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Abstract—Network protocol performance is closely related to
the available information about the network state. However,
acquiring such information expends network bandwidth resource.
Thus a trade-off exists between the amount of information
collected about the network state, and the improved protocol
performance due to this information. A framework has been
developed to study the optimal trade-off between the amount of
collected information and network performance. However, the
effect of information delay is not considered. In this paper, we
extend the framework to study the impact of information delay
on the value of network state information to network protocols,
and based on which optimal periodic information update policies
could be obtained. The framework is illustrated by an example
of multiuser scheduling, and observations about the impact of
information delay on network protocols are obtained.

I. INTRODUCTION

It is well known that communication protocols require
network state information. Intuitively, with more network
information collected, better network performance could be
achieved. However, the information collection process oc-
cupies valuable bandwidth resource, which results in less
bandwidth for data transmissions. Therefore, there is a trade-
off between the resource used for information collection
and the performance improvement due to this knowledge. In
[1], we developed a framework to analyze the relationship
between the amount of collected information and network
performance, based on which the optimal bandwidth resource
allocation scheme could be designed. The work in [1] assumes
instantaneous acquisition of network state information, i.e.,
there is no delay between the time of information collection
and the time of information utilization. In many scenarios,
however, this assumption is not true: first, it takes time for
the collected information to be transported to the place where
it is to be utilized; in addition, information is generally not
updated instantaneously. As the network state changes over
time, this delay makes the information outdated and inac-
curate, rendering the information less valuable and probably
resulting in degradation of network performance. Thus, it
is important to understand how the time delay affects the
value of collected network information and hence the optimal
bandwidth resource allocation scheme. Specifically, we wish
to discuss the following questions: Q1: what is the amount of
required information to achieve certain network performance
when the information is subject to delay? Q2: assume time-
varying network states, how often should the information be

updated, and how much information should be collected each
time to optimize the overall bandwidth efficiency?

In this paper, we extend the general framework developed
in [1] to analyze the above two questions. By applying it to a
multiuser scheduling problem, we demonstrate how the delay
affects the value of the collected channel state information
and the optimal resource allocation schemes. The results
provide some general guidelines on the design of information
collection schemes in time-varying networks.

The paper is organized as follows. Section II reviews the
related work. Section III introduces the framework used to
solve this problem. Section IV gives an example as illustration
and Section V concludes the paper with suggestions for future
research.

II. LITERATURE REVIEW

The impact of outdated information on network perfor-
mance has been addressed in different research areas. Work
has been done to investigate the impact of delayed feedback
Channel State Information (CSI) on the capacity of various
wireless channels, including finite-state Markov channel [2],
multiuser MIMO system [3] and finite-state Multiple Access
Channels [4]. The authors in [5] showed that completely
outdated information is still useful to provide multiplexing
gain for a MIMO broadcast channel. There are also discus-
sions on how delayed information affects the performance
of network-wide protocols. For example, [6] studied the
maximum throughput of opportunistic multiuser scheduling
with randomly delayed Automatic Repeat reQuest (ARQ)
feedback; [7] showed how link state information update fre-
quency affects the bandwidth blocking probability of multi-
path routing protocols; [8] analyzed the relationship between
the channel/queue information delay and the throughput region
of routing and scheduling in wireless network.

The above work focuses on analyzing the impact of infor-
mation delay on network performance. No partial information
collection is considered. Therefore, there is no discussion
on how the network performance changes with the quantity
of collected information when there is information delay.
Furthermore, the overhead of information collection is not con-
sidered. In our work, we wish to jointly consider the impacts
of partial information collection and information delay on
network performance, and give the optimal resource allocation
scheme for information collection and data transmission.



Finally, different from the above listed work, we will use a
general approach to tackle these problems as in [1].

III. THE FRAMEWORK

We introduce the analytical framework in this section.
Section III-A presents the framework to analyze the minimum
required information to achieve certain network performance
(the performance-rate relationship) with a given information
delay d. Section III-B studies the optimal performance-rate
relationship under a periodic information update scheme.

A. Performance-rate Relationship with Fixed Delay

Assume the network state (e.g., channel states, node traffic
states, etc.) at time ¢ is a random variable X, and the collected
information at time ¢ is Y;, where

Yy = f(X3) (D

The collected information Y; is transmitted to a decision
maker (e.g. a network controller or a single node that needs
to make a decision), and a protocol decision Z;,4 (e.g.,
scheduling/routing decisions) is made based on Y; at time t+d,

Zita = ha(Y2) 2

The expected network performance given functions f(-)
and hg(-) is denoted by G(f, hq). Let g(Xi+d, Zi+q) be the
network performance (e.g., throughput, packet delivery ratio)
given the true network state X;;4 and the protocol decision
Zi4q at time t 4 d. The expected network performance is then

G(f,ha) = E 9 (Xt+d, Zt+a)] 3

With Bayes’ decision rule, it is easy to see that the optimal
decision function given the collected information ¥, is
Zi+a = argmax B [g(X4a, 2) y]
4
4
— argmax S S plwily)p(@iraled)g(@ira z) P
# Tt4d Tt
where p(ziiq4|zt) is the probability that the network state
transits from x; at time ¢ to x444 at time ¢ + d.
As in [1], we use the entropy H(Y;) of random variable

Y; as a measure of the amount of collected information, and
H(Y;) is defined as

H(Y:) ==Y plyr) logs(v:) Q)

Yt

where p(y;) is the probability that Y; takes the value of y;.
Thus, to achieve a given performance guarantee G at time
t + d, the minimum amount of information required to be
collected at time ¢ is
R(G) = min H(Y})
[ ha (6)

s.t.

G(fa hd) Z G

Equation (6) can also be transformed into an unconstrained
optimization problem with A > 0:

min AH (Vi) = G(f, ha) (7)

By changing the value of A, we can obtain different trade-offs
of information collection quantity and the achieved network
performance.

Problem (7) is similar to the optimal entropy-coded quan-
tizer design problem [9], which could be solved by an iterative
approach that resembles the generalized Lloyd algorithm [9].

B. Periodic Information Update

We now consider the case where network state information
is updated periodically. Assume the information is updated
every T time units, and the information Y; collected at time ¢
is used during the period [t,t + T]. Several protocol decisions
are made at a series of distinct time instants within this
duration, e.g., at time ¢t + dy, t + do, ---, t + d,,, Where
t+d; € [t,t + T, and the decision functions are hg, (+), kg, (-),
-++, hg, (-), respectively. If all the decisions are weighted
equally, the average performance over this period is

m

R = 3 G ha) ®)
i=1

where h = (hay, Ry, -+, R, )

In some cases different decisions may not be weighted
equally. For example, the outcomes of some decisions last for
a longer period, thus they have higher impacts on the overall
network performance. We can assign different weights to the
performance functions to reflect those unequal impacts,

=1

where w; is the weight of the performance at time ¢ + d; and
we assume wi + wa + ... + w,y, = 1.

We use the average amount of information collected per
time unit H(Y;)/T as a measure of the overhead of informa-
tion collection. The minimum information required per time
unit to achieve a given average network performance is given
by

H(Y;
R(G) = min (¥%)
rar T

st. G(f,h)>@

(10)

Similarly, the optimal relationship between the average in-
formation per time unit and the average network performance
can be found by the following problem (A > 0)

H(Y,
min )\g —
fhT

G(f,h) (11)

IV. EXAMPLE

In this section, we use a multiuser scheduling problem to
illustrate the use of our framework. We first introduce the
scenario in Section IV-A, and then use the framework to
analyze the problem in Section IV-B, and finally present the
results in Section IV-C with discussions.



A. Scenario

Suppose a controller has data to transmit to N users.
Assume time is slotted and the length of each slot is L bit time
(L > N), where 1 bit time is the time taken to transmit 1 data
bit. The channel between the controller and an arbitrary user
is modeled as a stationary two-state Markov chain, i.e., the
channel state at any time is one of the two states { Good, Bad}.
This model is suitable to represent a channel with burst noise.
The channel state transits at the beginning of each slot. We
assume the transition matrix of the two-state Markov chain is
symmetric, i.e., Pr(Good|Good) = Pr(Bad|Bad) = p and
Pr(Bad|Good) = Pr(Good|Bad) =1 — p. Let p > 0.5, that
is, the states of the channel are positively correlated over time.
It is easy to see that the stationary probability distribution
of the channel state is Pr(Good) = Pr(Bad) = 0.5. We
assume that the channels between the controller and the users
are independent Markov chains with identical statistics.

We consider the case where the controller can transmit
data to only one user each time. Suppose at the beginning
of Slot tq state transitions occur. Then the controller collects
channel state information from the users (e.g. by probing the
channels) and chooses one of them to transmit data based
on the collected channel state information at ¢3. We use
throughput to measure the network performance'. Assume the
data throughput is 1 data bit per bit time if the channel is Good,
and is O data bit per bit time otherwise. The data transmission
session ends at the beginning of Slot ¢y + 7', when the channel
state information is updated again and a new user is selected
for data transmission based on the updated information at time
to+T.

B. Analysis

Denote the true network state at the beginning of Slot %y
by X = (X1,Xs, -+ ,Xn), where X is the channel state of
User ¢ in Slot ¢y, and X; = 0 and 1 represent the events that
the channel is in Bad and Good states, respectively. Channel
state information is collected from the users independently.
The collected information from User ¢ at time ¢y is denoted
by Y;, and Y; = f;(X;). Since X; only has two states, there are
only two options of f;(-): (1) Y; = X; (complete information
is collected from User 7); (2) Y; = __ (no information is
collected from User 7). We use Y = (Y1,Y2,--- ,YN) to
represent all the collected information.

Since the random variables Y; are mutually independent, the
total quantity of collected information is H(Y) = > HY).
When Y; = X;, H(Y;) = H(X;) = 1 bit since Pr(X; =
1) = Pr(X; =0) =0.5;and HY;) = 0 bitif V; = __.
Therefore, when complete channel state information of K
users are collected, the total amount of information updated
at Slot ¢ty is K bits, and the average amount of collected
information per time slot is

K

Rave = ? (12)

'We use throughput in this paper to measure the performance of the
duration for data transmission, i.e., the overhead of information collection
is not considered.

The user selection scheme with K bits channel state infor-
mation collected is as follows:

1) If at least one of the K channels is in Good state, select
one Good channel to transmit data;

2) If none of the K channels are Good, select a user
randomly from the remaining N — K users (if N > K)
or from the N users (if N = K) to transmit data.

The above user selection scheme maximizes the expected
throughput of Slot ¢y + d (for any finite d > 0) given
information Y. Since we assume positively correlated Markov
channels, a channel known to be Good is more likely to be
Good after d slots than an unknown channel; similarly, a
channel with unknown state is more likely to be Good after d
slots than a channel known to be Bad. The above user selection
scheme always chooses a user that has the highest conditional
probability to be Good given Y, therefore it is optimal.

Performance at Slot ty+d: First we discuss the temporal
change of the value of information, i.e., given the amount of
collected information, how the system performance changes
as time passes.

Assume channel state information is collected from K users
at Slot to. The throughput at Slot ¢y + d is

Gg= om"gi_w +(1- Oé)ﬂ'g (13)

where o = 1 — 0.5% is the probability that at least one of the
K channels is in Good state at Slot ¢g; wg g is the conditional
probability that a channel is in Good state at Slot ¢+ d given
that it is Good at Slot t(; and wg is the probability that the
selected channel is Good at Slot 3 + d when none of the K
channels are Good at Slot ¢g.

We first consider the case N > K. We have wg = 0.5.
Based on the transition matrix of the Markov chain, we can

calculate the value of Wg g @S follows (for d > 1):

Ty = (1—mgS ) (1 —p) +mgyp

=1-p+2p—)rl} (1
By using the above recurrence relation, we can get
d—1
Ty = (=P P =)+ G-, o
i=0

=0.54+0.5(2p —1)¢

where we use the formula for the sum of geometric series and
the fact that 7y, = 1.
Therefore, we have the value of G4 as

Gq=0.5+0.5(1—0.55)(2p — 1)¢

When N = K, n = m ,  where m ,  is the conditional
probability that a channel is in Good state at Slot £y +d given
that it is Bad at Slot ¢y. From Equation (15) and the symmetry

of the Markov chain, we have

(16)

T, =05—05(2p—1)" (17
and we can obtain the value of G4 when N = K
Gg=0.5+0.5(1—055"1)(2p —1)¢ (18)
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Fig. 1: The network throughput G4 as a function of d and p
with K =5 and N =10

Note that Equations (16) and (18) apply to all p € [0.5, 1] and
d>0.

Average Throughput of Data Transmission: We next
calculate the average throughput of the data transmission
duration. Since the information collection process costs K bit
time, the data transmission duration of Slot ¢y is L — K bit
time; all the remaining L(7 — 1) bit time within this period of
T slots is used for data transmission. The average throughput
of the data transmission duration is

LY Ga— KGo
TL-K
which is a weighted average of the values of G4 with different

delay d.
The optimal trade-off between R, and G,,. can be

obtained by varying the value of A (A > 0) in the following
problem

Gave = (19)

G(L’UG

min AR,pe —
T

)

(20)

Net Data Rate: The net data rate, denoted by R, is
calculated as

T—1

_ LY a9 Ga— KGy
TL

We can obtain the optimal resource allocation scheme, i.e., the

optimal values of K and 7T, by maximizing R, in the above
equation.

C. Results

1) Temporal Decline of the Value of Information: We first
plot the temporal decline of the network throughput G, as a
function of d and the state transition probability p in Figure
1.

As expected, the throughput declines as the delay increases
when p < 1. The decline rate is larger with a smaller value
of p since the channel state changes more rapidly in this
case. When p = 0.5, the channel states of consecutive slots
are independent, and throughput G4 drops to 0.5 for d > 1

R.

ey

1, - . Y
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i T=8§
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4 6 8 10
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Fig. 2: The Relationship between R, and Gg,e (L = 15,
N =10, p = 0.85)

indicating that the collected information becomes completely
useless when it is independent from the channel states’.

When p = 1, the channel stays in the same state forever,
and the throughput remains constant.

2) The Relationship between Rg,. and Ggy,.: Figure 2
illustrates the relationship between R,,. and Ggy.. The red
solid line with dotted markers represents the optimal average
performance G, that could be achieved given information
Rave by considering all possible values of T" and K. This line
is obtained by finding the upper convex hull of all the G-
R,y curves with different values of T'. Figure 2 also plots the
Gave-Rave curves with T'=1,3 and 5.

In general, the optimal average throughput G, increases
as more information is collected. However, when the value of
T is fixed (e.g., T = 3), the average throughput can decrease
if too much information is collected. This is counter to our
intuition that more information can result in better network
performance, which is shown to be true when no information
delay is considered [1]. The drop of network performance here
is not due to the resource occupied by information collection,
since Gy represents the throughput of the data transmission
duration itself without considering the overhead. The value of
Gave drops here because the information collection process
postpones the time of information utilization, which increases
the information delay, thus reducing the information’s value
to network protocols.

3) The Optimal Resource Allocation Scheme: We discuss
the optimal resource allocation schemes in this part. In Tables
I to III, we give the optimal values of 7" and K under different
network conditions.

In Table I, with NV and L fixed and the transition probability
p increasing, both of 7" and K* increases. This means, when

2In [5], the authors show that completely stale information can be useful.
Their model is different from ours, since the network performance in their
case is not only a function of the current state and the protocol decision (as
in our model), but also depends on the past channel states.



TABLE I: Optimal Resource Allocation (N = 10, L = 15)

H T | K

p=075 || 1 2
p=0851| 2 | 3
p=095| 4 | 4

TABLE II: Optimal Resource Allocation (N = 5, p = 0.8)

H T | K+
L= 3 2
L =12 2 3
L =18 1 3
L =50 1 4

TABLE III: Optimal Resource Allocation (L = 20, p = 0.85)

H T | K*
N =3 1 2
N = 2 3
N =20 2 3

the network states change more rapidly (smaller p), the optimal
information collection scheme is to update less information
each time since the information will become useless quickly,
and update more frequently to keep track of the network states.
When the network conditions become more stable, the benefit
of collecting more information can last for a longer period,
thus there is no need to update information frequently.

Table II shows that more information should be collected
(i.e., increase the update frequency and the amount of informa-
tion updated each time) when the duration of the slot becomes
longer. This is because the relative overhead of collecting
information decreases as L grows, and the benefit of collecting
information (i.e., increase data throughput) is more significant.

In Table III, we keep the values of L and p fixed and
increase the network size. The results show that more in-
formation is collected each time as the network size grows.
This is because, when the network is small, there are only
limited number of users available for the controller to collect
information to locate a good channel; as the network size
increases, more channels exist in the network, which allows
the controller to search more users and hence find a good
channel with higher probability. This increase of K*, however,
saturates quickly as IV grows, reflecting that the network size
no longer constrains the controller’s search scope. As shown
in Table III, when collecting more information each time, the
controller may decrease the update frequency, as long as the
increased throughput can compensate the loss due to non-
instantaneous update.

V. CONCLUSIONS

In this paper, we discussed the impact of information delay
on the relationship between the amount of collected state

information and network performance, and hence its effect
on the optimal resource allocation scheme. We extended the
framework in [1] to calculate the optimal performance-rate
relationship when there is a fixed information delay. By
assuming a periodic information update policy, the framework
can give the optimal trade-off between the average information
collected per time unit and the average network performance
over the update period, based on which the optimal resource
allocation scheme (i.e., the optimal information update fre-
quency and the amount of information updated each time)
could be derived.

The framework is illustrated with an example of multiuser
scheduling, and some observations about the impact of in-
formation delay on network protocols are obtained. First,
when there is information delay, more information collection
may not result in higher network performance given a fixed
information update period. Second, for a network with rapidly
changing states, information should be updated frequently
while only a small amount of information should be collected
each time. Finally, as the slot length increases, more informa-
tion should be collected.

In this work, we assume the information updates at different
times are independent; that is, the controller does not have
memory of the collected information in the past. However,
since the channel states are temporally correlated, it would
be more efficient if the controller has memory and decides
the information update plan based on the past collected infor-
mation. We would like to account for memory effects in the
framework in our future work.
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