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Abstract 

Hidden Markov models (HMM) can describe the spatial and temporal characteristics of eye-tracking recordings in cognitive tasks. Here, we introduce a new HMM approach. We developed HMMs based on fixation locations and we also used image information as an input feature. We demonstrate the benefits of the newly proposed model in a face recognition study wherein an HMM was developed for every subject. Discovery of regions of interest on facial stimuli is improved as compared with earlier approaches. Moreover, clustering of the newly developed HMMs lead to very distinct groups. The newly developed approach also allows reconstructing image information at each fixation. 
Keywords: Eye-tracking; Face Recognition; Hidden Markov Model; Machine Learning;  

Introduction 
Eye movements provide a direct insight into ongoing 
cognitive processes. Although mental processes cannot be 
observed per se, recording eye movements is an unobtrusive 
measurement of what a person is processing at a particular 
moment. Thus, eye tracking can be used to study attention, 
memory, language, problem solving and decision making. 
There exist different approaches to analyze eye-tracking 
recordings. Below, we summarize common eye movement 
analysis techniques in face recognition. 

Face recognition is a cornerstone process of meaningful 
social interactions since it helps us to identify familiar 
individuals irrespective of the viewpoint, lighting conditions 
and emotional expression of a face. In previous studies, 
attempts have been made to better understand the spatial 
and temporal characteristics of face recognition. 
Spatial eye-tracking analyses 
One goal of studies on eye-tracking in face recognition is to 
identify which facial regions people look at when 
successfully recognizing another person. There exist 

different approaches for doing so. In a region of interest 
analysis, the percentage of fixations on a predefined region 
of interest (ROI) is computed (Henderson et al., 2005). 
However, there exists a lack of an objective way to identify 
ROIs. Statistical fixation maps aim to close this gap by 
constructing ROIs in a data-driven way. 

A statistical fixation map can be constructed by plotting 
all fixations of a subject on an average face, with fixations 
being subsequently smoothed by convolving Gaussian 
kernels. Using fixation maps, it was shown that more 
fixations are placed on the nose area and the eye region 
compared with other areas (Caldara & Miellet, 2011; Hsiao 
& Cottrell, 2008). 
Temporal eye-tracking analyses 
Face recognition is a process that can span over several 
seconds. Therefore it is important to understand the temporal 
characteristics as well. An early attempt to do so was the 
scan path theory (Noton & Stark, 1971). According to the 
theory, fixations are made on facial features in a sequence 
(scan path). For the same stimulus, the same sequence 
emerges. Studies have shown that this assumption does not 
always hold. For example, Walker-Smith and colleagues 
(1977) showed that the same scan path only emerges about 
65% of the time when the same stimulus is presented. 

Fixation locations during face recognition do not follow a 
strict, a priori planned path. More precisely, it has been 
indicated that saccades are constantly influenced by top-
down (Yarbus, 1965) and bottom-up inputs (Mannan, 
Ruddock, & Wooding, 1997). It can be argued that eye 
movements can be treated as a Markov stochastic process. In 
this process, the future state depends only on the current state. 
Probabilistic time series models are a good fit for 
understanding eye-movement strategies (Chuk, Chan, & 
Hsiao, 2014).  
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Hidden Markov Models 
Chuk and colleagues (2014) proposed to use a statistical 
time series model, the hidden Markov model (HMM) to 
analyze eye movement recordings in cognitive tasks. The 
model has several advantages over existing analysis 
techniques. It combines spatial and temporal analyses, and 
it produces data-driven ROIs, which can be of different 
size. Furthermore, the model accounts for individual 
differences by identifying subject-specific ROIs and 
transition probabilities. 
 

 Figure 1: The Figure shows a hidden Markov Model with its 
prior values and transition probabilities. The red, blue and 
green ellipses on the face represent the hidden states. The 
table shows the prior values (i.e. the probability that the first 
fixation is at a given hidden state). The transition 
probabilities indicate the probability that a subject’s fixation 
moved from one hidden states to another. The Figure is 
obtained from Chuk and colleagues (2014). 
 

An HMM summarizes a subject’s eye-fixation strategies 
(Figure 1). First, the regions of the face where the most 
fixations were present are identified (hidden states). In 
Figure 1, one hidden state is between the eyes, one hidden 
state is below the right eye and one hidden state covers the 
lower nose and mouth region. The locations of hidden states 
are estimated from the fixation locations. The HMM 
describes the participant’s eye fixation strategy by the 
transition from one hidden state to another hidden state. The 
HMM specifies the prior probabilities of the initial 
fixation’s hidden states (prior probability vector). The 
transition matrix describes the probability of moving from 
one hidden state to another hidden state. More precisely, 
when a subject’s fixation is at a certain hidden state, 
transition probabilities indicate at which hidden state the 
next fixation will be. 

It was shown that HMMs can successfully model spatial 
and temporal information and capture individual differences 
in face recognition strategies (Chuk, Chan,  & Hsiao, 2014;  
Simola, Salojarvi, & Kojo,  2008; Wedel, Pieters, & 
Liechty, 2003). In Chuk and colleagues (2014), an HMM 
was developed for each subject to describe the individual’s 
eye-movement patterns. Individual differences were found 
in both fixation locations and transition probabilities. 
Moreover, the eye-movement strategies of participants could 
be classified into one of two groups, namely holistic and 
analytic, demonstrating individual differences even within 
the same culture. In addition, it was also shown that correct 
and incorrect recognitions were associated with distinct 
HMMs. The main difference between the two groups of 
HMMs was found in the transition probabilities. 
 

Hidden Markov models with fixation locations and 
image information 
Fixation locations were the input for the HMM model by 
Chuk and colleagues (2014). 2-D Gaussians were fitted to the 
fixation locations to identify regions of interest on the face. In 
the present study, we propose a new way to identify hidden 
states. We suggest identifying hidden states based on both 
fixation locations and image information. The newly 
proposed input features advance the original model in 
several ways. 

First, fixation locations alone are not always the optimal 
input features because they can be compromised. 
Recordings with an eye-tracker are not always accurate and 
over- and undershooting by the eye itself can further 
introduce noise to the fixation locations. Including image 
information as an additional input feature ensures that 
hidden states are identified based on fixation locations and 
corresponding observed visual stimuli. 

Secondly, including image information makes the model 
more expressive. Fixation location and image information do 
not always closely correspond. In other words, we are able to 
better discriminate between fixation locations that are similar 
regarding their coordinates but correspond to different facial 
features. Thirdly, face stimuli vary slightly. In Figure 2, it 
can be seen that a position with a given coordinate can 
correspond to different facial features. Fixations of a hidden 
state in the newly proposed HMM will be similar in both 
fixation location and observed image patch. 

 

 Figure 2: The Figure illustrates the variation in the structure 
of faces. On the left, the mean average face of all stimuli is 
shown. The three other images are parts of face stimuli that 
were used in the experiment. The blue star is located at 
X=168, Y=363. Although the location is exactly the same, 
the point belongs to slightly different areas of the face 
(corner of the mouth vs. area below the mouth). 
 

In short, the newly developed HMM will advance the 
original model in three ways. First, it allows the 
identification of regions of interest on the face more 
accurately. Second, the current approach allows us to read 
out the image information for every hidden state. We are 
able to better understand what kind of image information a 
participant used during face recognition. As a final step, we 
cluster the newly developed, individual HMMs to investigate 
group differences. 
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Methods 
Experimental Setup 
In the present study, the data by Chuk and colleagues (2014) 
was re-analyzed. More details can be found in the original 
paper. In short, participants had to perform a face 
recognition task. 32 Chinese subjects (16 males) 
participated in the experiment. The experiment consisted of 
two blocks. In the training block, participants were 
instructed to study faces (targets) and in the testing phase 
they had to recognize the targets among new faces 
(distractors). In the testing phase, participants indicated 
whether they recognized a face or not by pressing one of 
two buttons on a response pad. In order to familiarize 
participants with the experimental task, they needed to 
complete a very short practice version of the experiment. 
The EyeLink 1000 Tower Mount eye tracker was used to 
record the eye movements from participants. Before the 
start of the experiment, the standard nine-point calibration 
procedure was performed. At the beginning of each trial, a 
drift correction was performed. 

In the testing phase, face stimuli were displayed for 5 
seconds within which participants were required to respond. 
The stimulus set consisted of 40 (20 males) gray scale 
frontal-view Asian faces. The faces had a neutral 
expression. Stimuli had an inter pupil size of 60 cm and 
they were all cropped to a size of 320 x 420 pixels. The 
screen was viewed at a distance of 60 cm. The horizontal 
visual angle was 6 degrees and the vertical angle was 8 
degrees. Faces were aligned by vertical and horizontal eye 
positions. Participants were not familiar with the face 
stimuli. 
 
Data Analysis 
Input features The fixation location and the corresponding 
image information were used as input for the model. For 
every fixation, we extracted a 50x50 pixel image patch 
around the fixation location on the face stimuli. The image 
patch was foveated using the formula from Geisler and 
Perry (1998). More precisely, the spatial resolution of the 
visual system strongly decreases away from the fixation 
location. Geisler and Perry (1998) developed a foveated 
multiresolution pyramid which transforms every image into 
5-6 regions of different spatial resolutions (see Figure 3). We 
performed a Principal Component Analysis (PCA) on all 
image patches for the purpose of dimensionality reduction. 
All image patches were converted to vectors. PCA was used 
to identify its principal components of the set of images. 
Each image patch was represented with its principal 
component coefficients, which we used as input features for 
the HMM. 

HMMs with a different number of PCA coefficients can 
be learned. Firstly, we developed an HMM with a partial 
representation of image information. 5 coefficients account 
for 78.43% of variance in the stimuli. For this model, we used 
the X- and Y-fixation locations and the first 5 PC coefficients  

 

 Figure 3: On the left, the eigenvalues for the first 50 
eigenvectors are shown. The second image to the left shows 
an extracted 50 x 50 pixels image patch which was foveated 
using the formula by Geisler and Perry (1998). The two 
images on the right show the reconstruction of the original 
image using 5 and 30 coefficients respectively. 
 
as input features. The 5 PC coefficients help to obtain 
hidden states which tend to be similar in image information. 

Secondly, we built an HMM with the purpose to obtain 
improved individual HMMs and to reconstruct the perceived 
visual stimuli per hidden state. The first 30 components are 
used as features. They account for 96.62% variance. We 
matched the number of fixation dimensions with the 
number of image information dimensions to ensure equal 
weighting. More precisely, to match the 30-dimensions of 
the PCA representation, we replicated the X- and Y-
coordinates of the fixation 15 times. We did this to balance 
the influence of the fixations locations and image 
information on the positioning of the centers of the hidden 
states. The final feature vector has 60 dimensions. The 
model with 30 coefficients helps to obtain image patches 
that are highly similar in image information in a hidden state 
and furthermore allows reconstructing image information at 
the fixation. 

 Hidden Markov Model An HMM was estimated for every 
participant. Parameters of the HMM were estimated in a 
two-stage process. Firstly, regions of interest (ROIs) were 
estimated by learning a Gaussian mixture model (GMM) on 
the feature vectors. Each Gaussian component in the GMM 
corresponds to one ROI. The variational Bayesian framework 
for Gaussian mixture models (VBGMM) was used to 
estimate the number of GMM components and Gaussian 
parameters (Bishop, 2006). The VBGMM puts priors on the 
GMM components and on the GMM parameters, and it tries 
to find the maximum a posteriori (MAP) estimate. The first 
step was repeated 2000 times. The model with the highest 
log likelihood was chosen. Models where a hidden state had 
a component weight below 0.1 were rejected. In a second 
step, the transition and prior probabilities of the hidden 
states are estimated using the forward-backward algorithm 
(Bishop, 2006). 

 Clustering HMMs First, we developed HMMs for every 
participant to model their individual eye-movement strategy 
during face recognition. In a second step, we investigated if 
there exist different groups of eye movement patterns among 
participants. To cluster HMMs, we used the variational 
hierarchical EM algorithm (VHEM) for HMMs (Coviello, 
Chan, & Lanckriet, 2012, 2014). The VHEM clusters 
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HMMs into groups and presents common ROIs and 
transitions for each group. Moreover, heat maps were 
developed using the fixations of all subjects clustered 
together. We applied the VHEM algorithm to HMMs with 
partial image information. 
 

Results 
HMM with full image representation 
Regions of Interest   Figure 4 shows a comparison of the 
different HMMs that were obtained using the fixation-only 
input features and the input features consisting of fixation lo- 
cations and image information for the first subject. The HMM 
which was developed only using fixation sequences has 
hidden states which closely correspond to the heat map. 
Hidden state 2 covers a great part of the central face and 
therefore makes it difficult to understand where exactly the 
fixation was present. The hidden states of the HMM with 
the newly proposed input features correspond to facial 
features rather than to the heat map. The first hidden state is 
clearly located on the nose and the second hidden states is 
on the cheek next to the nose. Moreover, the third hidden 
state covers the right eye and the fourth hidden state is on 
the mouth. The HMM with the newly proposed input 
features seems to better capture the regions of interest on the 
face stimuli of the first subject. 
 

 
Figure 5: Images show the reconstructions of the image 
patches per hidden state. The top panel shows the 
reconstructions of the fixation-only HMM. The bottom panel 
shows the reconstructions of the image patches of the newly 
proposed HMM. 
 
 
Reconstructions of image information Figure 5 shows 
the reconstructions of the image information for each hidden 
state of the HMM with the newly proposed input features 
(bottom panel). It is possible to identify important face 
regions. The first reconstruction shows the center of the 
nose and the second reconstruction shows the right side of the 
 
 

Figure 4: The Figure shows the fixation heat maps and overlaid HMMs of the first subject. Moreover, prior values and 
transition probabilities are shown. On the left, an HMM was developed only using fixation locations as input. On the right, 
we developed an HMM with input features consisting of fixation locations and full image information (30 coefficients). 
The first HMM has hidden states that closely correspond to the heat map. In contrast, the second HMM has hidden 
states that center more on facial features. 
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nose and parts of the right cheek. Reconstructions from the 
third and fourth hidden state show the right eye and the 
mouth respectively. The newly proposed model allows 
reconstructing the perceived visual stimuli at fixation, 
although reconstructions are not always very clear. We 
compared the reconstructions from the newly proposed 
HMM with reconstructions by the fixation-only HMM. In 
the top panel, averaged image patches from the hidden states 
of the fixation-only HMM are shown. They look more 
washed out and noisy than the reconstructions from the new 
model.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HMM with partial image representation 
Group Differences In Figure 6, results of the HMM 
clustering are illustrated. After having developed HMMs for 
every participant, the VHEM algorithm was used to cluster 
the HMMs into groups to investigate if different fixation 
strategy groups exist. The top panel shows clustering results 
of the HMMs which were solely developed using fixation 
locations. Two different clusters exist. The HMM which is 
representative of the first cluster (top panel, left HMM) has 
hidden states which cover a large part of the central, upper 
area of the face. The hidden states of the second cluster (top 
panel, right HMM) are located more in the central area of 
the face. 

Figure 6: The Figure shows the VHEM clusters for HMMs which were developed based on fixation locations (top 
panel) and HMMs developed using fixation locations and image information (bottom panel). Heat maps summarize 
fixation locations of all participants who are part of a given cluster. VHEM clusters and the difference in heat maps of 
the latter are much more distinct. Prior and transition probabilities are rounded to two decimal places. 
 

1036



The VHEM clusters obtained from the HMMs with partial 
image information are much more distinct. The first group 
(bottom panel, left) has three hidden states centered on the 
eye area and one hidden state on the mouth area. The HMM 
representative of the other VHEM cluster has all its hidden 
states on the nose area. 

Visually, there exists a clearer difference in heat maps for 
VHEM clusters of HMMs with partial image information 
(bottom panel). The heat map of the first cluster indicates that 
many fixations fell on the eye area. The heat map of the 
second clusters shows that most fixations were on the nose 
area. The difference in heat maps of the VHEM clusters of 
HMMs without image information is less pronounced (top 
panel). In short, it is clear the clustering of HMMs with 
partial image information resulted in much more distinct 
clusters than the clustering of HMMs without image 
information  

Discussion 
In the present study, a new HMM approach is introduced. 
We showed that using image information in addition to 
fixation locations as input features has several benefits. The 
newly developed HMMs have better ROIs which are based 
on fixations that are similar in fixation location and image 
information. Moreover, the newly developed HMMs with 
full image representations allow to reconstruct the image 
information that was associated with each ROI. Lastly, 
clustering the newly developed HMMs resulted in very 
distinct groups confirming the findings by Chuk and 
colleagues (2014). The newly introduced HMM approach 
can be used for different cognitive tasks to investigate 
spatial and temporal characteristics of eye-movement 
strategies. 
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