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Abstract—This paper deals with control of a linear magnetic-

geared permanent-magnet machine for Archimedes wave swing 

based wave power generation using maximum power point 

tracking (MPPT). Firstly, the linear magnetic-geared permanent-

magnet generator structure is presented. The machine modeling 

is established based on finite element analysis (FEA). Secondly, 

by analyzing the dynamic model of wave power, the MPPT 

algorithm for direct-drive wave power generation is developed. 

Then, the performance for maximizing wave power absorption is 

verified and evaluated by the circuit simulator. The results verify 

that the MPPT algorithm is valid for the direct-drive wave power 

generation. 

Keywords—Linear generator; magnetic gear; maximum power 

point tracking; complex-conjugate control; wave power generation 

I.  INTRODUCTION 

As a clean and sustainable resource, wave energy attracts 
more and more attention due to fossil energy crisis and the 
negative side effects of the traditional resources. Consequently, 
the development of wave power generation becomes a hot 
issue. Since direct-drive wave power generation technique 
eliminates mechanical gearboxes and the corresponding 
mechanical devices for speed, force and motion conversion, it 
has been widely accepted in recent years. Due to the low-
frequency and huge-force characteristics of the wave power, 
selection of a suitable electrical generator is vital for this 
application [1]-[4]. Due to the high-force/torque density and 
high efficiency, permanent-magnet (PM) machines are the best 
candidates for this application [5]-[10]. However, for ultra-low-
speed machine design, PM machines have some limitations in 
manufacture. In recent years, magnetic gears have been 
proposed and developed which can transmit the torque and 
speed without physical contact [11]-[18]. With the magnetic 
gears, the low-speed PM machines design can be converted 
into a high-speed machine design issue [19]-[22]. Recently, a 
linear magnetic-geared permanent magnet machine was 
proposed and evaluated which shows its effectiveness for 
direct-drive wave power generation [23]. 

The purpose of this paper is to implement a linear 
magnetic-geared permanent-magnet generator for direct-drive 

wave power generation. By using maximum power point 
tracking (MPPT) algorithm [24]-[26], the absorbed power by 
the generator can be maximized and optimized [27]. Section I 
introduces the linear generator and its mathematical modeling. 
In Section III, the MPPT algorithm, namely the complex-
conjugate control algorithm, is presented. In Section IV, the 
performances of wave power generation using this MPPT 
algorithm is verified and evaluated. 

II. LINEAR MAGNETIC-GEARED PERMANENT-MAGNET 

GENERATOR 

There are two different ways for integrating the linear 
magnetic gear with the linear PM machine. By sharing the 
same translator, the high-speed mover of the linear magnetic 
gear can be mechanical coupled with the translator of the 
linear PM machine in series or parallel style. For the series 
integration, the two moving parts are magnetically decoupled 
and can be designed individually. Therefore, this way is more 
flexible. For the parallel integration, the integrated geared-
machine is much more compact which may results in three air-
gaps and the two moving parts usually are magnetically 
coupled. In this paper, as shown in Fig. 1, the series 
integration of the magnetic-geared machine is chosen since the 
two machines are magnetically decoupled. The mathematical 
modeling for the magnetic-geared machine can be established 
independently. 
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Fig. 1. Linear magnetic-geared permanent-magnet generator. 
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A. Linear Magnetic Gear 

Compared to the mechanical counterparts, the magnetic 
gear has the following advantages: high force density, high 
efficiency and high reliability, low acoustic noise, inherent 
overload protection, and free of maintenance. As shown in 
Fig. 1, the linear magnetic gear consists of two moving 

partsthe high-speed mover and the low-speed mover and one 

stationary partthe stationary rings for field modulation. PMs 
are surface-mounted on the high-speed mover and the low-
speed mover. The stationary rings consist of iron lamination 
only. In this design, the pole-pair number of PMs on the high-
speed mover and low-speed mover are 4 and 23. The number 
of field modulation segments is 27. Thus, the magnetic gear 
ratio is 5.75. 

For each mover of the linear magnetic gear, the force 
exerted on the mover parallel to the motion direction consists 
of two components, namely the force developed by two 
magnetic fields interaction and the cogging force generated by 
the magnetic field and the stationary modulation rings. The 
thrust of the low-speed mover can be expressed as: 

)()()( xFxFxF LCogLHLem     (1) 

where the first item is due to the interaction between the 
modulated magnetic field of PMs on the high-speed mover 
and the fundamental magnetic field of PMs on the low-speed 
mover. 

Similarly, the thrust of the high-speed mover can also be 
given by: 

)()()( xFxFxF HCogHLHem     (2) 

As shown in Fig. 2, the force characteristics of the linear 
magnetic gear are obtained using the finite element analysis 
(FEA) when the high-speed mover travels at 1 m/s and the 
low-speed mover is kept stationary. From this information, the 
first item of (2) and (3) can be determined. Similarly, the 
cogging force components can also be calculated. 
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Fig. 2. Linear magnetic-gear force characteristics. 

B. Linear Permanent-Magnet Generator 

The linear PM machine adopts the conventional PM 
synchronous machine which has 10-pole and 12-slot 
configuration. The 5-pole-pair PMs are surface-mounted on the 

translator. For minimizing the cogging force, the stator adopts 
an ironless configuration. Six sets of the 3-phase winding are 
concentrated-wound in the stator.  

Fig. 3 illustrates the no-load electromotive force (EMF) 
waveforms via FEA. The winding inductances are also 
computed based on FEA. The self-inductance is 3.7 mH and 
the mutual-inductance is 0.37 mH. Therefore, the voltage 
equation is expressed as:  
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Similarly, the thrust of the linear PM machine can also be 
given by: 

)
2

1
(

dx

d
ii

dx

dL
ipF sT

ss
sT

sGem




  (4) 

qPMGem iF 




2

3


   (5) 

where Vo is the terminal voltage, ψs is the stator flux linkage 
matrix, ψPM is the stator flux linkage due to PMs, Ls is the 
stator inductance matrix, is is the stator current vector, x is the 
translator displacement, and rs is the stator winding resistance 

vector and  is the PM pole-pitch. Eq. (5) is the thrust 
expression in dq0-frame. 
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Fig. 3. No-load EMF waveforms of the linear generator. 

The linear magnetic-geared permanent-magnet generator is 
designed based on Table I. Based on (1)-(5), the mathematical 
modeling of the integrated generator can be established [28].  

III. MPPT ALGORITHM 

Since wave power is a variable power source with 
oscillating nature, how to maximize the absorbed power 
becomes an important issue. As shown in Fig. 4(a) and (b), for 
the point absorber, it has the vertical and horizontal motion 
which can make symmetrical and asymmetrical waves. 
Theoretically, by combining these two motions, the wave 
energy from incident waves can be fully captured. As shown 
in Fig. 4(d), based on the amplitude control and the phase 
control, the wave energy converter should have the same 
amplitude as the incident wave and whereas the phase angle is 
180 out of that of the incident wave. For the direct-drive wave 
energy converter, especially for those point-absorbers, since 
its movement only in the vertical direction is utilized, a half of 
the wave energy can be extracted for those monochromatic 
waves [29].  



TABLE I.  DESIGN DATA OF LINEAR MAGNETIC-GEARED MACHINE 

Gear outside diameter 120 mm 

Gear inside diameter 40 mm 

Gear active axial length 184 mm 

Gear low-speed mover outside diameter 120 mm 

Gear low-speed mover inside diameter 94 mm 

Mass of gear low-speed mover 8.76 kg 

Gear high-speed mover outside diameter 78 mm 

Gear high-speed mover inside diameter 40 mm 

Gear stationary ferromagnetic ring thickness 6 mm 

Mass of gear high-speed mover 4.9 kg 

Air-gap length 1.0 mm 

No. of active pole-pairs in low-speed mover 23 

No. of active stationary ferromagnetic rings 27 

No. of active pole-pairs in high-speed mover 4 

PM remanence 1.2 T 

No. of phases 3 

Rated voltage 100 V 

Generator stator inside diameter 60 mm 

Generator stator axial length 248 mm 

Generator translator outside diameter 58 mm 

Generator translator inside diameter 30 mm 

Generator translator active axial length 240 mm 

Mass of generator translator 6.3 kg 

Overall active axial length 368 mm 

 

(a)

(b)

(c)

(d)  
Fig. 4. Principle of wave energy extraction for a point-absorber. (a) Wave 

produced by a point-absorber in vertical motion. (b) Wave produced by a 
point-absorber in horizontal motion. (c) Incident wave. (d) Ideal case for wave 

energy extraction. 

The hydrodynamic model of the point-absorber is 
expressed as [30]: 

2

2

dt

xd
mFFFF dsre     (6) 

where Fe is the excitation force from the wave, Fr is the 
radiation force of the point absorber, Fs is the hydrostatic 
force, Fd is the damping force of the point absorber, m is the 
system mass and x is the displacement of the moving part. 

The radiation force is given by [30]: 
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     (7) 

where A() is the added mass around the buoy and B() is the 
energy loss due to the incident waves. 

The hydrostatic force is given by [30]: 

xgSF as     (8) 

where ρ is the density of water and Sa is the wetted area of the 
buoy. 

The damping force of the linear generator is given by [30]: 

Kx
dt

dx
Fd      (9) 

where  is the force coefficient related to the velocity and K is 
the hydrodynamic stiffness. 

Therefore, by combining (6)-(9), the excitation force of the 
coming waves can be expressed as: 
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The maximum power absorption is obtained when the 
natural frequency of the wave energy converter coincides with 
the wave frequency which means that the velocity of the 
point-absorber is in phase with the excitation force Fe. In the 
electrical analogue [31], the impedance of the linear generator 
should be the complex conjugate of the wave energy 
converter: 

*

WECLG ZZ     (11) 

Therefore, by forcing the wave energy converter in 
resonance with the waves, the absorbed power can be 
maximized. This algorithm is called “complex-conjugate 
control” which is also known as “reactive control”. 

IV. PERFORMANCE VERIFICATION 

For verifying performances of MPPT algorithm for 
proposed linear magnetic-geared generator, the linear 
magnetic-geared is connected to a dc source via a voltage 
source converter (VSC) which enables the bi-directional 
power flow between the generator and the dc source [32]. 
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Fig. 5. Control block diagram for the wave power generation system 



Fig. 5 shows the corresponding control block diagram of 
the proposed wave power generation system for verifying the 
MPPT algorithm. The control system aims to regulate the 
linear generator thrust force via the linear generator current 
control to achieve the complex-conjugate control. By 
controlling the generator thrust, the impedance of the 
generator should be similar as the complex conjugate of the 
wave energy converter. Therefore, the wave energy converter 
can resonantly operate with the incident waves and the 
absorbed power can be maximized. The translator velocity of 
the linear generator and its position are estimated via the linear 
encoder. Then, using the field-oriented control, the reference 
signal of quadrature-axis current can be calculated based on 
the translator velocity information. In addition, an abc/dq0 
transformation for the direct-axis and quadrature-axis current 
reference signals are obtained based on the translator position 
information. By comparing the actual current signal with the 
current reference signal, the error signals are feed into a PI 
controller for generating a set of control pulse signal. With 
these firing signals, power switches of VSC are turned on or 
off for tracing the reference signal. 
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Fig. 6. Force exerted on the buoy by incident waves. 
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Fig. 7. Low-speed mover force waveform. 
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Fig. 8. Low-speed mover speed waveform. 
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Fig. 9. High-speed mover force waveform. 
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Fig. 10. High-speed mover speed waveform. 
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Fig. 11. Voltage waveforms of linear generator 
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Fig. 12. Current waveforms of linear generator 
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Fig. 13. Thrust force waveform of linear generator 
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Fig. 14. Active power and reactive power of linear generator. 

In this paper, only monochromatic waves which exert on 
the buoy of the point absorber are considered and the incident 
waves in the simulation are considered as pure sinusoidal. Fig. 
6 shows the force exerted on the buoy which is sinusoidal with 
amplitude of 1500 N and a frequency of 1 Hz. Since the buoy 
is connected to the low-speed mover of the linear magnetic-
geared generator, the low-speed mover is driven by the buoy 
and the high-speed mover and the linear generator translator 
moves with an amplified speed caused by the magnetic gear 
effect. Fig. 7 and Fig. 8 show the thrust force and speed 
waveforms of the low-speed mover respectively. The speed of 
the low-speed mover is sinusoidal with amplitude of 0.34 m/s. 
Fig. 9 and Fig. 10 illustrate the thrust force and speed 
waveforms of the high-speed mover respectively. The force of 
the high-speed mover is also sinusoidal with amplitude of 260 
N. The speed of the high-speed mover is sinusoidal with 
amplitude of 1.96. Thus, the force of the wave is scaled down 
by a ratio of 5.75 by the linear magnetic gear and the speed of 
the buoy is scaled up by a ratio of 5.75. The low-speed and 
high-force-density of wave energy is converted into an energy 
source in form of high-speed and low-force density feature. 

Fig. 11 and Fig. 12 show the voltage and current 
waveforms of the linear generator. Due to the speed 
amplification of the linear magnetic gear, the voltage 
amplitude of the linear generator is improved. By using the 
MPPT algorithm and field-oriented control, the current is 
nearly in phase with the voltage waveform. Fig. 13 shows the 
translator force waveform of the linear generator. It can be 
found that the linear generator force has a correct phase 
relationship with the buoy force waveform. Because of control 
of the linear generator force, the wave energy converter is in 
resonance with the incident waves. Therefore, the absorbed 
power from waves can be maximized. Fig. 14 shows the 
power waveforms of the linear generator. It can be observed 
that the active power has amplitude of 440 W and the reactive 
power has amplitude of 58 var and the negative reactive power 
indicates that the power flows back into the linear generator 
for ensuring the wave energy converter operating resonantly 
with the waves. 



V. CONCLUSION 

In this paper, a linear magnetic-geared permanent-magnet 
generator is adopted for the direct-drive wave power 
generation. In order to maximize the absorbed power, the 
MPPT algorithm, namely the complex-conjugate control, is 
applied which forces the wave energy converter operating 
resonantly with the incident waves. By using the FEM, the 
linear magnetic gear and the linear generator parameters are 
calculated. With these parameters, the mathematical modeling 
of the linear magnetic-geared generator is established. Then, 
the maximum power absorption condition is discussed and the 
MPPT algorithm is developed. For assessing the MPPT 
algorithm, the linear magnetic-geared generator is connected 
to a dc source via a voltage source converter, due to the bi-
directional power flow, the wave energy converter operates 
resonantly with the incident waves. The results show that the 
absorbed power can be maximized by using the MPPT 
algorithm. 
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