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Pixel super-resolution of time-stretch imaging by an
equivalent-time sampling concept

Antony C. S. Chan, Edmund Y. Lam and Kevin K. Tsia

Department of Electrical and Electronic Engineering, the University of Hong Kong, Pokfulam,
Hong Kong

ABSTRACT

Optical time-stretch imaging entails a stringent requirement of state-of-the-art high-speed data acquisition unit
in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread application
of such technology. We here propose a pixel super-resolution (pixel SR) technique tailored for time-stretch
imaging that can relax the sampling rate requirement. It harnesses a concept of equivalent-time sampling,
which effectively introduces sub-pixel shifts between frames. It involves no active opto-mechanical subpixel-shift
control and any additional hardware. We present the system design rules and a proof-of-principle experiment
which restores high-resolution images at a relaxed sampling rate of 5 GSa/s.

1. INTRODUCTION

Optical time-stretch imaging relies on conversion of spectrally-encoded spatial information to the serial temporal
waveform by group velocity dispersion.1–3 Limited to the optical attenuation, the space-to-time conversion is
generally limited to 0.05 ns/µm or less. This implies that a state-of-the-art digitizer operating at over 20 GSa/s
is required to resolve the micrometer-scale features for ultrafast microscopy applications. The acquired image is
thus easily corrupted by aliasing if sampled at a lower rate.

However, the loss of high resolution can be restored by employing pixel super-resolution (pixel SR) algorithm
from multiple subpixel-shifted, low-resolution images.4,5 Previously, we demonstrated that real time sub-pixel
shift can be realized by active control of beam deflection with acousto-optic beam deflector (AOD).6 However,
precise subpixel shifting in optical time-stretch imaging can be passively realized when the digitizer sampling
clock is unlocked from the repetition rate of the laser — a feature common to many time-stretch imaging systems.
By harnessing this effect at a slower sampling rate, we extract multiple low-resolution line-scans, each of which is
introduced with a subpixel shift automatically. This technique resembles the concept of equivalent-time sampling
adopted in sampling oscilloscope.7,8 Unlike any classical pixel SR imaging techniques, this method requires no
additional hardware for active subpixel-shift control. We here present the general system design rules and the
algorithm for realizing pixel SR time-stretch imaging. We also show a proof-of-concept experiment with adaptive
subpixel-registration and image restoration algorithms. At a lower sampling rate (5 GSa/s), we are able to
restore the imaged feature size of ∼ 2µm from the original aliased image with a pixel size of 3.6µm. We also
demonstrate that such technique facilitates the morphological classification of phytoplankton culture.

2. THEORY

In the spectral-encoding imaging flow cytometry setup (Fig. 1A), the microfluidic channel is illuminated by a
spectrally encoded pulsed laser beam. As the biological cells flow along the microfluidic channel, the pulsed
laser beam captures a sequence of line-scans across the cell. The time-stretch spectrum analyzer then records
and digitizes the captured sequence in real time. The two-dimensional image of the cell thus can be restored by
stacking multiple line scans from the one-dimensional signal.

Owing to this special configuration, the dimensions of the image pixels are independent to each other. The
pixel resolution along the flow direction is the product of linear flow rate (vy) and the laser pulse repetition
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Figure 1. Over-sampling scheme of our method. (a) When the digitizer clock is locked to the laser pulse, the line scans are
aligned to the microfluidic channel wall. Thus at low sampling rate, the cell sample appears as a highly pixelated image. (b)
Pixel density along the flow direction can be increased by reducing the flow speed. (c) Asychronized sampling introduces
sub-pixel shifts in consecutive line-scans, which improves pixel density orthogonal to the flow direction. The resultant pixel
grid warping angle is denoted at θ.

rate (F ), i.e. ∆y = vyF . Without changing hardware, it can be improved by reducing the flow rate (Fig. 1B).
However, this has no effect on the pixel resolution perpendicular to the flow, which is independently determined
by the resolving power of the microscopy setup and the time-strech spectrum analyzer, i.e.

∆x =
Cx
Ctf

, (1)

where Cx is the wavelength-to-space conversion factor of the spectral encoding setup; Ct is the wavelength-to-
time conversion factor of the time-stretch spectrum analyzer; and f is the sampling rate of the digitizer. Adjusting
these three parameters involves hardware upgrade which is prohibitively expensive.

As mentioned in the introduction, pixel SR offers a way to improve ∆x by taking advantage of line-by-line
pixel drifting. Pixel drifting is observed when the digitizer clock is unlocked from the laser pulse, i.e. the sampling
frequency f is not exactly the multiple of the laser pulse repetition rate F . In this case, the relative sub-pixel
drift is given as

δx =
Cx
Ct
×
(

1

F
−N × 1

f

)
, |δx| ≤ ∆x/2, (2)

where the integer N is the number of pixels per line scan. As shown in Fig. 1C, this results in warping of the
pixel grid at a warp angle θ = tan−1(δx/∆y). For a large warp angle (|θ| ≥ π/4) and a very low linear flow rate
(∆y � ∆x), the transformed pixel resolution is given as

(∆x)′ = ∆x cos θ ≤ ∆x/
√

2 (3)

(∆y)′ = ∆y(cos θ)−1 ≤
√

(∆y)2 + (∆x/2)2. (4)
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Figure 2. Scendesmus samples captured by the pixel SR time-stretch imaging: (a) discarded exoskeleton; (b) colony with two
daughter cells; (c) colony with four daughter cells.

Here we see an improvement of (∆x)′ with a trade-off in (∆y)′. Note that this pixel drift does not increase
the two-dimensional pixel density [i.e. ∆x∆y = (∆x)′(∆y)′]. The increase in pixel density is purely due to the
reduction of flow rate vy.

3. EXPERIMENT AND RESULTS

We follow a unconventional flow cytometry protocol to classify cellular life stages solely based on the morpho-
logical phenotype. Compared to traditional fluorescence-stained approach, our technique does not require any
labelling of the cells that could alter the cellular metabolism. To highlight the strength of pixel super-resolution
to morphological classification, we choose a class of phytoplankton, scenedesmus (Carolina Biological, USA), for
its distinct morphological property. Scenedesmus is a colony of either two or four daughter cells surrounded by
the cell wall of the mother. Each daughter cell possesses an elongated shape at around 5µm in diameter along
the minor-axis9 (first row, Fig. 2). At highest possible sampling rate (80 GSa/s), the cellular images comes with
sharp outline and visible intracellular content (second row, Fig. 2). At a sample rate of 5/GSas, however, the
cell samples becomes highly aliased (third row, Fig. 2). Therefore, this specimen can serve as a resolution target
to test resolution enhancement beyond ∆x ∼ 2µm.

To highlight the strength of imaging flow cytometry enabled by optical time-stretch and pixel SR, we pass a
population of around 1200 units of Scendesmus through a microfluidic channel at a linear speed of 1.6m/s, and
scan the cells at a laser repetition rate of F = (11.6142±0.0005) MHz. The wavelength-to-time conversion factor
Ct = 0.40 ns/ nm and the wavelength-to-space conversion factor of Cx = 7.1µm/ nm are kept constant through-
out the experiment. Without changing hardware, the sampling rate of the digitizer (Keysight technologies,
USA) is down-adjusted from 80 GSa/s to F = 5 GSa/s. Hence, the apparent pixel dimensions are respectively
(∆x,∆y) = (3.6µm, 0.18µm). By unlocking the sample clock from the laser pulse frequency, we can achieve a
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Figure 3. Classification of cell samples based on (A) mass and volume; (B) morphology and volume. (C) Examples of
cell samples in corresponding groups. (Bottom right, highlighted) The aggregates of smaller colonies are mis-classified as
four-daughter colony, but is clearly distinguishable in pixel SR time-stretch imaging.

pixel size far smaller than ∆x. From Eq. 2, the relative pixel drifting is know to be roughly δx = −1.8µm. The
precise value of pixel grid warp angle θ is further refined by computational optimization. This step is essential for
accurate pixel registration.10 Subsequently, the warped grid is interpolated to a regular rectangular grid at a pixel
dimensions of 0.9µm × 0.9µm, which is equivalent to a flow rate v′y = 8 m/s and a sample rate F ′ = 20 GSa/s.
A matched filter is applied to suppress the noise amplified by the interpolation process. Refer to Appendix A for
detailed computation steps.

To highlight the necessity of classification of unlabelled cell by morphology, we first attempt to group the
cells in terms of cell mass and volume. These metrics are represented by cell opacity and area respectively, both
measured from every cellular image captured from the experiment (Fig. 3A). Similar to forward scattering values
obtained from traditional flow cytometry protocol, the above metrics failed to account for the morphological
differences among the cell samples. In the case of scendesmus, only cell fragments can be distinguished from
the scatter plot because they are significantly smaller and more translucent. In contrast, both two-daughter and
four-daughter colonies are very similar in both opacity and area, thus they result in overlapping clusters in the
scatter plot.

Next, we encode the morphological features of each image into the histogram of oriented gradients (HoG),11

which is then projected to the most significant component using principle component analysis (PCA). The new
structural metric is plotted against cell area in Fig. 3B. Without human intervention, the cell samples are divided
into three groups by K-means clustering. By inspection, the three groups are later known to be cell fragments,
two-daughter colony, and four-daughter colony respectively (Fig. 3C). Notably, we further identify rare aggre-
gates of smaller colonies that are mis-classified as four-daughter colonies, as highlighted in Fig. 3C. However, it
truly demonstrates the imaging capability of pixel SR time-stretch imaging which provides rich morphological
information unique to every cell sample at lower digitizer cost.
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4. CONCLUSIONS

We propose pixel SR for time-stretch imaging based on an equivalent time sampling concept prevalent to high-
end oscilloscope. The sub-pixel shift of consecutive line scans originates from mismatch of laser pulse repetition
frequency and sampling frequency, which is shared by many time-stretch imaging system. The value of sub-pixel
shift, essential to accurate pixel SR restoration, can be estimated at high precision by computational optimiza-
tion algorithm. We demonstrate the strength of this method by enhancing pixel resolution of existing imaging
flow cytometry setup without additional hardware. The digitizer sampling rate can be relaxed to 5 GSa/s (i.e.
apparent pixel size 3.6µm) without affecting classification of phytoplankton sized at 5µm. This approach can
open up new applications of time-stretch imaging where the cost-effectiveness of the hardware is of concern.
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APPENDIX A. COMPUTATIONAL SCHEME FOR PIXEL SUPER-RESOLUTION OF TIME-STRETCH
IMAGING

A.1 Equivalent sampling time registration

The performance of pixel SR is highly sensitive to errors in pixel registration. A rough estimation of pixel drifting
δx can be obtained from the specification of the pulsed laser and the digitizer. However, its precise value can only
be estimated adaptively because the lasing cavity is highly susceptible to temperature and mechanical variation.
In our approach, we model the pixel registration problem as a background suppression problem. Compared to
the moving cell sample, the laser spectrum is highly consistent from pulse to pulse, which appears as bands along
y axis in the background of the captured raw image. Given a rough estimate of the value of pixel drifting (and
thus the warp angle θ), the lasing spectrum can be obtained by taking average of all the aligned pulses, i.e.

IB(x, tan θ) =
1

M∆y

∫ M∆y

0

unwarp{I(x, y), tan θ} dy, (5)

where M is the number of line scans of the warped image I(x, y). The error of the initial warp angle can be
iteratively reduced by reducing the foreground residual. In other words, the warp angle can be obtained by
minimizing the energy of the foreground, i.e.

tan θ̂ = arg min
tan θ

∫ N∆x

0

∫ M∆y

0

[unwarp{I(x, y), tan θ} − IB(x, tan θ)]
2
dx dy (6)

The accuracy of this pixel registration approach is fundamentally limited by the decorrelation distance of the
laser spectrum, i.e. ε[tan θ] < Cxδλ/(M∆y).

A.2 Background suppression

The highly modulated laser spectrum IB(x) is also aliased and must be restored to suppress the illumination
background. From the third row of Fig. 2, direct subtraction of rawdata from the low-resolution form of IB(x)
leaves zebra strip like artifacts parallel to the flow direction. For effective suppression of background, the high-
resolution form of illumination background IB(x) is restored by interleaving the first several line scans, in which
the cell sample is absent. The background is then projected back to the rawdata for direct subtraction.
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A.3 Weighted non-uniform interpolation

Super-resolution restoration of the foreground (cell sample) can be obtained in two stages: non-uniform inter-
polation and convolution with the matched filter of the digitizer. The purpose of the first step is to re-sample the
scattered samples to the regular rectangular grid. The second step is performed to suppress the noise amplified
by the interpolation stage. The matched filter is approximately an elongated Gaussian function, which is the
convolution of the two dimensional point spread function (PSF) of the imaging setup, and the one dimensional
impulse response of the antialiasing filter in the digitizer. For higher computational efficiency, the above two
stages are performed at once by using the value of the matched filter as the weights in the interpolation process.
That is, for an SR pixel at position (x0, y0), its pixel value is

I(x0, y0) =
∑
di≤r

w(xi − x0, yi − y0) I(xi, yi), (7)

where d =
√

(xi − x0)2 + (yi − y0)2; w(x, y) is the two-dimensional matched filter; and r is the effective radius
of w(x, y).
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