
Title Flexible download time analysis of coded storage systems

Author(s) Shuai, Q; Li, VOK

Citation
The 9th ACM International on Systems and Storage Conference
(SYSTOR 2016), Haifa, Israel, 6-8 June 2016. In Conference
Proceedings, 2016

Issued Date 2016

URL http://hdl.handle.net/10722/232295

Rights
This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.; Author
holds the copyright

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HKU Scholars Hub

https://core.ac.uk/display/80964728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Flexible Download Time Analysis of Coded Storage Systems

Qiqi Shuai Victor O.K. Li

Electrical and Electronic Engineering Department, The University of Hong Kong

{qqshuai, vli}@eee.hku.hk

Categories and Subject Descriptors D.4.3 [File Systems

Management]: Access methods

Keywords Systematic code, MDS property, Flexible read,

Download latency

1. Introduction and Motivation

Download time is a key performance metric in distributed

storage systems since it greatly impacts user experience, es-

pecially for latency-sensitive applications such as Google

Search and so on. Recently, plenty of research has pointed

out that coding can reduce download time. Till now, almost

all previous studies analyze download time when a user re-

quires all the information in a codeword. However, in prac-

tical storage systems such as the Windows Azure Storage

System (WAS), only when files reach a certain size (e.g.,

1GB), will it be a candidate for erasure coding [1]. That is, in

practice, files stored in a codeword are usually very large and

users’ requests may only desire part of these files. Therefore,

it is significant to analyze the latency performance when

users only request a subset of the erasure-coded content.

2. Model Description

We focus on a systematic (n, k) MDS-coded storage system,

in which each codeword consists of k data nodes and n − k

parity nodes and any k out of the n nodes can reconstruct all

the information in the codeword.

In this work, we propose a method called flexible read

which not only takes advantage of both direct and k-access

reads [2] but also reduces latency flexibly according to users’

required size of files from a codeword. With flexible reads,

when a read request which desires d out of the k data nodes

arrives, it is sent to all the n nodes. The request is complete

if the d desired data nodes finish their services or any k out

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

SYSTOR ’16, June 06-08, 2016, Haifa, Israel

ACM 978-1-4503-4381-7/16/06.

http://dx.doi.org/10.1145/2928275.2933278

of the n nodes finish their services and the unfinished read

tasks are cancelled immediately.

3. Performance Evaluation

We evaluate the latency performance of flexible reads with

real service time traces from Amazon S3. These traces are

for reading files of 1MB in size from an S3 bucket, located

in the Northern California. We take the download latency

over 1 million sample paths for each experiment.

We first compare the average latency of direct, k-access

and flexible read methods. We observe that flexible reads

can always achieve the best latency performance, and when

d = k, flexible read is equivalent to k-access read. It is

also noted that the average latency of direct reads is much

higher than that of the others, especially when d is big. This

is because a direct read needs all the d required nodes to

finish their services while k-access and flexible reads enjoy

the diversity benefit of coding, which results in decreased

average latency.

Then we present simulation results demonstrating the

fundamental tradeoffs between storage cost, required num-

ber of nodes d, average latency and latency volatility with

flexible reads. Fixing n = 10, as k increases, the storage

cost decreases while the average latency increases. As k in-

creases, the possible number of sets of k out of the n nodes

decreases, thus losing the diversity benefit of coding and

leading to higher latency. When d increases, the average la-

tency also increases since bigger d results in higher latency

for the d required nodes and causes higher average latency

for flexible reads. Besides, we also observe that, when n = k

the latency volatility increases as d increases while latency

volatility decreases as d increases when k < n.

These tradeoffs can be used to meet the latency con-

straints on content download in distributed storage systems.

References

[1] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan,

J. Li, S. Yekhanin, et al. Erasure coding in Windows Azure

storage. In USENIX ATC, pages 15–26, 2012.

[2] Q. Shuai and V. O. Li. Delay performance of direct reads in dis-

tributed storage systems with coding. In the 17th International

Conference on High Performance Computing and Communica-

tions (HPCC), pages 184–189. IEEE, 2015.


