose importance and wide-
spread distribution in the human microbiome have been
demonstrated before [28]. Despite the greater under-
standing of different microbiota in varying environ-
ments, there is still paucity of characterised metabolites
that are synthesized by the microbial community and
that may contribute to the differential phenotypes [15].
Here we plugin antiSMASH 3.0 [29] for BGC annotation
into the COMAN pipeline, to facilitate the characterisa-
tion and comparison of secondary metabolite biosynthesis
among different conditions. Using our pre-prepared iden-
tification of BGCs from the NCBI reference genomes, the
BGCs and their abundances in each submitted sample can
be calculated following similar rules as Donia et al
[28]: 50 % of genes (after excluding non-biosynthetic
ones) in each BGC need to be covered by reads; the
abundance score of this identified BGC is defined by
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taking the average abundance of these genes. Further,
the abundances of BGCs producing different types of
secondary metabolites (BGC types, as defined by anti-
SMASH) are calculated, followed by a comparative
statistical analysis (Wilcoxon rank sum test) to iden-
tify differentially abundant BGC types. This reveals
the active production capability of different types of
secondary metabolites by the involved microbiota. A
bar chart illustrating the relative proportion of different
types is provided as well. Note that this BGC-related
analysis module in COMAN reflects the transcriptionally
active BGCs in the microbial community.

Results visualisation and access
COMAN produces a collection of easy-to-interpret figures
upon job termination. The example output of a complete
dataset derived from a human gut microbiome project is
available on the server (the “Example Data” section of the
server homepage). The essential data in tabular format
(“TAB” delimited file) are provided, therefore the user
may use them to perform additional analyses, which in-
clude the integration with other tools as well as more so-
phisticated analyses for advanced users. For relatively
basic figures such as bar charts, they can make custom
modifications of figures using their preferred programs.
For co-expression network visualisation, users may choose
CytoScape with a graphical user interface or use the R
script provided (Additional file 1) to apply different filter-
ing and layout parameters to the network. Moreover,
COMAN keeps the raw sequence mapping files in BLAST
m8 format that includes the details of sequence alignment
(e.g. identity, alignment position, e-value). A detailed
documentation called “README.txt” describing each out-
put file is included for every completed job to help users
interpret the results.
All results generated by COMAN are compressed to

simplify data download. Since the sequence mapping re-
sults are high data volume and take considerably more
time to download, COMAN separates such files with
those generated by functional analysis for the conveni-
ence of users.

Results and discussion
Construction and evaluation of non-coding RNA database
The removal of reads derived from non-coding RNA can
avoid the potential bias during downstream analysis, but
would normally take a few days for all sequenced sam-
ples and even up to one month for larger datasets with
deep sequencing. Since the purpose here is only to iden-
tify and remove those reads, rather than to determine
their taxonomic origins, there would be great extent of
redundancy within the non-coding RNA database such
as SILVA [30]. To reduce the computational burden and
accelerate our pipeline, we constructed and evaluated an

in-house non-coding RNA database, which is a random
10 % subset of the combination of 1) NCBI bacterial refer-
ence genomes non-coding RNAs (accessed at ftp://
ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Bacteria/
all.frn.tar.gz); and (2) eukaryotic ribosomal DNA (both
large and small subunits) within SILVA (See Additional file
2 for details in construction and evaluation of the
database).
We compared the performance of different random

10 % and 5 % subsets (5 % NCBI + 5 % SILVA), as
well as the full combined database without taking
subsets. It can be seen from Fig. 2 that while the 10 % sub-
sets showed rather high accuracy, sensitivity and stability,
the performance of random 5 % subsets was not very
stable, with one of them having sensitivity even below
90 %. Being much less redundant, the final 10 % com-
bined database reduces the mapping time remarkably (~6
folds) while remaining nearly the same sensitivity as
compared to the full database. Using this in-house

Fig. 2 Performance evaluation of subsets of the combined database
used in COMAN. The combined database was constructed by
merging the NCBI bacterial reference genomes non-coding RNAs
with eukaryotic ribosomal DNA (both large and small subunits)
deposited in the SILVA database. Different subsets of random 10 %
and 5 % of the full combined database (indicated by x-axis) were
taken and their performance was compared to the BLASTN mapping
results from using the full version. For each subset, the “Relative
Accuracy” is defined as the number of commonly identified reads
between the subset and the full database, divided by the total
number of reads identified only by using the subset for mapping.
In comparison, the “Relative Sensitivity” is defined as the number
of commonly identified reads between the subset and the full
database, divided by the total number of reads identified by using
the full database
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non-coding RNA database, the reads with best BLAST hits
at e-value < 10−5 are excluded from downstream analysis.

Case study
For illustration, we performed an analysis of a complete
dataset from a human gut microbiota project [5] and
the results preview can be accessed via the “Example
Data” page. The MDS results generated by COMAN
(Additional file 3) shows that samples from two different
conditions (“control diet” and “plant-based diet”) sepa-
rated clearly, indicating the functional alterations of hu-
man gut microbiome by plant-based diet. The subsequent
taxonomic contribution analysis suggests that Firmicutes,
Proteobacteria, Actinobacteria and Bacteroidetes were the
main contributors of community-level variations for the
most varied functional groups. Moreover, Firmicutes was
found to contribute predominately to the up-regulated
KEGG orthologous groups. Similar analysis with more fo-
cused discussion on the results has been performed in our
previous attempt to understand the diet-gut metagenome
interactions at a molecular level [25].

Computational time and throughput
After optimising the sequence-mapping step, the whole
COMAN analysis should be completed within a few days
(typically 1-2 days). Using our example dataset that in-
cludes 18 samples with an average of around 22M reads
per sample, the time elapsed was approximately 2.5 days.
In relation to the functional analysis part, it was com-
pleted in less than 10 min. COMAN has the capacity to
handle multiple jobs simultaneously and the time needed
depends on the sequencing depth, the number of sam-
ples and the server workload. Users should expect that
running 5 jobs in parallel with each job containing 10
samples with ~20M reads will require approximately
one week to be completed. The users may check the
results at a later time with the provided job ID, book-
marked pages or get notified by email upon job termin-
ation (given that an email address is provided).

Other highlights
By using a large amount of complete microbial genomes,
COMAN is able to perform functional annotation for
more than one system, including the widely accepted
KEGG, COG and MetaCyc, as well as a more specialised
annotation for secondary metabolite biosynthesis -
namely biosynthetic gene clusters (BGCs). Therefore, in
addition to the comparative analysis aimed to shed lights
on the links between functional variations and biological
phenotypes, COMAN also serves as a versatile func-
tional annotation tool that provides the fundamental
data tables essential for in-depth analysis. More experi-
enced users may use such results generated by COMAN
with multiple functional annotation and pathway systems,

directly or with slight data rearrangements, as the input of
other specialised NGS data analysis programs such as
LefSe [31].

Conclusion
Here, we developed COMAN (Comprehensive Meta-
transcriptomics Analysis), which serves as a platform to
translate the non-interpretable raw sequencing reads to
data tables and high-standard figures that can be easily
handled and further analysed. Although related theoret-
ical methods or tools have been reported before,
COMAN is an integrated web server dedicated to com-
prehensive functional analysis of metatranscriptomic
data. It is easy-to-use and relatively fast, with extensive
instructions on input data format, server navigation and
results interpretation. The output includes high-quality
figures in both PNG and PDF formats, as well as the
essential data in tabular format. Therefore, COMAN is
expected to facilitate the researchers, who may lack the
expertise or computational resources, to analyse micro-
biota RNA-Seq data towards tackling their biological
questions of interest. Advanced users with bioinformat-
ics expertise may perform additional analysis and inte-
gration with other software by utilising the essential
tabular data COMAN generates. With a wide range of
target audience including microbiologists, environmental
biologists and clinicians, we believe COMAN will benefit
the community remarkably in revealing the importance
of both environmental and clinical microbiota. Considering
the availability of powerful computational resources, the
current pipeline is only run on our server in a web-based
manner. However, making COMAN pipeline as a separate
software package that can be setup locally and run in a
fully customised way is in our plans. The COMAN server
will be actively and continuously updated to incorporate
more annotation systems and analysis modules (e.g.
taxonomy-related analysis at high-resolution) in the future.

Availability and requirements

� Project name: COMAN
� Project home page: http://sbb.hku.hk/COMAN
� Operating system(s): Platform-independent
� Programming language: Python, R
� License: This server is free to all users without login

requirement

Additional files

Additional file 1: The R script to visualise the co-expression network.
The input file is generated by COMAN co-expression analysis. (R 8 kb)

Additional file 2: Supplementary results detailing the process of
constructing and evaluating the non-coding RNA database used in
COMAN. (DOC 345 kb)
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Additional file 3: Clustering of all samples from the example data using
Multidimensional Scaling based on the abundances of all COG groups.
Dark blue: control or baseline diet; orange: after plant-based diet. (PDF 5 kb)

Abbreviations
BGC, Biosynthetic gene clusters; COG, Clusters of Orthologous Groups; DE,
Differential Expression; EC, Enzyme Commission numbers; KO, KEGG Ortholog
groups
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