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IDENTIFYING THE NUMBER OF FACTORS FROM SINGULAR
VALUES OF A LARGE SAMPLE AUTO-COVARIANCE MATRIX1

BY ZENG LI, QINWEN WANG AND JIANFENG YAO

University of Hong Kong

Identifying the number of factors in a high-dimensional factor model has
attracted much attention in recent years and a general solution to the problem
is still lacking. A promising ratio estimator based on singular values of lagged
sample auto-covariance matrices has been recently proposed in the literature
with a reasonably good performance under some specific assumption on the
strength of the factors. Inspired by this ratio estimator and as a first main
contribution, this paper proposes a complete theory of such sample singular
values for both the factor part and the noise part under the large-dimensional
scheme where the dimension and the sample size proportionally grow to in-
finity. In particular, we provide an exact description of the phase transition
phenomenon that determines whether a factor is strong enough to be detected
with the observed sample singular values. Based on these findings and as a
second main contribution of the paper, we propose a new estimator of the
number of factors which is strongly consistent for the detection of all signif-
icant factors (which are the only theoretically detectable ones). In particular,
factors are assumed to have the minimum strength above the phase transition
boundary which is of the order of a constant; they are thus not required to
grow to infinity together with the dimension (as assumed in most of the exist-
ing papers on high-dimensional factor models). Empirical Monte-Carlo study
as well as the analysis of stock returns data attest a very good performance
of the proposed estimator. In all the tested cases, the new estimator largely
outperforms the existing estimator using the same ratios of singular values.

1. Introduction. Factor models have met a large success in data analysis
across many scientific fields such as psychology, economics and signal process-
ing, to name a few. Their attractivity mainly relies on their capability in reducing
the generally high dimension of the data to a much lower-dimensional common
component. The structure of these models is complex and many different versions
have been introduced so far in the long-standing literature on the subject, ranging
from static to dynamic or generalized dynamic factor models on one hand, and
from exact to approximate factor models on the other hand. A recent survey of this
literature can be found in Stock and Watson (2011). Efforts are however still paid to
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the study of these models because their inference is challenging, especially when
the cross-sectional dimension p and the temporal dimension T are both large.

In such high-dimensional context, the determination of the number k of com-
mon factors in a factor model has a primary importance. Misspecification of this
number can deeply affect the quality of the fitted factor model. In this regard, the
seminal paper Bai and Ng (2002) provided a consistent estimator of k for static
factor models for the first time. This estimator has attracted much attention and
has since been improved or generalized, for example, in Bai and Ng (2007) by the
authors themselves, in Hallin and Liska (2007) for dynamic factor models and in
Alessi, Barigozzi and Capasso (2010) for approximate factor models. It should be
here mentioned that as these developments mainly target at analysis of economic
or financial data, the common factors in these models are thought to be perva-
sive, or strong, in the sense that their strength is much higher than the strength
of the idiosyncratic (error) component. The asymptotic consistency of the factor
number estimator depends on this assumption to a large extent. However, some
recent studies on factor models suggest the importance for accommodating more
factors in these models by including some weaker factors which still have a signif-
icant explanation power on both cross-sectional and temporal correlations of the
data. For example, Onatski (2015) makes a clear distinction between strong factors
and weak factors when considering asymptotic approximations of the square loss
function from a principal-components-based perspective. A related work allowing
weak factors can be found in Onatski (2012).

In this paper, we consider a factor model for high-dimensional time series pro-
posed by Lam and Yao (2012): the observations Y is a p × T matrix with p cross-
sectional units over T time periods. Let yt denote the p-dimensional vector ob-
served at time t , then it consists of two components, a low-dimensional common-
factor time series xt and an idiosyncratic component εt :

(1.1) yt = Axt + εt ,

where A is the factor loading matrix of size p × k and {εt } is a Gaussian white
noise sequence (temporal uncorrelated). The factors in (xt ) are here loaded con-
temporaneously; however, this is a time series and its temporal correlation implies
that of the observations {yt }. However, this is the unique source of temporal cor-
relation, and in this aspect, the model is much more restrictive than the general
dynamic models as introduced in Geweke (1977), Sargent and Sims (1977) and
Forni et al. (2000, 2004, 2005). Nevertheless, there are two advantages in this
simplified model. First, since potentially (xt ) can be any kind of stationary time
series of low dimension, the model can already cover a wide range of applications.
Second, inference procedures are here more consistently defined and more precise
results can be expected, for example, for the determination of the number of fac-
tors. The factor model (1.1) can be considered as a reasonable balance between the
generality of model coverage and the technical feasibility of underlying inference
procedures.
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The goal of this paper is to develop a powerful estimator of the number of
factors in the model (1.1). Lam and Yao (2012) proposed a ratio-based estimator
defined as follows. Let �y = cov(yt , yt−1) and �x = cov(xt , xt−1) be the lag-1
auto-covariance matrices of yt and xt , respectively. Assuming that the factor and
the noise are independent, we then have

�y = A�xA
′,

which leads to its symmetric counterpart

M = �y�
′
y = A�x�

′
xA

′.(1.2)

Notice that here and throughout the paper, the loading matrix A is normalized
by the constraint A′A = Ik and such constraint is a common set-up in the factor
models literature; see, for example, the setting IC2 in Table 1 of Bai and Li (2012).
Since the k × k matrix �x is generally of full rank k, the symmetric p × p matrix
M has exactly k nonzero eigenvalues. Moreover, the factor loading space M(A),
for example, the k-dimensional subspace in R

p generated by the columns of A,
is spanned by the eigenvectors of M corresponding to its nonzero eigenvalues
a1 ≥ · · · ≥ ak > 0 (factor eigenvalues). Let

(1.3) M̂ = �̂y�̂
′
y where �̂y = 1

T

T +1∑
t=2

yty
′
t−1,

be the sample counterparts of M and �y , respectively. The main observation is that
the p − k null eigenvalues of M will lead to p − k “relatively small” sample eigen-
values in M̂ , while the k factor eigenvalues (ai) will generate k “relatively large”
eigenvalues in M̂ . This can be made very precisely in a classical low-dimensional
framework where we fix the dimension p and let T grow to infinity: indeed by law
of large numbers, M̂ → M and by continuity, all the eigenvalues l1 ≥ l2 ≥ · · · ≥ lp
(sorted in decreasing order) of M̂ will converge to the corresponding eigenvalues
of M . In particular, for k < i ≤ p, li → 0 while li → ai > 0 for 1 ≤ i ≤ k. Consider
the ratio estimator [Lam and Yao (2012)]:

(1.4) k̃ = arg min
1≤i<p

li+1/li .

As lk+1/lk will be the first ratio in this list which tends to zero, k̃ will be a consis-
tent estimator of k.

In the high-dimensional context, however, M̂ will significantly deviate from M

and the spectrum (li) of M̂ will not be close to that of M anymore. In particu-
lar, the time for the first minimum of the ratios in (1.4) becomes noisy and can be
much different from the target value k. Notice that the k nonnull factor eigenvalues
(ai) are directly linked to the strength of the factor time series (xt ). The precise
relationship between the ratios of sample eigenvalues in (1.4) will ultimately de-
pend on a complex interplay between the strength of the factor eigenvalues (ai)

(compared to the noise level), the dimension p and the sample size T .
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Despite of the introduction of a very appealing ratio estimator (1.4), a precise
description of the sample ratios li+1/li is missing in Lam and Yao (2012). Indeed,
the authors establish the consistency of the ratio estimator k̃ by requiring that the
factor strengths (ai) all explode at a same rate: ai ∝ pδ for all 1 ≤ i ≤ k and
some δ > 0 as the dimension p grows to infinity. In other words, the factors are
all strong and they have the same asymptotic strength. This limitation is quite
severe because factors with different levels of strength cannot all be detected within
this framework. For instance, if we have factors with three levels of strength pδj ,
j = 1,2,3 where δ1 > δ2 > δ3, the ratio estimator k̃ above will correctly identify
the group of strongest factors ai ∝ pδ1 while all the others will be omitted. In an
attempt to correct such undesirable behavior, a two-step estimation procedure is
also proposed in Lam and Yao (2012) to successively identify two groups of factors
with top two strengths: this means that in the example above, factors of strength
ai proportional to pδj with j = 1,2 will be identified while the others will remain
omitted. The issue here is that a priori, we do not know how many different levels
of strength the factors could have and it is unlikely we could attempt to estimate
such different levels as this would lead to a problem that is equally (if not more)
difficult than the initial problem of estimating the number of factors.

Inspired by the appropriateness of the ratio estimator k̃ in the high-dimensional
context, the main objective of this paper is to provide a rigorous theory for the
estimation of the number of factors based on the ratios {li+1/li} under the high-
dimensional setting where p and T tend to infinity proportionally.

This paper contains two main contributions. First, we completely character-
ize the limits of both the factor eigenvalues {li}1≤i≤k and the noise eigenval-
ues {li}k<i≤p. For the noise part, as k (although unknown) is much smaller than
the dimension p, we prove that the spectral distribution generated by {li}k<i≤p

has a limit which coincides with the limit of the spectral distribution gener-
ated by the p eigenvalues of the (unobserved) matrix M̂ε = �̂ε�̂

′
ε where �̂ε =

T −1∑T +1
t=2 εtε

′
t−1. This limiting distribution has been explored elsewhere in Li,

Pan and Yao (2015) and its support is found to be a compact interval [a, b]. As
for the factor part {li}1≤i≤k , although it is highly expected that they should have a
limit located outside the base interval [a, b], we establish a phase transition phe-
nomenon: a factor eigenvalue li will tend to a limit λi > b (outlier) if and only if
the corresponding population factor strength ai exceeds some critical value τ . In
other words, if a factor ai is too weak, then the corresponding sample factor eigen-
value λi will tend to b, the (limit of) maximum of the noise eigenvalues and it will
be hardly detectable. Moreover, both the outlier limits {λi} and the critical value τ

are characterized through the model parameters.
The second main contribution of the paper is the derivation of a new estimator

k̂ of the number of factors based on the finding above. If k0 denotes the number of
significant factors, that is, with factor strength ai > τ , then using an appropriate
thresholding interval (1 − dT ,1) for the sample ratios {li+1/li}, the derived esti-
mator k̂ is strongly consistent converging to k0. In addition to this well-justified
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consistency, the main advantage of the proposed estimator is its robustness against
possibly multiple levels of factor strength; in theory, all factors with strength above
the constant τ are detectable. Therefore, both strong factors and weak factors can
be present, and their strengths can have different asymptotic rates with regard to
the dimension p in order to be detected from the observed samples. This is a key
difference between the method provided in this paper and most of the existing
estimators of the factor number as mentioned previously [the reader is however
reminded that the model (1.1) is more restrictive than a general dynamic factor
model]. Notice however that these precise results have been obtained at the cost of
some drastic simplification of the idiosyncratic component {εt }, namely indepen-
dence has been assumed both serially and cross-sectionally (over the time and the
dimension), and the components are normalized to have a same value of variance
(see Assumption 2 in Section 2). These limitations are required by the techni-
cal tools employed in this paper and some nontrivial extension of these tools are
needed to get rid of these limitations.

From a methodological point of view, our approach is based on recent advances
in random matrix theory, specifically on the so-called spiked population models or
more generally on finite-rank perturbations of large random matrices. We start by
identifying the sample matrix M̂ as a finite-rank perturbation of the base matrix
M̂ε associated to the noise. In a recent paper Li, Pan and Yao (2015), the limiting
spectral distribution of the eigenvalues of M̂ε has been found and the base inter-
val [a, b] characterized. By developing the mentioned perturbation theory for the
auto-covariance matrix M̂ , we find the characterization of the limits of its eigen-
values {li}.

For the strong consistency of the proposed ratio estimator k̂, a main ingredient is
the almost sure convergence of the largest eigenvalue of the base matrix M̂ε to the
right edge b, recently established in Wang and Yao (2014). This result serves as the
cornerstone for distinguishing between significant factors and noise components.

It is worth mentioning a related paper Onatski (2010) where the author stands
from a similar perspective with the method in this paper. However, that paper ad-
dresses static approximate factor models without time series dependence and more
importantly, the assumption of explosion of all factor eigenvalues is still required
which, on the contrary, is released in this paper.

The rest of the paper is organized as follows. In Section 2, after introduction of
the model assumptions we develop our first main result regarding spectral limits
of M̂ . The new estimator k̂ is then introduced in Section 3 and its strong conver-
gence to the number of significant factors k0 established. In Section 4, detailed
Monte-Carlo experiments are conducted to check the finite-sample properties of
the proposed estimator and to compare it with the ratio estimator k̃ (1.4) from Lam
and Yao (2012). Both estimators k̃ and k̂ are then tested in Section 5 on a real data
set from Standard & Poor stock returns and compared in detail. Notice that some
technical lemmas used in the main proofs are gathered in a companion paper of
supplementary material [Li, Wang and Yao (2016)].
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2. Large-dimensional limits of noise and factor eigenvalues. The static fac-
tor model (1.1) is further specified to satisfy the following assumptions.

ASSUMPTION 1. The factor (xt ) is a k-dimensional (k � p fixed) stationary
time series whose p components are independent linear processes of form

xit =
∞∑
l=0

φilηi t−l , i = 1, . . . , k, t = 1, . . . , T + 1.

Here, for each i, (ηik) is a real-valued and weakly stationary white noise with
mean 0 and variance σ 2

i . The ith time series {xit }t≥1 has variance γ0(i) and lag-1
auto-covariance γ1(i). Moreover, the variance γ0(i) will be hereafter referred to as
the strength of the ith factor time series {xit }.

ASSUMPTION 2. The idiosyncratic component (εt ) is independent of (xt ).
Each εt is a p-dimensional real valued random vector with independent entries
εit , i = 1, . . . , p and the whole array of variables {εit } are independent and satisfies
the conditions:

E(εit ) = 0, E
(
ε2
it

)= σ 2,

and for any η > 0,

(2.1)
1

η4pT

p∑
i=1

T +1∑
t=1

E
(|εit |4I(|εit |≥ηT 1/4)

)−→ 0 as (pT ) → ∞.

ASSUMPTION 3. The dimension p and the sample size T tend to infinity pro-
portionally: p → ∞, T = T (p) → ∞ and p/T → y > 0.

Assumption 1 defines the static factor model considered in this paper. Assump-
tion 2 details the moment condition and the independent structure of the noise. In
particular, (2.1) is a Lindeberg-type condition commonly used in random matrix
theory. In particular, if the fourth moments of the variables {εit } are uniformly
bounded, the Lindeberg condition is satisfied. Assumption 3 defines the high-
dimensional setting where both the dimension and the sample size can be large
with comparable magnitude.

First, we have

�̂y = 1

T

T +1∑
t=2

yty
′
t−1 = 1

T

T +1∑
t=2

(Axt + εt )(Axt−1 + εt−1)
′

= 1

T

T +1∑
t=2

Axtx
′
t−1A

′ + 1

T

T +1∑
t=2

(
Axtε

′
t−1 + εtx

′
t−1A

′)+ 1

T

T +1∑
t=2

εtε
′
t−1

:= PA + �̂ε.
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The matrix �̂ε = T −1∑
t εt ε

′
t−1 is the analogous sample auto-covariance matrix

associated to the noise (εt ). Since A has rank k, the rank of the matrix PA is
bounded by 2k (we will see in fact that asymptotically, the rank of PA will be
eventually k). Therefore, the auto-covariance matrix of interest �̂y is seen as a
finite-rank perturbation of the noise auto-covariance matrix �̂ε . Since the matrix
�̂y is not symmetric, we consider its singular values, that is, the square roots of the
positive eigenvalues of M̂ := �̂y�̂

′
y . Therefore, the study of the singular values

of �̂y reduces to the study of the eigenvalues of M̂ , which is also a finite rank
perturbation of the base component M̂ε := �̂ε�̂

′
ε .

Finite-rank perturbations of random matrices have been actively studied in re-
cent years and the theory is much linked to the spiked population models well
known in high-dimensional statistics literature. For some recent accounts on this
theory, we refer to Bai and Yao (2008), Baik and Silverstein (2006), Benaych-
Georges and Nadakuditi (2011), Johnstone (2001), Passemier and Yao (2012) and
the references therein. A general picture from this theory is that first, the eigen-
values of the base matrix will converge to a limiting spectral distribution (LSD)
with a compact support, say an interval [a, b]; and second, for the eigenvalues
of the perturbed matrices; most of them (base eigenvalues) will converge to the
same LSD independently of the perturbation while a small number among the
largest ones will converge to a limit outside the support of the LSD (outliers). How-
ever, all the existing literature cited above concern the finite rank perturbation of
large-dimensional sample covariance matrices or Wigner matrices. As a theoretic
contribution of this paper, we extend this theory to the case of a perturbed auto-
covariance matrix by giving exact conditions under which the aforementioned di-
chotomy between base eigenvalues and outliers still hold. Specifically, we prove
in this section that once the k factor strengths (ai) are not “too weak”, they will
generate exactly k outliers, while the remaining p − k eigenvalues will behave as
the eigenvalues of the base M̂ε , which converges to a compactly supported LSD. It
is then apparent that under such dichotomy and by “counting” the outliers outside
the interval [a, b], we will be able to obtain a consistent estimator of the number
of factors k.

In what follows, we first recall two existing results on the limits of the singular
values of �̂ε . Then we develop our theory on the limits of largest (outliers) and
base singular values of �̂y .

2.1. LSD of M̂ε . We first recall two useful results on the base matrix M̂ε . First,
the LSD of the matrix M̂ε has been obtained in a recent paper of Li, Pan and Yao
(2015). Write

M̂ε =
(

1

T

T +1∑
t=2

εtε
′
t−1

)(
1

T

T +1∑
t=2

εtε
′
t−1

)′

= 1

T 2 XY ′YX′,
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with the data matrices

X =
⎛⎜⎝ ε12 · · · ε1,T +1

...
. . .

...

εp2 · · · εp,T +1

⎞⎟⎠ , Y =
⎛⎜⎝ ε11 · · · ε1T

...
. . .

...

εp1 · · · εpT

⎞⎟⎠ .

Furthermore, let μ be a measure on the real line supported on an interval [α,β]
(the end points can be infinity), with its Stieltjes transform defined as

m(z) =
∫ 1

t − z
dμ(t) for z ∈ C \ supp(μ),

and its T -transform as

T (z) =
∫

t

z − t
dμ(t) for z ∈ C \ supp(μ).

Notice here that the T -transform is a decreasing homeomorphism from (−∞, α)

onto (T (α−),0) and from (β,+∞) onto (0, T (β+)). These two transforms are
related each other by the following equation:

T (z) = −1 − zm(z).

PROPOSITION 2.1 [Li, Pan and Yao (2015)]. Suppose that Assumptions 2 and
3 hold with σ 2 = 1. Then the empirical spectral distribution of B := 1/T 2Y ′YX′X
(which is the companion matrix of M̂ε) converges a.s. to a nonrandom limit F,
whose Stieltjes transform m = m(z) satisfies the equation

z2m3(z) − 2z(y − 1)m2(z) + (y − 1)2m(z) − zm(z) − 1 = 0.(2.2)

In particular, this LSD is supported on the interval [a1{y≥1}, b] whose end points
are

a = (−1 + 20y + 8y2 − (1 + 8y)3/2)/8,(2.3)

b = (−1 + 20y + 8y2 + (1 + 8y)3/2)/8.(2.4)

Notice that the companion matrix B is T ×T and it shares the same p ∧T non-
null eigenvalues with M̂ε . Therefore, the support of M̂ε is also [a, b]. The LSD F

of B and the LSD F ∗ of M̂ε are linked by the relationship

yF ∗ − F = (y − 1)δ0,

where δ0 is the Dirac mass at the origin.

REMARK 2.1. The equation (2.2) can be expressed using the T -transform:(
T (z) + 1

)(
T (z) + y

)2 = zT (z).(2.5)

The second result is about the convergence of the largest eigenvalue of M̂ε .
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PROPOSITION 2.2 [Wang and Yao (2014)]. Suppose that Assumptions 2 and
3 hold with σ 2 = 1. Then the largest eigenvalue of M̂ε converges a.s. to the right
end point b of its LSD given in (2.4).

Combining Propositions 2.1 and 2.2, we have the following corollary.

COROLLARY 2.1. Under the same conditions as in Proposition 2.2, if (βj )

are sorted eigenvalues of M̂ε , then for any fixed m, the m largest eigenvalues β1 ≥
β2 ≥ · · · ≥ βm all converge to b almost surely.

PROOF. For any δ > 0, almost surely the number of sample eigenvalues of
βj falling into the interval (b − δ, b) grows to infinity due to the fact the den-
sity of the LSD is positive and continuous on this interval. Then for fixed m, a.s.
lim infp→∞ βm ≥ b − δ. By letting δ → 0, we have a.s. lim infp→∞ βm ≥ b. Obvi-
ously, lim supp→∞ βm ≤ lim supp→∞ β1 = b, that is, a.s. limp→∞ βm = b. �

2.2. Convergence of the largest eigenvalues of the sample auto-covariance ma-
trix M̂ . The following main result of the paper characterizes the limits of the
k-largest eigenvalues of the sample auto-covariance matrix M̂ . Notice that Propo-
sitions 2.1 and 2.2 hold for general white noise εt , for technical reasons; our main
results (Theorems 2.1 and 3.1 below) are established under the Gaussian assump-
tion.

THEOREM 2.1. Suppose that the model (1.1) satisfies Assumptions 1, 2 and 3.
The noise {εt } are normally distributed and the loading matrix A is normalized as
A′A = Ik . Let li(1 ≤ i ≤ k) denote the k largest eigenvalue of M̂ . Then for each
1 ≤ i ≤ k, li/σ

4 converges almost surely to a limit λi . Moreover,

λi = b when T1(i) ≥ T
(
b+),

where

T1(i) =
(
2yσ 2γ0(i) + γ1(i)

2

−
√(

2yσ 2γ0(i) + γ1(i)2
)2 − 4y2σ 4

(
γ0(i)2 − γ1(i)2

))
(2.6)

/
(
2γ0(i)

2 − 2γ1(i)
2).

Otherwise, that is, T1(i) < T (b+), λi > b and its value is characterized by the fact
that the T -transform T (λi) is the solution to the equation:

(2.7)
(
yσ 2 − γ0(i)T (λi)

)2 = γ1(i)
2T (λi)

(
1 + T (λi)

)
.
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The theorem establishes a phase transition phenomenon for the k sample factor
eigenvalues (li). Define the number of significant factors:

(2.8) k0 = 
{
1 ≤ i ≤ k : T1(i) < T

(
b+)}.

Therefore, for each of the k0 significant factors, the corresponding sample eigen-
value li will converge to a limit λi outside the base support interval [a, b]. In
contrary, for the k − k0 factors for which T1(i) ≥ T (b+), they are too weak in the
sense that the corresponding sample eigenvalue li will converge to b, which is also
the limit of the largest noise eigenvalues lk+1, . . . , lk+m (m is a fixed number here).
Therefore, these weakest factors will be merged into the noise component and their
detection becomes nearly impossible.

Later in Section 2.3, it will be established that for the ith factor time series to
be significant, the phase transition condition T1(i) < T (b+) essentially requires its
strength γ0(i) be large enough.

PROOF OF THEOREM 2.1. The proof consists of four steps where some tech-
nical lemmas are to be found in the companion paper of supplementary material
[Li, Wang and Yao (2016)].

Step 1. Simplification of variance σ 2 of white noise {εit }. To start with, we
reduce the variance of the white noise from σ 2 to 1. Indeed, the model (1.1) is
equivalent to

yt

σ
= A

xt

σ
+ εt

σ
.

And if we denote ỹt = yt/σ , x̃t = xt/σ and ε̃t = εt/σ , then we are dealing with
the model

(2.9) ỹt = Ax̃t + ε̃t ,

where the white noise ε̃ has mean zero and unit variance and the variance and
auto-covariance of the factor process {x̃t } satisfies

γ̃0(i) = γ0(i)/σ
2, γ̃1(i) = γ1(i)/σ

2,(2.10)

in which γ0(i) and γ1(i) are the variance and auto-covariance of the original factor
process {xt }. Therefore, in all the following, we just consider the standardized
Model (2.9). For convenience, we use the notation of the original model (1.1) and
set σ 2 = 1 to investigate Model (2.9). At the end of the proof, we will replace the
value of γ0(i) and γ1(i) with γ̃0(i) and γ̃1(i) to recover the corresponding results
for Model (1.1).

Step 2. Simplification of matrix A. Here, we argue that it is enough to consider
the case where the loading matrix A has the canonical form

A =
(

Ik

0p−k

)
.
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Suppose A is not in this canonical form. Since by assumption A′A = Ik , we can
complete A to an orthogonal matrix Q = (A,C) by adding appropriate orthonor-
mal columns. From the model equation (1.1), we have

Q′yt = Q′Axt + Q′εt =
(
A′
C′
)

Axt + Q′εt =
(

Ik

0p−k

)
xt + Q′εt .

Since εt ∼ N (0, Ip) and Q′ is orthogonal, Q′εt ∼ N (0, Ip). Let zt := Q′yt , then
zt satisfies the model equation (1.1) with a canonical loading matrix. What happens
is that the singular values of the two lag-1 auto-covariance matrices

1

T

T +1∑
t=2

ztz
′
t−1,

1

T

T +1∑
t=2

yty
′
t−1

are the same: this is simply due to fact that(
1

T

T +1∑
t=2

yty
′
t−1

)(
1

T

T +1∑
t=2

yty
′
t−1

)′

=
(

1

T

T +1∑
t=2

Q′zt · (Q′zt−1
)′)( 1

T

T +1∑
t=2

Q′zt · (Q′zt−1
)′)′

= Q′
(

1

T

T +1∑
t=2

ztz
′
t−1

)(
1

T

T +1∑
t=2

ztz
′
t−1

)′
Q.

Step 3. Derivation of the main equation (2.7). From now on, we assume that A

is in its canonical form. By the definition of yt , we have

�̂y = 1

T

T +1∑
t=2

yty
′
t−1

= 1

T

T +1∑
t=2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1t + ε1t

...

xkt + εkt

εk+1t

...

εpt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.11)

× (x1t−1 + ε1t−1 · · · xkt−1 + εkt−1 εk+1t−1 · · · εpt−1
)

:=
(
A B

C D

)
,
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where we use A, B , C and D to denote the four blocks. Define

X0 := 1√
T

⎛⎜⎝ x11 + ε11 · · · xk1 + εk1
...

. . .
...

x1T + ε1T · · · xkT + εkT

⎞⎟⎠ ,

X1 := 1√
T

⎛⎜⎝ x12 + ε12 · · · xk2 + εk2
...

. . .
...

x1T +1 + ε1T +1 · · · xkT +1 + εkT +1

⎞⎟⎠ ,

E1 := 1√
T

⎛⎜⎝εk+11 · · · εp1
...

. . .
...

εk+1T · · · εpT

⎞⎟⎠ ,

E2 := 1√
T

⎛⎜⎝ εk+12 · · · εp2
...

. . .
...

εk+1T +1 · · · εpT +1

⎞⎟⎠ .

Then we have

(2.12) A = X′
1X0, B = X′

1E1, C = E′
2X0, D = E′

2E1.

Since l is the extreme large eigenvalue of �̂y�̂
′
y ,

√
l is the extreme large sin-

gular value of �̂y , or equivalently,
√

l is the positive eigenvalue of the 2p × 2p

matrix

(2.13)

(
0 �̂y

�̂′
y 0

)
.

When the block expression (2.11) is combined with the definition of each block in
(2.12), (2.13) is equivalent to

(2.14)

⎛⎜⎜⎜⎝
0 0 X′

1X0 X′
1E1

0 0 E′
2X0 E′

2E1

X′
0X1 X′

0E2 0 0
E′

1X1 E′
1E2 0 0

⎞⎟⎟⎟⎠ .

If we interchange the second and third row block and column block in (2.14), its
eigenvalues remain the same. Therefore,

√
l should satisfy the following equa-



IDENTIFYING NUMBER OF FACTORS 269

tion:

(2.15)

∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎝
√

l −X′
1X0 0 −X′

1E1

−X′
0X1

√
l −X′

0E2 0

0 −E′
2X0

√
l −E′

2E1

−E′
1X1 0 −E′

1E2
√

l

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
= 0.

Then for block matrix, we have the identity det
(

A B
C D

)= detD · det(A − BD−1C)

when D is invertible, then (2.15) is equivalent to∣∣∣∣∣
( √

l −X′
1X0

−X′
0X1

√
l

)

−
(

0 −X′
1E1

−X′
0E2 0

)( √
l −E′

2E1

−E′
1E2

√
l

)−1 (
0 −E′

2X0
−E′

1X1 0

)∣∣∣∣∣∣= 0.

(2.16)

Here the inverse matrix exists because
√

l is an extreme singular value, so
that ∣∣∣∣∣

( √
l −E′

2E1

−E′
1E2

√
l

)∣∣∣∣∣ �= 0.

Next, by expanding ( √
l −E′

2E1

−E′
1E2

√
l

)−1

,

we find that (2.16) is equivalent to∣∣∣∣( √
lIk − √

lX′
1E1

(
lI − E′

1E2E
′
2E1

)−1
E′

1X1 −X′
1
(
I + E1E

′
1E2

(
lI − E′

2E1E
′
1E2

)−1
E′

2
)
X0

−X′
0
(
I + E2E

′
2E1

(
lI − E′

1E2E
′
2E1

)−1
E′

1
)
X1

√
lIk − √

lX′
0E2

(
lI − E′

2E1E
′
1E2

)−1
E′

2X0

)∣∣∣∣
= 0,

and using the simple fact that

A(lI − BA)−1 = (lI − AB)−1A

leads to∣∣∣∣( √
lIk − √

lX′
1
(
lI − E1E

′
1E2E

′
2
)−1

E1E
′
1X1 −X′

1
(
I + (lI − E1E

′
1E2E

′
2
)−1

E1E
′
1E2E

′
2
)
X0

−X′
0
(
I + (lI − E2E

′
2E1E

′
1
)−1

E2E
′
2E1E

′
1
)
X1

√
lIk − √

lX′
0
(
lI − E2E

′
2E1E

′
1
)−1

E2E
′
2X0

)∣∣∣∣
= 0.

(2.17)
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Taking Lemmas 1.3 and 1.4 given in Li, Wang and Yao (2016) into consideration,
the matrix in (2.17) tends to a block matrix:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
λ(y − γ0(1)T (λ))

y + T (λ)
· · · 0

.

.

.
. . .

.

.

.

0 · · ·
√

λ(y − γ0(k)T (λ))

y + T (λ)

−(1 + T (λ)
)
γ1(1) · · · 0

.

.

.
. . .

.

.

.

0 · · · −(1 + T (λ)
)
γ1(k)

−(1 + T (λ)
)
γ1(1) · · · 0

.

.

.
. . .

.

.

.

0 · · · −(1 + T (λ)
)
γ1(k)

√
λ(y − γ0(1)T (λ))

y + T (λ)
· · · 0

.

.

.
. . .

.

.

.

0 · · ·
√

λ(y − γ0(k)T (λ))

y + T (λ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

so λ should make the determinant of this matrix equal to 0. If we interchange the
first and second column block, the matrix becomes the following:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(1 + T (λ)
)
γ1(1) · · · 0

.

.

.
. . .

.

.

.

0 · · · −(1 + T (λ)
)
γ1(k)

√
λ(y − γ0(1)T (λ))

y + T (λ)
· · · 0

.

.

.
. . .

.

.

.

0 · · ·
√

λ(y − γ0(k)T (λ))

y + T (λ)

√
λ(y − γ0(1)T (λ))

y + T (λ)
· · · 0

.

.

.
. . .

.

.

.

0 · · ·
√

λ(y − γ0(k)T (λ))

y + T (λ)

−(1 + T (λ)
)
γ1(1) · · · 0

.

.

.
. . .

.

.

.

0 · · · −(1 + T (λ)
)
γ1(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since the diagonal block is∣∣∣∣∣∣∣
⎛⎜⎝−(1 + T (λ)

)
γ1(1) · · · 0

...
. . .

...

0 · · · −(1 + T (λ)
)
γ1(k)

⎞⎟⎠
∣∣∣∣∣∣∣ �= 0,

we can use again the identity for determinant of a block matrix and find that

λ
(
y − γ0(i)T (λ)

)2 − γ1(i)
2(1 + T (λ)

)2(
y + T (λ)

)2 = 0, i ∈ [1, . . . , k].
Combining this equation with (2.5) and replacing γ0(i), γ1(i) with γ0(i)/σ

2,
γ1(i)/σ

2 leads to the equation (2.7).
Step 4. Derivation of the condition T1(i) < T (b+). We now look at the solution

of the main equation (2.7). The equation reduces to

(2.18)
[
γ0(i)

2 − γ1(i)
2] · T 2(λi) − [γ1(i)

2 + 2yσ 2γ0(i)
] · T (λi) + σ 4y2 = 0.
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Since the part γ0(i)
2 −γ1(i)

2 > 0 and γ1(i)
2 + 2yσ 2γ0(i) > 0, the equation (2.18)

has two positive roots⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
T1(i) = 2yσ 2γ0(i) + γ1(i)

2 −
√

(2yσ 2γ0(i) + γ1(i)2)2 − 4y2σ 4(γ0(i)2 − γ1(i)2)

2γ0(i)2 − 2γ1(i)2 ,

T2(i) = 2yσ 2γ0(i) + γ1(i)
2 +

√
(2yσ 2γ0(i) + γ1(i)2)2 − 4y2σ 4(γ0(i)2 − γ1(i)2)

2γ0(i)2 − 2γ1(i)2 .

(2.19)

Recall the definition of the T -transform that

T (z) =
∫

t

z − t
dμ(t),

taking derivatives with respective to z on both side leads to

T
′
(z) = −

∫
t

(z − t)2 dμ(t) < 0.

So between the two solutions T1(i) and T2(i), only T1(i) satisfies this condition.
And due to the fact that λi > b, the region of T (λi) is (0, T (b+)), therefore, the
condition that there exists a unique solution in the region of (0, T (b+)) is T1(i) ∈
(0, T (b+)).

The proof of the theorem is complete. �

REMARK 2.2. The normal assumption in Theorem 2.1 is used to reduce an
arbitrary loading matrix A satisfying A′A = Ik to its canonical form as explained
in Step 2 of the proof. If the loading matrix is assumed to have the canonical form,
this normal assumption is no more necessary.

2.3. On the phase transition condition T1(i) < T (b+). In this section, we de-
tail the phase transition condition T1(i) < T (b+) that defines the detection frontier
of the factors. Unlike similar phenomenon observed for large sample covariance
matrices as exposed in Baik and Silverstein (2006) and Bai and Yao (2012), this
transition condition for the auto-covariance matrix has a more complex nature in-
volving the three parameters: the limiting ratio y, the two signal-to-noise ratios
(SNR) γ0(i)/σ

2 and γ1(i)/σ
2 involving the variance and lag-1 auto-covariance of

the ith factor time series (xit ).
To begin with, we observe that the condition can be reduced to

2y
γ0(i)

σ 2 +
(

γ1(i)

σ 2

)2
−
(

2
(

γ0(i)

σ 2

)2
− 2
(

γ1(i)

σ 2

)2)
T
(
b+)

(2.20)

<

√(
2y

γ0(i)

σ 2 +
(

γ1(i)

σ 2

)2)2
− 4y2

((
γ0(i)

σ 2

)2
−
(

γ1(i)

σ 2

)2)
,
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FIG. 1. Values of T (b+) as a function of the limiting ratio y.

which leads to the following two possibilities:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2y

γ0(i)

σ 2 +
(

γ1(i)

σ 2

)2
−
(

2
(

γ0(i)

σ 2

)2
− 2
(

γ1(i)

σ 2

)2)
T
(
b+)> 0,

(
γ0(i)

σ 2 T
(
b+)− y

)2
<

(
γ1(i)

σ 2

)2(
T 2(b+)+ T

(
b+)),(2.21)

or

2y
γ0(i)

σ 2 +
(

γ1(i)

σ 2

)2
−
(

2
(

γ0(i)

σ 2

)2
− 2
(

γ1(i)

σ 2

)2)
T
(
b+)≤ 0.(2.22)

First, we see the value of T (b+) can be derived using (2.5), with the value of b

given in (2.4) as a function of y, which is presented in Figure 1. When y increases
from zero to infinity, the value of T (b+) also increases from zero to infinity. Ob-
serve also that the slope at the origin is infinity: limy→0+ T (b+)/y = ∞.

Once p and T are given (y is fixed), the value of T (b+) is fixed, then the condi-
tions (2.21) and (2.22) can be considered as the restriction on the two parameters
γ0(i)/σ

2 and γ1(i)/σ
2. This defines a complex region in the γ0/σ

2 − γ1/σ
2 plane

as depicted in Figure 2. The dashed curve in Figure 2 stands for the equality

2y
γ0(i)

σ 2 +
(

γ1(i)

σ 2

)2
−
(

2
(

γ0(i)

σ 2

)2
− 2
(

γ1(i)

σ 2

)2)
T
(
b+)= 0,

and the area inside this curve (the darker region) is the condition (2.22), while
outside (the lighter region) stands for condition (2.21). The dotted lines stand for(

γ0(i)

σ 2 T
(
b+)− y

)2
=
(

γ1(i)

σ 2

)2(
T 2(b+)+ T

(
b+)),
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FIG. 2. Region of γ0(i)/σ 2 and γ1(i)/σ 2 that will lead to significant factors.

and the upper and lower boundaries in solid lines are due to the fact that we have
always |γ1(i)| ≤ γ0(i) (by Cauchy–Schwarz inequality). These solid and dotted
lines intersect at points A = (τ0, τ0) and B = (τ0,−τ0) where

(2.23) τ0 = y

T (b+) +√T 2(b+) + T (b+)
.

In other words, except for the quadrilateral region (∗), our conditions (2.21) and
(2.22) will hold true, which means that the corresponding factors are significant
(and thus asymptotically detectable). The quadrilateral region (∗) thus defines the
phase transition boundary for the significance of the factors.

We summarize the above findings as follows.

COROLLARY 2.2. Under the same conditions as in Theorem 2.1, the ith time
series (xit ) will generate a significant factor in the sense that T1(i) < T (b+) if and
only if either

(2.24)
|γ1(i)|

σ 2 > τ0,

or

(2.25)
|γ1(i)|

σ 2 ≤ τ0 and
γ0(i)

σ 2 >
y −√T 2(b+) + T (b+)|γ1(i)|/σ 2

T (b+)
,

where the constant τ0 is given in (2.23).
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We now introduce some important comments on the meaning of these condi-
tions.

1. The essential message from these conditions is that the ith factor time series
is a significant factor once its strength γ0(i), or more exactly, its SNR γ0(i)/σ

2

exceeds a certain level τ . A sufficient value for this level τ is τ1 = y/T (b+) as
shown in Figure 2. Meanwhile, the SNR should at least equal to τ0 given in (2.23).
See Point A on the figure with coordinates (τ0, τ0). When τ0 < γ0(i)/σ

2 ≤ τ1, the
exact condition also depends on the lag-1 SNR |γ1(i)|/σ 2 as given in equations
(2.24)–(2.25).

This is much in line with what is known for the phase transition phenomenon
for large sample covariance matrices as exposed in Baik and Silverstein (2006) and
Bai and Yao (2012).

2. As said in the Introduction, in most of existing literature on high-dimensional
factor models, the factor strengths are assumed to grow to infinity with the dimen-
sion p. Clearly, such pervasive factors are highly significant in our scheme, that
is, k0 = k, since they will exceed the upper limit τ1 very quickly as the dimension
p grows.

3. Assume that y → 0+, that is, the sample size T is much larger than the di-
mension p. Then it can be checked that both the quantities τ0 and τ1 will vanish.
Therefore, when p/T is small enough, any factor time series will generate a sig-
nificant sample factor eigenvalue. In other words, we have recovered the classical
low-dimensional situation where p is hold fixed and T → ∞ for which all the k

factor time series can be consistently detected and identified.

3. Estimation of the number of factors. Let l1, . . . , lp be the eigenvalues
of M̂ = �̂y�̂

′
y , sorted in decreasing order. Assume that among the k factors,

the first k0 are significant which satisfy the phase transition condition T1(i) <

T (b+); see equation (2.8). Following Theorem 2.1, the k largest sample eigen-
value (li/σ

4)1≤i≤k converges respectively to a limit (λi), which is larger than the
right edge b of the limiting spectral distribution for 1 ≤ i ≤ k0, and equal to b for
k0 < i ≤ k.

It will be proven below that the largest noise sample eigenvalues of a given finite
number all converge to b, that is, for any fixed range m > 0,

(3.1) lk+1/σ
4 → b, . . . , lk+m/σ 4 → b almost surely.

Consider the sequence of ratios

(3.2) θj := lj+1/σ
4

lj /σ 4 = lj+1

lj
, j ≥ 1.

By definition θj ≤ 1. Therefore, we have almost surely,

θj → λj+1

λj

< 1, j < k0,
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θk0 → b

λk0/σ
4 < 1,

(3.3)

θj → b

b
= 1, k0 < j ≤ k,

θk+1, . . . , θk+m → b

b
= 1 for all fixed m.

REMARK 3.1. Note that the value of θj is independent of σ 2. In other words,
we do not need any estimate of σ 2 for estimating the number of factors.

Let 0 < dT < 1 be a positive constant and we introduce the following estimator
for the number of factors k:

k̂ = {first j ≥ 1 such that θj > 1 − dT } − 1.(3.4)

THEOREM 3.1. Consider the factor model (1.1) and assume that the same
conditions as in Theorem 2.1 are satisfied. Let k0 be the number of significant
factors defined in equation (2.8) and a threshold constant dT be chosen such that

(3.5) max
1≤j≤k0

λj+1/λj < 1 − dT < 1.

Then k̂
a.s.−→ k0.

This theorem thus formally establishes the fact that the ratio estimator k̂ is able
to detect all the significant factors that satisfy the phase transition condition given
in Theorem 2.1 and detailed in equations (2.24)–(2.25).

PROOF OF THEOREM 3.1. As θj
a.s.−→ λj+1/λj for 1 ≤ j ≤ k0 and by assump-

tion (3.5), almost surely, it will happen eventually that k̂ > k0. Next, under the
claim (3.1) and following the limits given in (3.3),

(3.6) θj
a.s.−→ 1 forj > k0.

Consequently, we will eventually have k̂ ≤ k0 almost surely. When this is com-
bined with the conclusion above, the almost sure convergence of k̂ to k0 is proven.

It remains to prove the claim (3.1). Since θj is independent of the choice of σ 2,
we can assume w.l.o.g. that σ 2 = 1 as before. Recall that in the proof of Theo-
rem 2.1, it has been proved in equations (2.13)–(2.14) that if l is a eigenvalue of
M̂ , then

√
l is a positive eigenvalue of the matrix

� =

⎛⎜⎜⎜⎝
0 X′

1X0 0 X′
1E1

X′
0X1 0 X′

0E2 0
0 E′

2X0 0 E′
2E1

E′
1X1 0 E′

1E2 0

⎞⎟⎟⎟⎠ ,
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which is obtained after permutation of the second and third row block and column
block in (2.14) without modifying the eigenvalues. Now � is a symmetric block
matrix and the positive eigenvalues of the lower diagonal block(

0 E′
2E1

E′
1E2 0

)
,

are associated to the eigenvalues of the matrix DD′ = E′
2E1E

′
1E2 which is of

dimension p − k (for the definition of these matrices, see that proof). Let β1 ≥
· · · ≥ βp−k be the eigenvalues of DD′. By the Cauchy interlacing theorem, we
have

βk+1 ≤ lk+1 ≤ β1.

Observing that D is distributed as �̂ε except that the dimension is changed from
p to p − k. Therefore, the global limit of the eigenvalues of DD′ are the same
as for the matrix �̂ε�̂

′
ε; in particular, according to Corollary 2.1, both βk+1 and

β1 converge to b almost surely. This proves the fact that lk+1
a.s.−→ b. Using similar

arguments, we can establish the same fact for lk+j
a.s.−→ b for any fixed index j ≥ 1.

The claim (3.1) is thus established. �

3.1. Calibration of the tuning parameter dT . For the estimator k̂ in (3.4) to be
practically useful, we need to set up an appropriate value of the tuning parameter
dT . Although any vanishing sequence dT → 0 will theoretically guarantee the con-
sistence of k̂, it is preferable to have an indicated and practically useful sequence
(dT ) for real-life data analysis. Here, we propose an a priori calibration of dT

based on some knowledge from random matrix theory on the largest eigenvalues
of sample covariance matrices and of their perturbed versions. The most impor-
tant property we will use is that according to such recent results on finite rank
perturbations of symmetric random matrices; see, for example, Benaych-Georges,
Guionnet and Maida (2011). It is very likely that the asymptotic distribution of

T
2
3 (

lk+2
lk+1

− 1) is the same as that of T
2
3 (ν2

ν1
− 1), where ν1, ν2 are the two largest

eigenvalues of the base noise matrix M̂ε . Using this similarity, we calibrate dT by

simulation: for any given pair (p,T ), the distribution of T
2
3 (ν2

ν1
−1) is sampled us-

ing a large number (in fact 2000) of independent replications of standard Gaussian
vectors εt ∼ N(0, Ip) and its lower 0.5% quantile qp,T ,0.5% is obtained (notice that
the quantile is negative). Using the approximation

P

{
T

2
3

(
lk+2

lk+1
− 1
)

≤ qp,T ,0.5%

}
� P

{
T

2
3

(
ν2

ν1
− 1
)

≤ qp,T ,0.5%

}
= 0.5%,

we calibrate dT at the value dT = |qp,T ,0.5%|/T 2/3. Notice that dT vanishes at a
rate of T −2/3. Overall, this tuned value of dT is used for all the given pairs of
(T ,p) in the simulation experiments in Section 4 and in the data analysis reported
in Section 5.
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4. Monte-Carlo experiments. In this section, we report some simulation re-
sults to show the finite-sample performance of our estimator. For the sake of ro-
bustness, we will consider a reinforced estimator k̂∗ defined as

k̂∗ = {first j ≥ 1 such that θj > 1 − dT and θj+1 > 1 − dT } − 1.(4.1)

Clearly, k̂∗ is asymptotically equivalent to the initial estimator k̂ which uses only
one single test value j . As for the factor model, we adopt the same settings as in
Lam and Yao (2012) where

yt = Axt + εt , εt ∼ Np(0, Ip),

xt = �xt−1 + et , et ∼ Nk(0,�),

where A is a p × k matrix, w.l.o.g., we set the variance σ 2 of the white noise εt

to 1.
In Lam and Yao (2012), the factor loading matrix A are independently generated

from uniform distribution on the interval [−1,1] first and then divided by pδ/2

where δ ∈ [0,1]. The induced k factor strengths are thus of order O(p1−δ). Their
estimator of the number of factors is recalled in (1.4). Cases where three factors
are either all very strong with δ = 0 or all moderately strong with δ = 0.5 are
discussed in detail in that paper. The results show that k̃ performs better when
factors are stronger. An experimental setting with a combination of two strong
factors and one moderate factor indicates that a two-step estimation procedure
needs to be employed in order to identify all three factors. In each step, only factors
with the highest level of strength can be detected. While in our case, the coefficient
matrix A satisfies A′A = Ik . Considering the eigenvalues of M̂ are invariant under
orthogonal transformation (See Step 2 in the proof of Theorem 2.1), we fix

A =
(

Ik

0p−k

)
.

Then we manipulate the factor strength by adjusting the value of � and �. To
ensure the stationarity of the {yt } process and the independence among the com-
ponents of the factor process {xt }, � and � are both diagonal and the diagonal
elements of � belong to (−1,1). To keep pace with the settings in Lam and Yao

(2012), we multiply the diagonal entries of � by p
1−δ

2 in order to adjust the cor-
responding factor strength. It can be seen that when δ = 0, the factor is strongest
while with δ = 1, the factor is weakest.

The simulation study comprises four parts corresponding to the four scenarios
defined as follows:

(I) Two very strong factors with δ1 = 0.5 and δ2 = 0.8 and

� =
(

0.6 0
0 0.5

)
, � =

⎛⎝4 × p
1−δ1

2 0

0 4 × p
1−δ2

2

⎞⎠ .
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(II) Four weak factors with same strength level δ = 1; three of them are signif-
icant with their theoretical limits λ1, λ2, λ3 all keeping a moderate distance from
the right edge b of the noise eigenvalues while the fourth factor is insignificant
with its theoretical limit λ4 equal to b. Precisely,

� =

⎛⎜⎜⎝
0.6 0 0 0
0 −0.5 0 0
0 0 0.3 0
0 0 0 0.2

⎞⎟⎟⎠ , � =

⎛⎜⎜⎝
4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 1

⎞⎟⎟⎠ .

(III) Three weak factors with δ = 1 and λ3 stays very close to b and

� =
⎛⎝0.6 0 0

0 −0.5 0
0 0 0.3

⎞⎠ , � =
⎛⎝2 0 0

0 2 0
0 0 2

⎞⎠ .

(IV) A mixed case with two strong factors with δ1 = 0.5, δ2 = 0.8, and five
weak factors with δ = 1, and

� = diag(0.6,0.5,0.6,−0.5,0.3,0.6,−0.5),

� = diag
(
4 × p

1−δ1
2 ,4 × p

1−δ2
2 ,4,4,4,2,2

)
.

Recall that for the estimator k̂∗, the critical value dT is calibrated as explained
in Section 3.1 using the simulated empirical 0.5% lower quantile. We set p =
100,300,500,1000,1500, T = 0.5p,2p, that is, y = 2,0.5. It will be seen below
that in general, the cases with T = 0.5p will be harder to deal with than the cases
with T = 2p. We repeat this 1000 times to calculate the empirical frequencies of
the different decisions (k̂∗ = k0), (k̂∗ = k0 ± 1) and (|̂k∗ − k0| > 1). The results
are as follows.

(I) In Scenario I, we have two very strong factors with δ1 = 0.5 and δ2 =
0.8 and their strengths grow to infinity with p. Thus, k0 = k = 2 and the two
factors must be easily detectable. As seen from Table 1, our estimator k̂∗ quickly
converges to the true number of factors. On the other hand, the one-step estimator
k̃ of Lam and Yao (2012) tends to detect only one factor in each step due to the
fact that the two factors are of different strength.

(II) In Scenario II, we have four weak factors of same strength level δ = 1.
The theoretical limits related to Theorem 2.1 are displayed in Table 2. Figure 3
for T = 2p and Figure 4 for T = 0.5p depict the position of these four factors
(numbered from 1 to 4) in the phase transition diagram defined in Corollary 2.2,
and we see three among the four lying inside the detectable area in both situations.
It can be seen from the table that for both combinations of T = 2p and T = 0.5p,
the first three limits λi are far from the right edge b and the fourth limit λ4 equals
to b. We thus have three significant factors (k0 = 3) which are detectable while
the fourth one is too weak for the detection. Results in Table 3 show that both
the estimators k̃ (one-step) and k̂∗ are consistent with a much higher convergence
speed for k̂∗.



IDENTIFYING NUMBER OF FACTORS 279

TABLE 1
Scenario I with two strong factors (k0 = k = 2)

p 100 300 500 1000 1500 p 100 300 500 1000 1500
T = 2p 200 600 1000 2000 3000 T = 2p 200 600 1000 2000 3000

k̃ = 1 0.343 0.294 0.257 0.287 0.317 k̂∗ = 1 0 0 0 0 0
k̃ = k0 0.657 0.706 0.743 0.713 0.683 k̂∗ = k0 0.974 0.984 0.993 0.996 0.998
k̃ ≥ 3 0 0 0 0 0 k̂∗ ≥ 3 0.026 0.016 0.007 0.004 0.002

p 100 300 500 1000 1500 p 100 300 500 1000 1500
T = 0.5p 50 150 250 500 750 T = 0.5p 50 150 250 500 750

k̃ = 1 0.786 0.801 0.876 0.96 0.992 k̂∗ = 1 0.086 0 0 0 0
k̃ = k0 0.21 0.199 0.124 0.04 0.008 k̂∗ = k0 0.771 0.882 0.896 0.881 0.881
k̃ ≥ 3 0.004 0 0 0 0 k̂∗ ≥ 3 0.143 0.118 0.104 0.119 0.119

(III) Theoretical limits and empirical results for Scenario III are presented in
Table 4, Figures 3 and 4 and Table 5. For both situations of T = 0.5p and T = 2p,
the model has three significant factors (k0 = k = 3). Notice, however, that when
T = 0.5p, the third factor is quite weak and the corresponding limit λ3 = 17.95
is very close to the right edge b = 17.64 so that this factor would be detectable
only in theory (or with very large sample sizes). This is also easily verified in
Figure 4 that the point (3) corresponding to the weakest factor lies very close to
the boundary of the detectable region. As for the empirical values in Table 5, the
estimator k̂∗ converges quickly when T = 2p and much more slowly when T =
0.5p. Meanwhile, the estimator k̃ (with one-step) seems inconsistent even in the
easier case of T = 2p.

(IV) Scenario IV is the most complex case with two very strong factors and five
weak factors. As predicted by the theory, the two largest factor eigenvalues l1, l2 of
M̂ blow up to infinity while the following 5 factor eigenvalues l3 ∼ l7 converge to
a λi > b. The corresponding theoretical limits for the five weak factors are given
in Table 6 and their SNRs are depicted in Figures 3 and 4. Meanwhile, all the
k0 = k = 7 factors are significant. Clearly, in this scenario, the performance of the

TABLE 2
Scenario II—Theoretical limits (k0 = 3, k = 4)

T = 2p T = 0.5p

No. � � γ0(i) γ1(i) T1(i) T (b+) λi b T1(i) T (b+) λi b

(1) 0.6 4 6.25 3.75 0.0125 0.3076 21.2 2.7725 0.1102 0.7775 44.8 17.6366
(2) −0.5 4 5.33 −2.67 0.021 0.3076 13.1 2.7725 0.1596 0.7775 33.85 17.6366
(3) 0.3 4 4.3956 1.3187 0.047 0.3076 6.65 2.7725 0.2767 0.7775 23.92 17.6366
(4) 0.2 1 1.042 0.2083 0.3446 0.3076 2.7725 2.7725 1.5296 0.7775 17.6366 17.6366
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FIG. 3. Locations of factor SNR’s (γ0/, γ1)/σ 2 from Tables 2 (points numbered from 1 to 4), 4
(points numbered from 5 to 7), and 6 (points numbered 1-2-3-5-6) with T = 2p (y = 0.5).

one-step estimator k̃, denoted as k̃(1), is quite limited and in order to make a closer
comparison with our estimator k̂∗, we have also run the two-step and the three-
step versions of the estimator k̃. Among these two versions, we report the best
results obtained by the three-step version (denoted as k̃(3)). It can be seen from
Table 7 that our estimator is able to detect the 7 factors with multi-level strength
in a single step while k̃ can only identify one factor in each step, that is, k̃(1) → 1
and k̃(3) → 3.

5. An example of real data analysis. We analyze the log returns of 100
stocks (denoted by yt ), included in the S&P500 during the period from 2005-01-
03 to 2011-09-16. We have in total T = 1689 observations with p = 100. Thor-
ough eigenvalue analysis is applied to the lag-1 sample auto-covariance matrix
M̂ = �̂y�̂

′
y of yt . The largest eigenvalue of M̂ is λ1(M̂) = 38.69. The second to

the 30th largest eigenvalues and their ratios are plotted in Figure 5.
To estimate the number of factors, we first adopt the two-step procedure inves-

tigated by Lam and Yao (2012) since the ratio plot in Figure 5 is exhibiting at least
two different levels of factor strength. Obviously, in the first step,

r̂1 = arg min
1≤i≤99

λi+1/λi = 1,
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FIG. 4. Locations of factor SNRs (γ0/, γ1)/σ 2 from Tables 2 (points numbered from 1 to 4), 4
(points numbered from 5 to 7), and 6 (points numbered 1-2-3-5-6) with T = 0.5p (y = 2).

TABLE 3
Scenario II with three weak yet significant factors among four (k0 = 3, k = 4)

p 100 300 500 1000 1500 p 100 300 500 1000 1500
T = 2p 200 600 1000 2000 3000 T = 2p 200 600 1000 2000 3000

k̃ = 1 0.152 0.074 0.045 0.01 0.001 k̂∗ = 1 0.005 0 0 0 0
k̃ = 2 0.402 0.344 0.276 0.194 0.126 k̂∗ = 2 0.026 0 0 0 0
k̃ = k0 0.446 0.582 0.679 0.796 0.873 k̂∗ = k0 0.928 0.967 0.953 0.96 0.966
k̃ = 4 0 0 0 0 0 k̂∗ = 4 0.04 0.033 0.046 0.04 0.033
k̃ ≥ 5 0 0 0 0 0 k̂∗ ≥ 5 0.001 0 0.001 0 0.001

p 100 300 500 1000 1500 p 100 300 500 1000 1500
T = 0.5p 50 150 250 500 750 T = 0.5p 50 150 250 500 750

k̃ = 1 0.479 0.368 0.344 0.284 0.289 k̂∗ = 1 0.376 0.02 0.003 0 0
k̃ = 2 0.406 0.432 0.454 0.495 0.514 k̂∗ = 2 0.456 0.221 0.048 0.001 0
k̃ = k0 0.105 0.199 0.202 0.221 0.197 k̂∗ = k0 0.16 0.73 0.915 0.986 0.982
k̃ = 4 0.006 0.001 0 0 0 k̂∗ = 4 0.008 0.029 0.03 0.013 0.017
k̃ ≥ 5 0.004 0 0 0 0 k̂∗ ≥ 5 0 0 0.004 0 0.001
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TABLE 4
Scenario III—Theoretical limits (k0 = k = 3)

T = 2p T = 0.5p

No. � � γ0(i) γ1(i) T1(i) T (b+) λi b T1(i) T (b+) λi b

(5) 0.6 2 3.125 1.875 0.0391 0.3076 7.65 2.7725 0.2845 0.7775 23.79 17.6366
(6) −0.5 2 2.67 −1.33 0.0607 0.3076 5.48 2.7725 0.3852 0.7775 20.45 17.6366
(7) 0.3 2 2.20 0.659 0.1183 0.3076 3.61 2.7725 0.6116 0.7775 17.95 17.6366

TABLE 5
Scenario III with three weak yet insignificant factors (k0 = k = 3)

p 100 300 500 1000 1500 p 100 300 500 1000 1500
T = 2p 200 600 1000 2000 3000 T = 2p 200 600 1000 2000 3000

k̃ < 2 0.403 0.322 0.327 0.302 0.308 k̂∗ < 2 0.074 0 0 0 0
k̃ = 2 0.454 0.587 0.598 0.653 0.669 k̂∗ = 2 0.441 0.047 0.005 0 0
k̃ = k0 0.143 0.091 0.075 0.045 0.023 k̂∗ = k0 0.48 0.945 0.991 0.996 0.999
k̃ ≥ 4 0 0 0 0 0 k̂∗ ≥ 4 0.005 0.008 0.004 0.004 0.001

p 100 300 500 1000 1500 p 100 300 500 1000 1500
T = 0.5p 50 150 250 500 750 T = 0.5p 50 150 250 500 750

k̃ < 2 0.548 0.57 0.589 0.548 0.547 k̂∗ < 2 0.886 0.639 0.435 0.114 0.049
k̃ = 2 0.264 0.359 0.371 0.437 0.447 k̂∗ = 2 0.107 0.338 0.508 0.718 0.745
k̃ = k0 0.08 0.053 0.036 0.015 0.006 k̂∗ = k0 0.006 0.022 0.057 0.167 0.205
k̃ ≥ 4 0.108 0.018 0.004 0 0 k̂∗ ≥ 4 0.001 0.001 0 0.001 0.001

TABLE 6
Scenario IV—Theoretical limits (k0 = k = 7)

T = 2p T = 0.5p

No. � � γ0(i) γ1(i) T1(i) T (b+) λi b T1(i) T (b+) λi b

(1) 0.6 4 6.25 3.75 0.0125 0.3076 21.2 2.7725 0.1102 0.7775 44.8 17.6366
(2) −0.5 4 5.33 −2.67 0.021 0.3076 13.1 2.7725 0.1596 0.7775 33.85 17.6366
(3) 0.3 4 4.3956 1.3187 0.047 0.3076 6.65 2.7725 0.2767 0.7775 23.92 17.6366
(5) 0.6 2 3.125 1.875 0.0391 0.3076 7.65 2.7725 0.2845 0.7775 23.79 17.6366
(6) −0.5 2 2.67 −1.33 0.0607 0.3076 5.48 2.7725 0.3852 0.7775 20.45 17.6366

the factor loading estimator of the first factor Â is the eigenvector of M̂ which
corresponds to the largest eigenvalue λ1. The resulting residuals after eliminating
the effect of the first factor is

ε̂t = (I100 − ÂÂ′)yt .
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TABLE 7
Scenario IV with seven factors of multiple strength levels (k0 = k = 7)

p 100 300 500 1000 1500 p 100 300 500 1000 1500
T = 2p 200 600 1000 2000 3000 T = 0.5p 50 150 250 500 750

k̃(1) = 1 0.696 0.858 0.949 0.995 1 k̃(1) = 1 0.73 0.812 0.881 0.95 0.986
k̃(1) = 2 0.244 0.137 0.051 0.005 0 k̃(1) = 2 0.211 0.177 0.118 0.05 0.014
k̃(1) = 3 0.033 0.004 0 0 0 k̃(1) = 3 0.039 0.011 0.001 0 0
k̃(1) = 4 0.019 0.001 0 0 0 k̃(1) = 4 0.015 0 0 0 0
k̃(1) = 5 0.005 0 0 0 0 k̃(1) = 5 0.004 0 0 0 0
k̃(1) = 6 0.002 0 0 0 0 k̃(1) = 6 0.001 0 0 0 0
k̃(1) = k0 0.001 0 0 0 0 k̃(1) = k0 0 0 0 0 0
k̃(1) ≥ 8 0 0 0 0 0 k̃(1) ≥ 8 0 0 0 0 0

p 100 300 500 1000 1500 p 100 300 500 1000 1500
T = 2p 200 600 1000 2000 3000 T = 0.5p 50 150 250 500 750

k̃(3) = 1 0 0 0 0 0 k̃(3) = 1 0 0 0 0 0
k̃(3) = 2 0 0 0 0 0 k̃(3) = 2 0 0 0 0 0
k̃(3) = 3 0.691 0.875 0.945 0.998 0.999 k̃(3) = 3 0.71 0.802 0.862 0.955 0.982
k̃(3) = 4 0.002 0 0 0 0 k̃(3) = 4 0 0 0 0 0
k̃(3) = 5 0 0 0 0 0 k̃(3) = 5 0.001 0 0 0 0
k̃(3) = 6 0.244 0.125 0.055 0.002 0.001 k̃(3) = 6 0.212 0.192 0.135 0.045 0.018
k̃(3) = k0 0 0 0 0 0 k̃(3) = k0 0 0 0 0 0
k̃(3) ≥ 8 0.063 0 0 0 0 k̃(3) ≥ 8 0.077 0.006 0.003 0 0

p 100 300 500 1000 1500 p 100 300 500 1000 1500
T = 2p 200 600 1000 2000 3000 T = 0.5p 50 150 250 500 750

k̂∗ = 1 0.012 0 0 0 0 k̂∗ = 1 0.151 0.01 0 0 0
k̂∗ = 2 0.031 0.001 0 0 0 k̂∗ = 2 0.25 0.038 0.01 0.001 0
k̂∗ = 3 0.034 0.002 0 0 0 k̂∗ = 3 0.28 0.065 0.027 0.003 0
k̂∗ = 4 0.062 0.015 0.006 0.001 0 k̂∗ = 4 0.254 0.227 0.107 0.022 0.007
k̂∗ = 5 0.049 0 0 0 0 k̂∗ = 5 0.06 0.384 0.295 0.035 0.002
k̂∗ = 6 0.185 0 0 0 0 k̂∗ = 6 0.005 0.231 0.414 0.34 0.138
k̂∗ = k0 0.597 0.939 0.958 0.95 0.959 k̂∗ = k0 0 0.044 0.142 0.557 0.783
k̂∗ ≥ 8 0.03 0.043 0.036 0.049 0.041 k̂∗ ≥ 8 0 0.001 0.005 0.042 0.07

Repeating the procedure in step one, we treat ε̂ as the original sequence yt and get
the eigenvalues λ∗

i s of the lag-1 sample auto-covariance matrix M̂(1) = �̂ε̂�̂
′̂
ε . The

30 largest eigenvalues and their ratios are plotted in Figure 6.
It can be seen from the second step that

r̂2 = arg min
1≤i≤99

λ∗
i+1/λ

∗
i = 2,

the factor loading estimator of the second level factors Â∗ are the orthonormal
eigenvectors of M̂(1) corresponding to the first two largest eigenvalues.
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FIG. 5. Eigenvalues of M̂ .

FIG. 6. Eigenvalues of M̂(1).
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FIG. 7. Eigenvalues of M̂(2).

In conclusion, the two-step procedure proposed by Lam and Yao (2012) identi-
fies three factors in total with two different levels of factor strength. The eigenval-
ues of the lag-1 sample auto-covariance matrix M̂(2) of residuals after subtracting
the three factors detected previously are shown in Figure 7.

There is still one isolated eigenvalue in the eigenvalues plot. If we go one step
further and treat it as an extra factor with the weakest strength, then the eigenvalue
plot of the lag-1 sample auto-covariance matrix M̂(3) of residuals after eliminating
four factors looks like that in Figure 8.

A major problem of the methodology in Lam and Yao (2012) is that it does
not provide a clear criterion to stop this two or multi-step procedure. Clearly, this
method can only detect factors with one level of strength at each step and can
hardly handle problems with factors of multi-level strengths due to the lack of
stopping criterion in multi-step detection.

In the following, we use the estimator k̂∗ (4.1) of this paper to estimate the
number of factors. First, the tuning parameter dT is calibrated with (p,T ) =
(100,1689) using the simulation method indicated in Section 3.1; the value found
is dT = 0.1713 in this case. The eigenvalue ratios of the sample matrix M̂ are
shown in Figure 9 (already displayed in the lower panel of Figure 5) where the
detection line of value 1 − dT = 0.8287 is also drawn. As displayed, we found
k̂∗ = 4 factors.

In conclusion, for this data set of p = 100 stocks, our estimator proposes 4 sig-
nificant factors while the estimator k̃ from Lam and Yao (2012) indicates 1, 3 and
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FIG. 8. Eigenvalues of M̂(3).

4 factors when one step, two steps and three steps are used, respectively. It appears
again that multiple steps are needed for the use of the estimator k̂ in real data anal-
ysis. However, it remains unclear how to decide the number of necessary steps.
On the contrary, our estimator is able to simultaneously identify all significant fac-
tors. The procedure is independent of the number of different levels of the factor
strengths.

FIG. 9. Eigenvalues of M̂ .
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SUPPLEMENTARY MATERIAL

Supplement to “Identifying the number of factors from singular values of a
large sample auto-covariance matrix” (DOI: 10.1214/16-AOS1452SUPP; .pdf).
A supplementary file [Li, Wang and Yao (2016)] collects several technical proofs
used in the paper.
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