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Abstract
We prove the first non-trivial performance ratios strictly above 0.5 for weighted versions of the
oblivious matching problem. Even for the unweighted version, since Aronson, Dyer, Frieze,
and Suen first proved a non-trivial ratio above 0.5 in the mid-1990s, during the next twenty
years several attempts have been made to improve this ratio, until Chan, Chen, Wu and Zhao
successfully achieved a significant ratio of 0.523 very recently (SODA 2014). To the best of our
knowledge, our work is the first in the literature that considers the node-weighted and edge-
weighted versions of the problem in arbitrary graphs (as opposed to bipartite graphs).

(1) For arbitrary node weights, we prove that a weighted version of the Ranking algorithm has
ratio strictly above 0.5. We have discovered a new structural property of the ranking algorithm:
if a node has two unmatched neighbors at the end of algorithm, then it will still be matched
even when its rank is demoted to the bottom. This property allows us to form LP constraints for
both the node-weighted and the unweighted oblivious matching problems. As a result, we prove
that the ratio for the node-weighted case is at least 0.501512. Interestingly via the structural
property, we can also improve slightly the ratio for the unweighted case to 0.526823 (from the
previous best 0.523166 in SODA 2014).

(2) For a bounded number of distinct edge weights, we show that ratio strictly above 0.5 can be
achieved by partitioning edges carefully according to the weights, and running the (unweighted)
Ranking algorithm on each part. Our analysis is based on a new primal-dual framework known
as matching coverage, in which dual feasibility is bypassed. Instead, only dual constraints corres-
ponding to edges in an optimal matching are satisfied. Using this framework we also design and
analyze an algorithm for the edge-weighted online bipartite matching problem with free disposal.
We prove that for the case of bounded online degrees, the ratio is strictly above 0.5.
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48:2 Beating Ratio 0.5 for Weighted Oblivious Matching Problems

1 Introduction

While the classical maximum matching problem [14] is well understood, the oblivious version
is motivated by exchange settings [15] and online advertising [9, 1], in which information
about the underlying graphs might be unknown. For instance, in the kidney exchange
problem [15], donor-recipient pairs are probed and greedily matched when two pairs are
compatible. Another example is pay-per-click online advertising, in which the revenue for a
click on a particular ad showing on a particular page is known, but it is unknown whether
the user will actually click on that ad. In this paper, we analyze two weighted versions of the
oblivious matching problem (ObMP). To be more specific, we first state the edge-weighted
(Ew) ObMP (and the node-weighted (Nw) version as a special case) formally as follows.

EwObMP . An adversary commits to a simple undirected graph G = (V,E), where every
unordered pair of nodes e = {u, v} (even if e 6∈ E) has non-negative weight we. The
unweighted case is the special case in which all pairs have the same weight. The nodes V
(where n = |V |) and the weights of all pairs are revealed to the (randomized) algorithm,
while the edges E are kept secret. The algorithm returns a list L that gives a permutation
of the set

(
V
2
)
of unordered pairs of nodes. Each pair of nodes in G is probed according to

the order specified by L to form a matching greedily. In the round when a pair e = {u, v} is
probed, if both nodes are currently unmatched and the edge e is in E, then the two nodes
will be matched to each other; otherwise, we skip to the next pair in L until all pairs in L are
probed. The goal is to maximize the performance ratio of the (expected) sum of weights
of edges in the matching produced by the algorithm to that of a maximum weight matching
in G. The node-weighted version is related to the edge-weighted version as follows.

NwObMP . The node-weighted version is a special case of EwObMP in which each node
u ∈ V has a non-negative weight wu and the weight of each pair e = {u, v} is we = wu + wv.

Greedy Algorithms. Greedy algorithms can achieve ratio 0.5 for both the edge-weighted
and node-weighted versions. For the edge-weighted version, the probing order is given by
sorting pairs in non-increasing order of weight. For the node-weighted version, the nodes are
sorted in non-increasing order of weight to induce a lexicographical order on the pairs. As
far as we know, this work is the first in the literature to achieve algorithms for both weighted
versions with ratios strictly greater than 0.5.

To achieve non-trivial ratios, different variants of the Ranking algorithm have been
investigated for various matching problems [12, 1, 6, 5]. We analyze the following variant
that is relevant to NwObMP on arbitrary graphs.

Weighted Ranking Algorithm for NwObMP. Given the node weights w, the algorithm
determines a distribution Dw on permutations of V . It samples a permutation π from Dw,
and returns a list L of unordered pairs according to the lexicographical order induced by
π, where nodes appearing earlier in the permutation have higher priority. Specifically, for
a permutation π : V → [n], given two pairs e1 and e2 (where for each j, ej = {uj , vj} and
π(uj) < π(vj)), the pair e1 has higher priority than e2 if (i) π(u1) < π(u2), or (ii) u1 = u2
and π(v1) < π(v2).

Sampling a permutation. Previous works [1, 6] have considered the following way to sample
a permutation of nodes. The algorithm uses an adjustment function ϕ(t) := 1 − et−1 for
t ∈ [0, 1], and samples a configuration σ ∈ Ω∞ := [0, 1]V uniformly at random, i.e., each
node u receives independently a random number σ(u) in [0, 1] uniformly at random. A
permutation is given by sorting the nodes in non-increasing order of the adjusted weight
w(σ, u) := ϕ(σ(u)) · wu. Observe that for the unweighted case (i.e., all nodes have the same
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weight), this is equivalent to sampling a permutation uniformly at random. We consider
different adjustment functions ϕ in this paper.

1.1 Summary of Our Results.
Extending previous linear programming (LP) approaches [1, 13, 11, 5], we prove that a
weighted Ranking algorithm has ratio greater than 0.5 for NwObMP with arbitrary node
weights in general graphs.

I Theorem 1 (Weighted Ranking for NwObMP). For m = 10000, weighted Ranking using
the discrete sample space [0, 1]Vm (where [0, 1]m := { im : i ∈ [m]} is a discretization of [0, 1])
and adjustment function ϕ(t) := 1− e17t−1

e17−1 has performance ratio at least 0.501505.

In the analysis, we have discovered new structural properties of the Ranking algorithm.
For instance, if a node has two unmatched neighbors, then it will still be matched even when
its rank is demoted to the bottom. These properties enable us to form better LP constraints.
We use continuous LP techniques to prove that the above ratio can be improved to 0.501512
if continuous random sample space [0, 1]V is used (due to space constraints, the complete
proof is deferred to the full version). Interestingly via these structural properties, we also
improve the analysis of (unweighted) Ranking for the unweighted ObMP over the previous
best ratio of 0.523166 in the SODA 2014 paper [5].

I Theorem 2 (Ranking for Unweighted ObMP). The Ranking algorithm for unweighted ObMP
has performance ratio at least 0.526823.

For EwObMP with a bounded number of distinct edge weights, we show that ratio strictly
above 0.5 can be achieved by partitioning edges carefully according to the weights, and
running the (unweighted) Ranking algorithm on each part.

I Theorem 3 (EwObMP with Bounded Number of Distinct Weights). Suppose there is an
algorithm on unweighted ObMP with performance ratio 1

2 +ξ1. Then, for each positive integer
k > 1, there exists ξk = Ω(ξ1)O(k2) such that the following holds. There exists an algorithm
for EwObMP such that on instances with k distinct edge weights, the performance ratio is at
least 1

2 + ξk.

Our analysis is based on a new primal-dual framework of the standard matching LP known
as matching coverage, in which dual feasibility is bypassed. Instead, only dual constraints
corresponding to edges in an optimal matching are satisfied. Indeed the framework of
matching coverage introduced for weighted oblivious matching has applications for other
well-known problems. In particular using this framework we also design and analyze an
algorithm for the edge-weighted online bipartite matching problem with free disposal. We
prove that for the case of bounded online degrees, the ratio is strictly above 0.5.
EwOnBiMP with free disposal. An adversary fixes an edge-weighted bipartite graph G(U ∪
V,E) between a set U of online nodes and a set V of offline nodes, and determines the
arrival order of the online nodes. When an online node u arrives, all the weights wuv’s of
edges between u and the offline nodes v in V are revealed to the (randomized) algorithm.
The algorithm matches u to one of the offline nodes v. Even if an offline node v is already
matched to a previous online node u′, the algorithm is allowed to dispose of the edge {u′, v}
and include the edge {u, v} in the matching. The goal is to maximize the performance ratio,
which is the (expected) sum of weights of edges in the final matching to that of a maximum
weight matching in hindsight.

ESA 2016
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Feldman et al. [8] proved that a greedy algorithm can achieve ratio 0.5. We proposed a
randomized algorithm that achieves ratio strictly greater than 0.5 for the case in which each
online node has bounded degree.

I Theorem 4 (EwOnBiMP with Bounded Online Degree). There exists an algorithm for
edge-weighted online bipartite matching with free disposal such that on instances in which
every online node has degree at most ∆, the performance ratio is 1

2 + Ω( 1
∆2 ).

1.2 Related Work.
Unweighted ObMP. For the unweighted version, Dyer and Frieze [7] showed that the
performance ratio is 0.5 + o(1) when the permutation of unordered pairs is chosen uniformly
at random. In the mid-1990s, Aronson et al. [2] showed that the Modified Randomized Greedy
(MRG) algorithm has ratio 0.5 + ε (where ε = 1

400000 ). Goel and Tripathi [10] showed a
hardness result of 0.7916 for any algorithm and 0.75 for adaptive vertex-iterative algorithms.
In a recent SODA 2014 paper, Chan et al. [5] proved that Ranking algorithm has performance
ratio at least 0.523166. We improve their analysis and performance ratio in this paper.

A version of the ranking algorithm was first proposed by Karp et al. [12] to solve the
online bipartite matching problem (OnBiMP) with ratio 1− 1

e . Subsequent works by Goel
and Mehta [9], and Birnbaum and Mathieu [3] simplified the proof. Since the arrival order of
online nodes is arbitrary, the same analysis carries over to obtain the same ratio for ObMP
on bipartite graphs.

Since running Ranking on bipartite graphs for ObMP is equivalent to running the ranking
algorithm for OnBiMP with random arrival order, the result of Karande et al. [11] implies that
the ranking algorithm has a ratio at least 0.653 for the ObMP on bipartite graphs. Mahdian
and Yan [13] improved the ratio to 0.696 using the technique of strongly factor-revealing LP.
Karande et al. [11] also constructed a hard instance in which Ranking performs no better
than 0.727.

Weighted Ranking. Aggarwal et al. [1] showed that the ranking algorithm can be applied
to OnBiMP when the offline nodes have general weights. They proved that the performance
ratio is 1 − 1

e . Devanur et al. [6] gave an alternative proof using randomized primal-dual
analysis. We observe that their analysis can be applied to the NwObMP on bipartite graphs.
Since their analysis assumes that the online nodes arrive in arbitrary order, by exchanging
the roles of online and offline nodes for both partition of nodes, it can be shown that weighted
Ranking achieves the same ratio of 1− 1

e on bipartite graphs.

EwOnBiMP with Free Disposal. Feldman et al. [8] proposed the free disposal feature for
EwOnBiMP. They considered the setting in which each offline node v has capacity n(v),
and an online algorithm benefits from the n(v) highest-weighted edges matched to v. They
proposed an online algorithm with ratio 1− 1

ek
, where ek = (1 + 1

k )k, and k is a lower bound
on capacities. Thus, the proposed algorithm has performance ratio 1

2 for the classic weighted
version, when all capacities are 1.

1.3 Analyzing NwObMP via Linear Programming
A common technique [1, 11, 13, 10, 5] for analyzing Ranking algorithms is to define variables
capturing the behavior of the algorithm in question, and derive structural properties that
translate into constraints on the variables. A minimization LP with the performance ratio
as the objective expressed in terms of the variables gives a lower bound on the ratio of the
algorithm.
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Let Ω be the sample space of configurations from which the algorithm derives its ran-
domness. An instance (σ, u) ∈ Ω × V is good if node u is matched when the algorithm is
run with σ, and bad otherwise. We first describe the challenges encountered when previous
techniques are applied to the node-weighted version of the problem on general graphs.

Why is the problem difficult on general graphs (as opposed to bipartite graphs)? Bipartite
graphs have the following nice property. Suppose in configuration σ, node u is unmatched,
while its partner u∗ in the optimal matching is matched to some node v. If the rank
of u is promoted to form configuration σ′, then u∗ will be matched to some node v′
such that the adjusted weight w(σ′, v′) ≥ w(σ, v) does not decrease. This naturally gives
a way to relate the bad instance (σ, u) to the good instance (σ′, v′) [12, 11, 13, 1, 6],
but unfortunately this property does not hold in general graphs. In fact, u∗ might be
unmatched in σ′ as a result of u’s promotion.
Why is the problem difficult when nodes have arbitrary weights (as opposed to uniform
weight)? In previous work [5] on the unweighted case, when u∗ is matched in σ′ in
the above scenario, it is argued that the bad instance (σ, u) can be related to the good
instance (σ′, v), where v is matched in σ′ to u∗. However, there is no guarantee that
the adjusted weight w(σ′, v) of the good instance is at least w(σ, u), which is needed as
in [1, 6] to analyze the ratio for the weighted version.
To overcome the difficulties mentioned above, we have exploited the following structural

properties of the Ranking algorithm. We analyze how the resulting matching would change if
the rank of one node is changed (in Lemma 13), and give finer classification of good instances.
In particular, the following notions are useful for relating bad instances to good instances in
order to form LP constraints.

Graceful Instance. A good instance (σ, u) is graceful if u is currently matched to a
node v such that its optimal partner v∗ does not exist or is also matched in σ.
Perpetual Instance. If in a good instance (σ, u), node u has two unmatched neighbors,
then (σ, u) is perpetually good in the sense that u will still be matched even when its rank
is demoted to the bottom.

Breaking 0.5 Ratio for NwObMP. As in [1], we analyze the discrete sample space Ωm :=
[m]V (with the adjustment function ϕ(t) := 1− e17t−1

e17−1 , ψ(i) := ϕ( im ) and adjusted weight
w(σ, u) := ψ(σ(u)) ·wu), and show that the performance ratio of weighted Ranking is at least
the optimal value of some finite LPψm with m variables. Since LPψm does not depend on the
size of G, computing the optimal value of LPψm for some large enough m is sufficient to prove
a lower bound on the ratio of weighted Ranking. We show in our full version that a slightly
better ratio can be analyzed using continuous LP for the limiting case as m tends to infinity.

We are aware of other adjustment functions that can achieve even slightly better ratios
for the weighted Ranking, but we just present here a simple form that crosses the 0.5 barrier.
Our result for the node-weighted case achieves the first non-trivial performance ratio that is
strictly larger than 0.5.

Improved Ratio for Unweighted ObMP. We also apply our new combinatorial analysis to
derive a new finite LPUn , that gives a lower bound on the performance ratio of unweighted
Ranking running on graphs of size n. For the unweighted version of the problem, the limiting
behavior of LPUn is analyzed when n tends to infinity and an improved lower bound on the
performance ratio of unweighted Ranking is proved using a new class of continuous LP with
jump discontinuity. The ideas for formulating the constraints are similar to the node-weighted
case and we defer the proof to the full version.

ESA 2016
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1.4 Analyzing EwObMP and EwOnBiMP via Matching Coverage

Researchers have successfully applied the primal-dual LP framework to design approximation
algorithms for matching problems [4, 6]. Consider the following standard maximum weight
matching LP relaxation for an undirected graph G = (V,E) with non-negative edge weights.
Its dual is known as vertex cover.

max w(x) :=
∑

{u,v}∈E

wuvxuv (1)

s.t
∑

u:{u,v}∈E

xuv ≤ 1, ∀v ∈ V

xuv ≥ 0, ∀ {u, v} ∈ E

min C(α) :=
∑
u∈V

αu (2)

s.t αv + αu ≥ wuv, ∀ {u, v} ∈ E
αv ≥ 0, ∀v ∈ V

An integral feasible primal solution x indicates whether an edge is selected and corresponds
to some matchingM , whose weight is denoted by w(M) := w(x). When G is a bipartite graph
between U and V , we use αu for the variables for nodes in U and βv for those corresponding
to V .

Standard Primal-Dual Analysis. Typically, during the execution of an algorithm, both a
primal and a dual solution are constructed. To analyze the approximation ratio, the value of
the primal solution returned by the algorithm is compared with that of the dual solution.
Since the primal is a maximization problem, any feasible dual provides an upper bound
on the optimal primal value and can guarantee some approximation ratio. Hence, it is
crucial in such a framework to establish the feasibility of the dual solution, for instance by
either ensuring feasibility during construction, or scale the dual solution at the end by some
appropriate factor. Dual feasibility requires that, for every edge in the graph, the sum of the
dual values of its incident nodes is large enough.

New Framework. We observe that this strict requirement of dual feasibility is an artifact
of the approximation analysis, and instead explore a new analysis method in which dual
feasibility can be bypassed. Specifically, we use this new approach for different variations
of edge-weighted maximum matching, and call it matching coverage. To emphasize that
we do not achieve dual feasibility of any kind, we use a vector to mean an assignment of a
non-negative value to each node.

I Definition 5 (Matching Coverage). Let M be a matching in graph G. A vector α ∈ RV
is a matching coverage for matching M if α is non-negative, and the dual constraints of
LP (2) corresponding to the edges of M are satisfied. In other words, for each {u, v} ∈M ,
αu + αv ≥ wuv.

I Remark. Since any two distinct edges in a matching do not share any node, it follows that
if a vector α is a matching coverage for a matching M , then C(α) ≥ w(M).

General Framework of Matching Coverage. In our new analysis framework, the algorithm
does not construct any dual solution (not even an infeasible one). This is a major departure
from the conventional primal-dual framework in which some dual solution is usually con-
structed by an algorithm, whereas in our approach, the vector is used only for analysis. In
the analysis, we imagine that as an algorithm ALG is executed, a vector α is constructed
alongside with the knowledge of an optimal matching M∗. The idea is that the values in α
are increased just enough to make sure that α is a matching coverage for M∗.
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Why does this help the analysis? Since the vector α is a matching coverage for M∗, by
Remark 1.4, we have w(M∗) ≤ C(α). As α does not have to be feasible for all edge constraints,
it is possible that the resulting value C(α) could be smaller than that of a feasible dual.
Therefore, we can hope to get a smaller value of F when we compare C(α) ≤ F · w(MALG)
with the weight of the matching MALG returned by ALG, thereby getting a larger performance
ratio w(MALG) ≥ 1

F · C(α) ≥ 1
F · w(M∗).

We use the framework of matching coverage to design and analyze algorithms for the
following problems.

EwObMP. In Section 4, we present an algorithm that achieves ratio strictly greater than
0.5 when the number of distinct edge weights is bounded. The full analysis is included in
our full version.
EwOnBiMP with Free Disposal. We present and analyze (in our full version) an algorithm
that achieves ratio strictly greater than 0.5 when the online nodes have bounded degree.
We show that without the free disposal assumption, no randomized algorithm can achieve
any non-trivial constant guarantee on the ratio.

2 Defining Variables for Weighted Ranking on NwObMP

An adversary commits to a graph G = (V,E) with n = |V | nodes, where each node u has
a non-negative weight wu. We fix some maximum weight matching OPT in G. When the
context is clear, we also use OPT to denote the set of nodes covered by the matching. Observe
that in general OPT might be a proper subset of V . Let w(OPT) =

∑
u∈OPT wu be the total

weight of OPT. For any u ∈ V , if u is matched in OPT, then we denote by u∗ the partner of
u in OPT, and we call u∗ the optimal partner of u. If u /∈ OPT, then we say that u∗ does
not exist.
Weighted Ranking. As described in the introduction, the algorithm derives its randomness
by sampling from Ωm := [m]V uniformly at random, where m is a sufficiently large integer
and [m] = {1, 2, . . . ,m}. (We omit the subscript for Ω when the context is clear.) This is
equivalent to picking σ(u) ∈ [m] uniformly at random and independently for each u ∈ V . As
in [1, 6], the algorithm fixes an adjustment function ϕ : [0, 1]→ [0, 1] that is non-increasing.
The function ϕ(t) := 1− et−1 is used in [1, 6]. We shall consider other adjustment functions
such that ϕ(1) = 0 also holds.

We denote ψ(i) := ϕ( im ). Then, a permutation on V is induced by σ by sorting the nodes
in non-increasing order of adjusted weight w(σ, u) := ψ(σ(u)) · wu, where ties are resolved
deterministically (for instance by the identities of the nodes). This permutation on V induces
a lexicographical order on the node pairs that is used for probing. We denote (σ, u) > (σ, v)
when node u comes before v in the permutation induced by σ, in which case u has higher
priority than v.

We denote U := Ω× V as the set of instances. Let M(σ) be the matching obtained when
Ranking is run with configuration σ. If u is matched to some v after running Ranking with
configuration σ, then we say that u is matched in σ and v is the (current) partner of u in σ.
An instance (σ, u) is good if u is matched in σ, and otherwise bad. An event is a subset of
instances.

Given σ ∈ Ωm, let σju be obtained by setting σju(u) = j and σju(v) = σ(v) for all v 6= u.

I Definition 6 (Events). For each i ∈ [m], define the following:
Rank-i good event: Qi := {(σ, u)|σ(u) = i and u is matched in σ}
Rank-i bad event: Ri := {(σ, u)|σ(u) = i, u is not matched in σ and u ∈ OPT}
Let Q := ∪i∈[m]Qi and R := ∪i∈[m]Ri.

ESA 2016
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Notice that Qi and Ri are disjoint. While Qi could involve nodes that are not in OPT,
Ri only involves nodes in OPT; this idea also appears in [1] for dealing with the case when

OPT is a proper subset of V . Define xi :=
∑

(σ,u)∈Qi
wu

w(OPT)·mn−1 , which can be interpreted as the
conditional expected contribution of the nodes given that they are at rank i. We next derive
some properties of the xi’s.

Monotonicity. For i ≥ 2, we have xi−1 ≥ xi ≥ 0, since if (σ, u) ∈ Qi, then (σi−1
u , u) ∈

Qi−1. However, 1 ≥ x1 does not necessarily hold since there may exist u /∈ OPT and
(σ, u) ∈ Q1.
Loss due to unmatched nodes. Similar to xi associated with Qi, we consider an
analogous quantity associated with Ri:

xi :=
∑

(σ,u)∈Ri wu

w(OPT) ·mn−1 =
∑

(σ,u)∈Qi∪Ri wu −
∑

(σ,u)∈Qi wu

w(OPT) ·mn−1

≥
w(OPT) ·mn−1 −

∑
(σ,u)∈Qi wu

w(OPT) ·mn−1 = 1− xi, (3)

where the inequality
∑

(σ,u)∈Qi∪Ri wu ≥ w(OPT) ·mn−1 could be strict because Qi might
involve nodes not in OPT.
Performance Ratio. The performance ratio is the expected sum of weights of matched

nodes divided by w(OPT), which is given by
∑

(σ,u)∈Q
wu

w(OPT)·mn = 1
m

∑m
i=1 xi.

I Definition 7 (Marginally Bad Event). For i ∈ [m], we define rank-i marginally bad event
as follows. Let S1 := R1; for i ≥ 2, let Si := {(σ, u) ∈ Ri|(σi−1

u , u) ∈ Qi−1}.

Let S := ∪i∈[m]Si and αi :=
∑

(σ,u)∈Si
wu

w(OPT)·mn−1 for all i ∈ [m].

Observe that for an instance (σ, u) such that (σmu , u) is bad, there exists a unique j ∈ [m]
such that (σju, u) ∈ Sj , and we say that j is the marginal position of (σ, u).
Relating xi’s and αi’s. From a marginally bad instance (σ, u) ∈ Si, node u will be matched
when its rank is promoted to i− 1. Hence, for i ≥ 2, we immediately have

αi ≤
∑

(σ,u)∈Qi−1
wu −

∑
(σ,u)∈Qi wu

w(OPT) ·mn−1 = xi−1 − xi. (4)

Moreover, for i ∈ [m], any bad instance (σ, u) ∈ Ri has a unique marginal position j ∈ [i]
such that (σju, u) ∈ Sj ; for each (σ, u) ∈ Sj such that j ≤ i, we also have (σiu, u) ∈ Ri. Hence,
there is a one-one correspondence between Ri and ∪ij=1Sj , and so we have:

i∑
j=1

αj =
∑i
j=1

∑
(σ,u)∈Sj wu

w(OPT) ·mn−1 =
∑

(σ,u)∈Ri wu

w(OPT) ·mn−1 = xi ≥ 1− xi. (5)

I Remark. Observe that when all nodes in V are covered by OPT, equality holds for both
(4) and (5). In fact, Lemma 8 allow us to remove the αi’s from the LP constraints.
I Fact 1 (Ranking is Greedy). Suppose Ranking is run with configuration σ. If (σ, u) is bad,
then each neighbor of u (in G) is matched in σ to some node v such that (σ, v) > (σ, u).

3 Analyzing NwObMP Using Graceful and Perpetual Instances

In this section we define some relations from (marginally) bad events to good events to
formulate our LP constraints. We describe a general principle which is a weighted version of
the argument used in [5].



Melika Abolhassani et al. 48:9

As mentioned above, the following lemma is used to remove the αi’s from the LP
constraints.

I Lemma 8. Suppose that {bi}m+1
i=1 is non-negative and non-increasing such that bm+1 = 0,

and {ci}m+1
i=1 is non-decreasing such that c1 = 0. Then, we have

(a)
∑m
i=1 biαi ≥ b1 −

∑m
i=1(bi − bi+1)xi.

(b)
∑m
i=1 biciαi ≥ −

∑m
i=1(bici − bi+1ci+1)xi.

Proof. Statement (a) follows because∑m
i=1 biαi =

∑m
i=1(bi−bi+1)

∑i
j=1 αj ≥

∑m
i=1(bi−bi+1)(1−xi) = b1−

∑m
i=1(bi−bi+1)xi,

where the inequality comes from (5).
For statement (b), observing that c1 = 0, we can assume that α1 = x0−x1, where x0 = 1.

Let C = maxi ci, and define di := C − ci ≥ 0. Then, we have∑m
i=1 biciαi =

∑m
i=1 Cbiαi−

∑m
i=1 bidiαi ≥ Cb1−C

∑m
i=1(bi−bi+1)xi−

∑m
i=1 bidi(xi−1−

xi) = −
∑m
i=1(bici − bi+1ci+1)xi,

where in the inequality we apply statement (a) to the first term (which is still valid
because α1 ≥ 1− x1 holds), and apply α1 = x0 − x1 and (4) to the second term. J

Weighting Principle. Suppose f is a relation from subset A to subset B of instances, where
f(a) is the set of elements in B that are related to a ∈ A, and f−1(b) is the set of elements
in A that are related to b ∈ B. Recall that each instance a = (σ, u) has adjusted weight
w(a) = w(σ, u). Suppose further that for all a ∈ A, for all b ∈ f(a), w(a) ≤ w(b). Then, by
considering the bipartite graph H induced by f on A ∪ B, and comparing the weights of
end-points for each edge in H, it follows that

∑
a∈A |f(a)| · w(a) ≤

∑
b∈B |f−1(b)| · w(b).

We shall formulate constraints by considering relations between subsets of instances. The
injectivity of a relation f is the minimum integer q such that for all b ∈ B, |f−1(b)| ≤ q. In
this case, we have∑

a∈A |f(a)| · w(a) ≤ q
∑
b∈B w(b). (6)

3.1 Demoting Marginally Bad Instances
I Lemma 9. We have: 1

m

∑m
i=1[2ψ(i) + (m− i)(ψ(i)− ψ(i+ 1))]xi ≥ ψ(1).

Proof. We define a relation f from the set S of marginally bad instances to the set Q
of good instances. Observe that for a (marginally) bad instance (σ, u), u is unmatched
in σ and its optimal partner u∗ exists. If we further demote u by setting its rank to
j ≥ σ(u), the resulting matching is unchanged. Therefore, by Fact 1, for each j ≥ σ(u),
u∗ is matched to the same v such that w(σ, u) ≤ w(σ, v) = w(σju, v). Hence, we can define
f(σ, u) := {(σju, v)|u∗ is matched to v in σju, j ≥ σ(u)} ⊆ Q, where |f(σ, u)| = m− σ(u) + 1,
and w(σ, u) ≤ w(σ′, v) for all (σ′, v) ∈ f(σ, u).

We next check the injectivity of f . Suppose (ρ, v) ∈ f(σ, u). Then, u∗ is the current
partner of v in ρ, and this uniquely determines u, which is unmatched in ρ. Hence, σ = ρju,
where j is uniquely determined as the marginal position of (ρ, u). Therefore, the injectivity
is 1.

Hence, our weighting principle (6) gives the following:
m∑
i=1

∑
(σ,u)∈Si

(m− i+ 1)ψ(i)wu =
∑
a∈S
|f(a)| · w(a) ≤

∑
b∈Q

w(b) =
m∑
i=1

∑
(ρ,v)∈Qi

ψ(i)wv.

Dividing both sides by w(OPT) ·mn gives 1
m

∑m
i=1(m− i+ 1)ψ(i)αi ≤ 1

m

∑m
i=1 ψ(i)xi.
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Since we do not wish αi’s to appear in our constraints, we derive a lower bound for the
LHS in terms of xi’s by applying Lemma 8 with bi := (m− i+ 1)ψ(i), where ψ(m+ 1) can
be chosen to be any value. Rearranging gives the required inequality. J

3.2 Promoting Marginally Bad Instances
I Lemma 10. We have: 2

m

∑m
i=1 ψ(i) · xm + 1

m

∑m
i=1[5ψ(i) − i(ψ(i + 1) − ψ(i))] · xi ≥

3
m

∑m
i=1 ψ(i).

To use the weighting principle, we shall define relations from marginally bad instances S
to the following subsets of special good instances.

I Definition 11 (If v is matched, would v∗ still be matched?). For i ∈ [m], let the graceful
instances be Yi := {(σ, u) ∈ Qi|u is matched in σ to some v s.t. v∗ does not exist or is also

matched in σ}. Let yi :=
∑

(σ,u)∈Yi
wu

w(OPT)·mn−1 and Y := ∪i∈[m]Yi.

I Definition 12 (You will be matched even at the bottom). For i ∈ [m], let the perpetual

instances be Zi = {(σ, u) ∈ Qi|(σmu , u) ∈ Qm}. Let zi =
∑

(σ,u)∈Zi
wu

w(OPT )·mn−1 and Z := ∪i∈[m]Zi.

By definition, we know that Yi ⊆ Qi and hence xi ≥ yi ≥ 0. Moreover, observing that
there exists a bijection between Zi and Qm that maps each (σ, u) ∈ Zi to (σmu , u) ∈ Qm, we
have zi = xm.

Suppose (σ, u) is a good instance that has marginal position j. We wish to compare the
matchings produced by σ and σju. Sometimes it is more convenient to consider an unmatched
node as being ignored. Specifically, given a configuration σ and a node u, running Ranking
with σu means that we still use σ to generate the probing order, but any edge involving u is
ignored. Observe that if (σ, u) has a marginal position j, then σu and σju will produce the
same matching.

I Lemma 13 (Ignoring One Node). Suppose u is covered by the matching M(σ) produced
by σ, and M(σu) is the matching produced by using the same probing list, but any edge
involving u is ignored. The symmetric difference M(σ) ⊕ M(σu) is an alternating path
P = (u = u1, u2, . . . , up) such that for all i ∈ [p− 2], (σ, ui) > (σ, ui+2).

Proof. We can view probing G with σu as using the same list L of unordered node pairs to
probe another graph Gu, which is the same as G except that the node u is labelled unavailable
and will not be matched in any case. After each round of probing, we compare what happens
to the partially constructed matchings M(σ) in G and M(σu) in Gu. For the sake of this
proof, “unavailable” and “matched” are the same availability status, while “unmatched” is a
different availability status.

We apply induction on the number of rounds of probing. Observe that the following
invariants hold initially. (i) There is exactly one node known as the crucial node (which
is initially u) that has different availability in G and Gu. (ii) The symmetric difference
M(σ)⊕M(σu) is an alternating path P connecting u to the current crucial node; initially,
both M(σ) and M(σu) are empty, and path P is degenerate and contains only u. (iii)
If the path P = (u = u1, u2, . . . , ul) contains l ≥ 3 nodes, then for all i ∈ [l − 2], then
(σ, ui) > (σ, ui+2).

Consider the inductive step. Suppose currently the alternating path M(σ) ⊕M(σu)
contains l nodes, where ul is crucial. Observe that the crucial node and M(σ)⊕M(σu) do
not change in a round except for the case when the pair being probed is an edge in G (and
Gu), involving the crucial node ul with another currently unmatched node ul+1 in G, which
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is also unmatched in Gu (because the induction hypothesis states that all nodes but ul have
the same availability status in G and Gu).

Since ul has different availability in G and Gu, but ul+1 is unmatched in both G and
Gu, it follows that the edge e := {ul, ul+1} is added to exactly one of M(σ) and M(σu).
Hence, the edge e is added to extend the alternating path M(σ)⊕M(σu), and the node ul+1
becomes crucial.

Next, it remains to show that if l ≥ 2, then (σ, ul−1) > (σ, ul+1). Suppose we go back in
time, and consider at the beginning of the round when the edge {ul−1, ul} is about to be
probed, and ul−1 is crucial. By the induction hypothesis, both ul and ul+1 are unmatched in
both G and Gu. It follows that (σ, ul−1) > (σ, ul+1), because otherwise the edge {ul−1, ul}
would have lower probing priority than {ul+1, ul}. This completes the inductive step. J

I Lemma 14 (Two Unmatched Neighbors Implies Perpetual). Suppose in configuration σ,
node u is matched and has two unmatched neighbors in G. Then, (σ, u) ∈ Z is perpetual.

Proof. If we assume the opposite, then u will be unmatched in σmu . Suppose x and y are
two neighbors of u that are unmatched in σ. Then, by Lemma 13, the symmetric difference
M(σ)⊕M(σmu ) is an alternating path starting from u, and hence at most one of x and y
will remain unmatched in σmu .

This implies that in σmu , the unmatched node u will have at least one unmatched neighbor;
this contradicts the fact that that Ranking will always produce a maximal matching. J

Next we derive inequalities involving the graceful instances. Combining the inequalities,
we can obtain the crucial constraint involving only xi’s for achieving a ratio that is strictly
larger than 0.5.

I Lemma 15 (You are unmatched because someone is not graceful). We have the following
inequality: 1

m

∑m
i=1 ψ(i)yi ≤ 1

m

∑m
i=1 ψ(i)(2xi − 1).

Proof. We define a relation from the set R of bad instances to the set Q\Y of good instances
that are not graceful.

Given any bad instance (σ, u) ∈ R, we know that u∗ exists and is matched to some node
v such that w(σ, v) ≥ w(σ, u), by Fact 1. Moreover, since v is matched to u∗ such that
u is unmatched, we know that (σ, v) ∈ Q \ Y is good but not graceful. Hence, we define
f(σ, u) := {(σ, v)}, where v is the current partner of u∗. Observe that each (σ, v) ∈ Q \ Y
can be related to a unique (σ, u) ∈ R, where u is the optimal partner of v’s current partner
in σ. Hence, the injectivity of f is 1.

Hence, the weighting principle (6) gives:
∑

(σ,u)∈R w(σ, u) ≤
∑

(σ,v)∈Q\Y w(σ, v). Dividing
both sides by w(OPT) ·mn gives: 1

m

∑m
i=1 ψ(i)xi ≤ 1

m

∑m
i=1 ψ(i)(xi − yi).

Finally, using xi ≥ 1− xi from (3) and rearranging gives the required inequality. J

I Lemma 16 (If you are marginal, someone else is either graceful or perpetual). We have the
inequality: 1

m

∑m
i=1(i− 1)ψ(i)αi ≤ 1

m

∑m
i=1 ψ(i)(3yi + 2zi).

Proof. As mentioned earlier, we shall define two relations f and g from marginally bad S to
graceful Y and perpetual Z, respectively, such that the following properties hold.
1. For each a ∈ S, for each b ∈ f(a) ∪ g(a), w(a) ≤ w(b).
2. For each a ∈ S, |f(a)|+ |g(a)| = σ(u)− 1.
3. The injectivity of f is at most 3 and the injectivity of g is at most 2.
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Suppose we have f and g with these properties. Then, our weighting principle (6) gives:∑
(σ,u)∈S(σ(u)− 1)w(σ, u) ≤

∑
(ρ,v)∈Y 3w(ρ, v) +

∑
(ρ,v)∈Z 2w(ρ, v),

which by definition is equivalent to∑m
i=1(i− 1)ψ(i)

∑
(σ,u)∈Si wu ≤

∑m
i=1 ψ(i)(3

∑
(ρ,v)∈Yi wu + 2

∑
(ρ,v)∈Zi wu).

Dividing both sides by w(OPT) ·mn gives the required inequality.
Next we show how f and g are constructed such that all required properties hold.
Given marginally bad (σ, u) ∈ S, we consider good instance (σ′, u) ∈ Q, where σ′ =

σju, j < σ(u) is obtained by “promoting” u’s rank in σ. Note that by Fact 1, u∗ must be
matched in σ to some node v0 such that (σ, v0) > (σ, u). Let the partner of u in σ′ be p.
The next claim is crucial for the construction of f and g.
I Claim 3.1. If w(σ′, p) < w(σ, u), then u∗ is matched in σ′ to some node v such that
w(σ′, v) ≥ w(σ, v0) ≥ w(σ, u).

Proof. By Lemma 13, we know that the symmetric differenceM(σ′)⊕M(σ) is an alternating
path (u = u1, p = u2, u3, u4 . . .) that starts with u. Moreover, we have w(σ′, u) ≥ w(σ′, u3) ≥
w(σ′, u5) ≥ . . . and w(σ′, p) ≥ w(σ′, u4) ≥ w(σ′, u6) ≥ . . .. If u∗ is not contained in the
alternating path, then directly we have v = v0 and hence the claim holds.

Assume that u∗ is contained in the alternating path. Then, v0 must also appear in
the alternating path. Let v0 = ui. Since w(σ′, v0) = w(σ, v0) ≥ w(σ, u) > w(σ′, p), we
conclude that i must be odd. By Lemma 13, we know that u∗ must be ui−1 since ui is
matched to ui−1 in σ. Moreover, we know that u∗ = ui−1 is matched to ui−2 in σ′ such that
w(σ′, ui−2) ≥ w(σ′, ui) = w(σ, v0). J

Next we include instances in Y into f(σ, u) and instances in Z into g(σ, u) on a case by
case basis. Recall that for each 1 ≤ j < σ(u), we consider σ′ = σju; moreover, after promoting
u to rank j, u is matched in σ′ to p.

Case-1(a). u∗ is matched in σ′ and w(σ′, p) = w(σ, p) ≥ w(σ, u). In this case, (σ′, p) is
graceful, because p is matched in σ′ to u, whose optimal partner u∗ is also matched. Hence,
we include (σ′, p) ∈ Y in f(σ, u).

Case-1(b). u∗ is matched in σ′ and w(σ′, p) = w(σ, p) < w(σ, u). By Claim 3.1, u∗ is
matched in σ′ to some node v such that w(σ′, v) ≥ w(σ, u). Observe that (σ′, v) is graceful,
and we include (σ′, v) ∈ Y in f(σ, u).

Case-2(a). u∗ is unmatched in σ′, and p∗ (if it exists) is also matched in σ′. Note that
after promoting u, we have w(σ′, u) ≥ w(σ, u). Moreover, (σ′, u) is graceful, because the
optimal partner p∗ either does not exist or is matched in σ′. We include (σ′, u) ∈ Y in
f(σ, u).

Case-2(b). u∗ is unmatched in σ′, p∗ exists and is the only unmatched neighbor of p
in σ′. By Claim 3.1, since u∗ is unmatched in σ′, we have w(σ, p) = w(σ′, p) ≥ w(σ, u);
also, since p is matched in σ′, p 6= u∗. Moreover, by Lemma 13, the symmetric difference
M(σ) ⊕M(σ′) is an alternating path, and only two nodes (u and u∗) can have different
matching status in σ and σ′.

Hence, in σ, p must remain matched and p∗ must remain unmatched; this means that p
has exactly two unmatched neighbors, namely u and p∗, in σ. By Lemma 14, we conclude
that (σ, p) is perpetual, and include (σ, p) ∈ Z in g(σ, u).

Case-2(c). u∗ is unmatched in σ′, p∗ exists and is not the only unmatched neighbor of p
in σ′. Similar to Case-2(b), in this case, w(σ′, p) = w(σ, p) ≥ w(σ, u) and p has two different
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unmatched neighbors in σ′, so (σ′, p) is perpetual by Lemma 14. We include (σ′, p) ∈ Z in
g(σ, u).

By construction, property 1 holds. Moreover, for each 1 ≤ j < σ(u) and σ′ = σju, exactly
one of the above 5 cases happens. Hence, we also have property 2: |f(σ, u)| + |g(σ, u)| =
σ(u)− 1. Next, we prove the injectivity.
Injectivity Analysis. Observe that in our construction, if (ρ, v) ∈ f(σ, u) ∪ g(σ, u), then
σ = ρtu, where t is the marginal position of (ρ, u). Hence, in the injectivity analysis, once
(ρ, v) and u are identified, σ can be uniquely determined.

For relation f , suppose (ρ, v) ∈ Y is included in some f(σ, u) in the following cases.
Case-1(a). Node u is uniquely identified as the current partner of v in ρ.
Case-1(b). Node u is uniquely identified as the optimal partner of v’s current partner.
Case-2(a). Node u is the same as v.
Hence, each (ρ, v) ∈ Y is related to at most 3 instances in S, which means that f has

injectivity at most 3.
For relation g, suppose (ρ, v) ∈ Z is included in some g(σ, u) in the following cases.
Case-2(b). By construction ρ = σ, and v has exactly two neighbors that are unmatched
in ρ, one of which is v∗. Node u is uniquely identified as the other unmatched neighbor.
Case-2(c). Node u is uniquely identified as the current partner of v in ρ.
Hence, each (ρ, v) ∈ Z is related to at most 2 instances in S, which means that g has

injectivity at most 2. This completes the proof of Lemma 16. J

We can now derive the main constraint of this subsection.
Proof of Lemma 10: We start from the inequality in Lemma 15. Observing that zi = xm,
and using the upper bound for 1

m

∑m
i=1 ψ(i)yi in Lemma 16, we have 1

m

∑m
i=1(i− 1)ψ(i)αi ≤

1
m

∑m
i=1 ψ(i)(6xi + 2xm − 3).

We next use Lemma 8 by setting bi := ψ(i) and ci := i−1; observe that c1 = 0, and we set
ψ(m+ 1) := 0, which is consistent with ψ(m) ≥ 0 = ψ(m+ 1). Hence, we have the following
lower bound for the LHS: 1

m

∑m
i=1(i− 1)ψ(i)αi ≥ 1

m

∑m
i=1(ψ(i) + i(ψ(i+ 1)− ψ(i))) · xi.

Rearranging gives the required inequality.

3.3 Using LP to Bound Performance Ratio
Putting all achieved constraints on xi’s together, we obtain the following linear program
LPψm, which is a lower bound on the performance ratio when weighted Ranking is run with
weight adjustment function ψ and sample space Ωm = [m]V .

LPψm min 1
m

∑m
i=1 xi

s.t. xi − xi+1 ≥ 0, i ∈ [m− 1]
2
m

∑m
i=1 ψ(i) · xm + 1

m

∑m
i=1[5ψ(i)− i(ψ(i+ 1)− ψ(i))] · xi ≥ 3

m

∑m
i=1 ψ(i) (7)

1
m

∑m
i=1[2ψ(i) + (m− i)(ψ(i)− ψ(i+ 1))]xi ≥ ψ(1) (8)

xi ≥ 0, i ∈ [m].

Achieving ratio strictly larger than 0.5. Observe that LPψm is independent of the size of
G. Hence, to obtain a lower bound on the ratio, we can use an LP solver to solve LPψm for
some large enough m and some appropriate non-negative non-increasing sequence {ψ(i)}mi=1.
In particular, there exists a weighted Ranking algorithm with ratio strictly above 0.5.

I Theorem 17. Using m = 10000 and ψ(i) := 1− e
17i
m −1
e17−1 , the weighted Ranking algorithm

has performance ratio at least the value given by LPψm: 0.501505.
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Although the function ϕ(t) := 1− et−1 (that is used in [1, 6]) cannot give a ratio better
0.5 from our LP, it is still possible that the function could have good performance ratio.
More experimental results and our source code can be downloaded at:

http://i.cs.hku.hk/~algth/project/online_matching/weighted.html.
Limiting case when m tends to infinity. Experiments show that LPψm is increasing in m.
This suggests that a (slightly) better analysis may be achieved if Ranking samples σ from the
continuous space Ω∞ = [0, 1]V , and uses adjusted weight w(σ, u) := ϕ(σ(u)) · wu for each
node u.

The variables xi’s are replaced by the function z(t) :=
∑

u∈V
Prσ [(σ,u) is good|σ(u)=t]·wu

w(OPT) .
Our combinatorial counting argument can be replaced by measure analysis. For instance,
Ω∞ = [0, 1]V is equipped with the uniform n-dimensional measure, while z(t) has measure of
dimension n− 1. Since we assume that ψ(m+ 1) = 0 in the finite analysis, this corresponds
to ϕ(1) = 0 in continuous case.

Observe that it is possible to describe a continuous version of the weighting principle
using measure theory to derive all the corresponding constraints involving z. However, the
formal rigorous proof is out of the scope of this paper, and one can intuitively see that each
constraint involving the xi’s translates naturally to a constraint involving z in the limiting
case. Hence, the following continuous LPϕ∞ gives a lower bound on the ratio when Ranking
samples continuously, and we analyze it in our full version as a case study.

LPϕ∞ min
∫ 1

0 z(t)dt
s.t. z′(t) ≤ 0 ∀t ∈ [0, 1]

2Φ · z(1) +
∫ 1

0 [5ϕ(t)− tϕ′(t)] z(t)dt ≥ 3Φ∫ 1
0 [2ϕ(t)− (1− t)ϕ′(t)] z(t)dt ≥ ϕ(0)

z(t) ≥ 0 ∀t ∈ [0, 1]

Φ =
∫ 1

0 ϕ(t)dt.

I Theorem 18 (Weighted Ranking with Continuous Sampling). Using continuous sample space
Ω∞ (with adjustment function ϕ(t) := 1− e17t−1

e17−1 ), weighted Ranking has performance ratio
at least 0.501512.

4 Beating Ratio 0.5 for EwObMP

We consider EwObMP where the number of distinct weights is k. We give an algorithm
whose performance ratio is 1

2 + ξk, where ξk only depends on k. As a subroutine, we use
an algorithm Aun for the unweighted version of the problem with performance ratio 1

2 + ξ1,
where ξ1 > 0. For instance, Theorem 2 implies that ξ1 ≥ 0.0268. When we run Aun on a
subset H ⊆

(
V
2
)
, Aun is first run to produce a random order L of node pairs. Only pairs in

H are kept in L, while pairs not in H are removed. Then, the list L is used for probing as
before. We partition the pairs in

(
V
2
)
into batches {Hi}i≥1, where the weights of pairs in

each batch are similar. Then, starting from the batch with largest weights, we run Aun on
each batch Hi to produce a list Li, and return the concatenated list used for probing.

The following lemma, whose proof can be found in the full version, describes the properties
of the intervals picked by the algorithm. Recall that Aun has performance ratio 1

2 + ξ1 on
unweighted ObMP. Given two real numbers a ≤ b, we denote dist(a, b) := 1− a

b .

I Lemma 19 (Partitioning Weights into Batches). Given a set W of k distinct weights, there
exists an integer r = O(k2) and ε = ξ1

2 such that the algorithm can return disjoint intervals

http://i.cs.hku.hk/~algth/project/online_matching/weighted.html
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{Ii := [ai, bi]}i≥1, whose union contains W , and for each i ≥ 1, bi+1 < ai, dist(ai, bi) ≤ εr

and dist(bi+1, bi) ≥ εr−1.

Algorithm 1 Algorithm for Edge-Weighted ObMP

1: W ← {we : e ∈
(
V
2
)
} . Set of weights of pairs in

(
V
2
)
.

2: {Ii := [ai, bi]}Ki=1 ← Disjoint intervals as given in Lemma 19 to partition W , where I1 is
the interval with the largest weights.

3: for i from 1 to K do
4: Hi ← Pairs in

(
V
2
)
with weights in Ii

5: Li ← List produced by running unweighted Aun on Hi using independent randomness
6: return concatenated list L := L1 ⊕ L2 ⊕ · · · ⊕ LK

Assuming the knowledge of an optimal matching OPT, we construct a matching coverage
α ∈ RV for OPT during an execution of the algorithm. For a matching M , we use |M | to
denote its cardinality and w(M) to denote the sum of weights of its edges. We say an edge e
in OPT is destroyed by a matching M if edge e is not in M but at least one end-point of e is
matched in M . Moreover, two edges intersect if they share at least one end-point. We define
the following edge sets for i ≥ 1.

ALGi is the set of edges the algorithm includes in the matching when list Li is probed.
OPTi is the set of edges in OPT that intersect with edges in ALGi, but do not intersect
with edges in ALGj , for all j < i.
OPTHi := OPTi ∩Hi, each of which has weight in [ai, bi].
The matching resulting from the probing list L returned by the algorithm is ALG :=

∪iALGi. Since ALG is a maximal matching in G, it follows that every edge in OPT appears
in exactly one OPTi.

Suppose Vi is the set of nodes matched in ALGi. Let C(αVi) :=
∑
v∈Vi αv, where αVi is

the vector α restricted to coordinates corresponding to Vi.
We defer the proof of the following lemma to our full version.

I Lemma 20 (Local Performance Ratio). Suppose the weights of Hi are in [ai, bi], where
η := dist(ai, bi); moreover, let λ := dist(bi+1, bi). Then, E[w(ALGi)] ≥ (1− η) · ( 1

2 + ξ1λ
1+2ξ1

) ·
E[C(αVi)].

Finally, we are ready to prove the performance ratio of the algorithm.
Proof of Theorem 3: From Lemma 19, it follows that the parameters in Lemma 20 satisfy
λ ≥ εr−1 and η ≤ εr, where r = O(k2). Observing that ε = ξ1

2 ≤
1
4 , it follows that the local

performance ratio is

E[w(ALGi)]
E[C(αVi)]

≥(1− η)
(

1
2 + ξ1λ

1 + 2ξ1

)
≥ (1− εr)

(
1
2 + ξ1ε

r−1

1 + 2ξ1

)
= (1− εr)

(
1
2 + 2εr

1 + 2ξ1

)
=1

2 + εr

2 + 4ξ1
· (3− 4(ε+ εr)) ≥ 1

2 + 1
2 + 4ξ1

(ξ12 )r,

where the last inequality follows because r ≥ 1 and ε ≤ 1
4 .

Hence, we have E[ALG] =
∑
i E[ALGi] ≥ ( 1

2 + 1
2+4ξ1

( ξ1
2 )r)

∑
i E[C(αVi)]. Finally, observe

that
∑
i E[C(αVi)] = E[C(α)] ≥ w(OPT), as α is a matching coverage for OPT. Therefore,

we conclude that the performance ratio for the whole algorithm is at least 1
2 + ξk, where

ξk = 1
2+4ξ1

( ξ1
2 )r = Ω(ξ1)O(k2), as required.
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