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Abstract

In this paper, we develop new statistical theory for probabilistic principal

component analysis models in high dimensions. The focus is the estimation

of the noise variance, which is an important and unresolved issue when the

number of variables is large in comparison with the sample size. We first

unveil the reasons of an observed downward bias of the maximum likelihood

estimator of the noise variance when the data dimension is high. We then

propose a bias-corrected estimator using random matrix theory and estab-

lish its asymptotic normality. The superiority of the new and bias-corrected

estimator over existing alternatives is checked by Monte-Carlo experiments

with various combinations of (p, n) (dimension and sample size). Next, we

construct a new criterion based on the bias-corrected estimator to determine

the number of the principal components, and a consistent estimator is ob-

tained. Its good performance is confirmed by simulation study and real data

analysis. The bias-corrected estimator is also used to derive new asymptotic

for the related goodness-of-fit statistic under the high-dimensional scheme.

Keywords. Probabilistic principal component analysis, high-dimensional

data, noise variance estimator, number of principal components, random

matrix theory, goodness-of-fit.
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1 Introduction

Principal component analysis (PCA) is a very popular technique in multivariate

analysis for dimensionality reduction and feature extraction. Due to dramatic

development in data-collection technology, high-dimensional data are nowadays

common in many fields. Natural high-dimensional data, such as images, signal

processing, documents and biological data often reside in a low-dimensional sub-

space or low-dimensional manifold (Ding et al., 2011). In financial econometrics, it

is commonly believed that the variations in a large number of economic variables

can be modeled by a small number of reference variables (Forni et al., 2000; Bai

and Ng, 2002; Bai, 2003). Consequently, PCA is a recommended tool for analysis

of such high-dimensional data.

There is an underlying probabilistic model behind PCA, called probabilistic

principal component analysis (PPCA), defined as follows. The observation vectors

{xi}1≤i≤n are p-dimensional and satisfy the equation

xi = Λfi + ei + µ , i = 1, . . . , n. (1)

Here, fi is a m-dimensional principal components with m� p, Λ is a p×m matrix

of loadings, and µ represents the general mean and {ei}1≤i≤n are a sequence of

independent errors with covariance matrix Ψ = σ2Ip. The parameter σ2 is the

noise variance we are interested in. None of the quantities in the right-hand side

of (1) is known or observed (except their sum xi).

To ensure the identification of the model, constraints have to be introduced on

the parameters. There are several possibilities for the choice of such constraints,

see Table 1 in Bai and Li (2012). A traditional choice is the following (Anderson,

2003, Chapter 14):
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• Efi = 0 and Efif
′
i = I;

• The matrix Γ := Λ′Λ is diagonal with distinct diagonal elements.

Therefore, the population covariance matrix of {xi}1≤i≤n is Σ = ΛΛ′+σ2I. Find-

ing a reliable estimator of the noise variance σ2 is a nontrivial issue for high-

dimensional data which we now pursue.

The PPCA model (1) can be viewed as a special instance of the approximate

factor model (Chamberlain and Rothschild, 1983) where the noise covariance Ψ

can be a general diagonal matrix (the model is also called a strict factor model in

statistical literature, see Anderson, 2003). For related recent papers on inference

of large approximate (or dynamic) factor models, we refer to Bai (2003), Forni

et al. (2000) and Doz et al. (2012).

Let x̄ be the sample mean and define the sample covariance matrix

Sn =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)′. (2)

Let λn,1 ≥ λn,2 ≥ · · · ≥ λn,p be the eigenvalues of Sn. Under the normality

assumption on both {fi} and {ei}, the maximum likelihood estimator of σ2 is

σ̂2 =
1

p−m

p∑
i=m+1

λn,i. (3)

In the classic setting where the dimension p is relatively small compared to

the sample size n (low-dimensional setting), the consistency of σ̂2 is established

in Anderson and Rubin (1956). Moreover, it is asymptotically normal with the

standard
√
n-convergence rate: as n→∞,

√
n(σ̂2 − σ2)

D−→ N (0, s2), s2 =
2σ4

p−m
. (4)
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Actually, Anderson and Amemiya (1988) provides a general CLT in an approxi-

mate factor model that encompasses the present PPCA model. For the reader’s

convenience, we provide in Supplement a detailed deviation of (4) from this general

CLT.

The situation is, however radically different when p is large compared to the

sample size n. Recent advances in high-dimensional statistics indicate that in

such high-dimensional situation, the above asymptotic result is no more valid and

indeed, it has been reported in the literature that σ̂2 seriously underestimates the

true noise variance σ2, see Kritchman and Nadler (2008). However, the exact form

of this bias has not been determined (to our best knowledge). Basically, when p

becomes large, the sample principal eigenvalues and principal components are no

longer consistent estimates of their population counterparts (Baik and Silverstein,

2006; Johnstone and Lu, 2009; Kritchman and Nadler, 2008). Many estimation

methods developed in low-dimensional setting have been shown to perform poorly

even for moderately large p and n (Cragg and Donald, 1997).

As all meaningful inference procedures in the model will unavoidably use some

estimator of the noise variance σ2, such a severe bias needs to be corrected for

high-dimensional data. There are several estimators proposed to deal with the

high-dimensional situation. Kritchman and Nadler (2008) proposes an estimator

by solving a system of implicit equations; Ulfarsson and Solo (2008) introduces an

estimator using the median of the sample eigenvalues {λn,i}; and Johnstone and

Lu (2009) uses the median of the sample variances. However, these estimators are

assessed by Monte-Carlo experiments only and their theoretical properties have

not been investigated.

The main aim of this paper is to provide a new estimator of the noise variance

for which a rigorous asymptotic theory can be established in the high-dimensional
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setting. First, by using recent advances in random matrix theory, we found a CLT

for the m.l.e. σ̂2 in the high-dimensional setting. Next, using this identification,

we propose a new estimator σ̂2
∗ for the noise variance by correcting this bias.

The asymptotic normality of the new estimator is thus established with explicit

asymptotic mean and variance.

Although the asymptotic Gaussian distribution of the new estimator σ̂2
∗ is es-

tablished under the high-dimensional setting p→∞, n→∞ and p/n→ c > 0, if

we set c = 0, i.e. the dimension p is infinitely smaller than n, this Gaussian limit co-

incides with the classical low-dimensional limit given in (4). In this sense, the new

asymptotic theory extends in a continuous manner the classical low-dimensional

result to the high-dimensional situation. Finite sample properties of the new esti-

mator σ̂2
∗ have been checked via Monte-Carlo experiments in comparison with the

above-mentioned four existing estimators. In terms of mean squared errors and

in all the tested scenarios, σ̂2
∗ outperforms very significantly three of them, and is

slightly preferable than the other one, see Table 2.

In order to demonstrate further potential benefits of the new estimator σ̂2
∗,

we consider an important inference problem in PPCA, namely, the determination

of the number of principal components (PCs). Bai and Ng (2002) developed six

criteria with penalty on both p and n to identify the number of factors in the

approximate factor model. The approximate factor model allows the components

of the errors {ei} be correlated. PPCA can be considered as a simplified instance

of this model and indeed, Bai and Ng (2002) also applied their criteria to PPCA.

It is worth noticing that the determination of the number m of PCs and the esti-

mation of the noise variance σ2 are inter-related and Bai and Ng’s criteria provide

a consistent and joint inference on (m,σ2) in the high-dimensional context. How-

ever, this consistency is obtained under the assumption that the variances (or the

strengths) of the PCs grow up to infinity with the dimension (see Assumption B of
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their paper), while in our context these variances could be bounded. Therefore, we

propose a modified estimator of both (m,σ2) by implementing our new estimator

σ̂2
∗ in the criteria of Bai and Ng (2002). Furthermore, in order to deal with possibly

bounded variances of PCs, a new penalty function is found based on our new esti-

mator σ̂2
∗. The resulting procedure provides a consistent joint estimator of (m,σ2).

Moreover, as predicted by our theory, this new procedure has a better performance

than the original Bai and Ng’s procedures in our context with possibly bounded

PC variances.

As a final application of the new estimator σ̂2
∗, we consider the goodness-of-fit

test for the PPCA model. The likelihood ratio test statistic as well as their classical

(low-dimensional) chi-squared asymptotic theory are well-known since the work

of Amemiya and Anderson (1990). These results are again challenged by high-

dimensional data and the classical chi-squared limit is no more valid. We propose

a correction to this goodness-of-fit test statistic involving our new estimator σ̂2
∗ to

cope with the high-dimensional effects and establish its asymptotic normality.

The remaining sections are organized as follows. In Section 2, we present the

main results of the paper. The new estimator σ̂2
∗ of the noise variance is proposed

first, then a new joint estimator of the number of PCs and the noise variance is

constructed. In Section 3, we develop the corrected likelihood ratio test for the

goodness-of-fit of a PPCA model in the high-dimensional framework using the new

estimator σ̂2
∗. Section 4 concludes. The most important technical proofs are gath-

ered in Appendix while the remaining ones are relegated to the supplementary

report. This report contains also many numerical results and additional applica-

tions. Lastly, all the codes permitting the reproduction of the results in Tables

1-7 of the paper and some of the data sets used in the paper are available at

http://web.hku.hk/~jeffyao/papersInfo.html
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2 Main results

The PPCA model (1) is a spiked population model (Johnstone, 2001) since the

eigenvalues of the population covariance matrix Σ are

spec(Σ) = (α1, . . . , αm, 0, . . . , 0︸ ︷︷ ︸
p−m

) + σ2(1, . . . , 1︸ ︷︷ ︸
p

)

= σ2(α∗1, . . . , α
∗
m, 1, · · · , 1︸ ︷︷ ︸

p−m

), (5)

where {αi} are m non-null eigenvalues of ΛΛ′ and the notation α∗i = αi/σ
2 + 1 is

used. To develop a meaningful asymptotic theory in the high-dimensional context,

we assume that p and n are related so that when n→∞, cn = p/(n− 1)→ c > 0,

that is, p can be large compared to the sample size n and for the asymptotic theory,

p and n tend to infinity proportionally. Let

φ(α) = α +
cα

α− 1
, α 6= 1 .

Following Baik and Silverstein (2006), assumed that α∗1 ≥ · · · ≥ α∗m > 1 +
√
c, i.e

all the eigenvalues αi are greater than σ2
√
c. It is then known that, for the spiked

sample eigenvalues {λn,i}1≤i≤m of Sn, almost surely,

λn,i → σ2φ(α∗i ) = ψ(σ2, c, αi) = αi + σ2 + σ2c

(
1 +

σ2

αi

)
. (6)

Moreover, the remaining sample eigenvalues {λn,i}m<i≤p, called noise eigenvalues,

will converge to a continuous distribution with support interval [a(c), b(c)] where

a(c) = σ2(1 −
√
c)2 and b(c) = σ2(1 +

√
c)2. In particular, for all 1 ≤ j ≤ L

with a prefixed range L and almost surely, λn,m+j → b(c) . It is worth noticing

that, if c → 0, we recover the low-dimensional limits λn,i → αi + σ2 (population

spike eigenvalues) and λn,i → σ2 (population noise eigenvalues) discussed earlier.

In addition, CLT for the spiked eigenvalues is established in Bai and Yao (2008):
√
n(λn,i − σ2φ(α∗i )) is asymptotically Gaussian.
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As explained in Introduction, when the dimension p is large compared to the

sample size n, the m.l.e. σ̂2 has a negative bias. In order to identify this bias, we

first establish a CLT for σ̂2 under the high-dimensional scheme.

Theorem 1. Consider the PPCA model (1) with population covariance matrix

Σ = ΛΛ′ + σ2Ip where both the principal components and the noise are Gaussian.

Assume that p → ∞, n → ∞ and cn = p/(n − 1) → c > 0, and the non-null

eigenvalues of ΛΛ′ {αi} satisfy αi ≥ σ2
√
c (1 ≤ i ≤ m). Then, we have

(p−m)

σ2
√

2c
(σ̂2 − σ2) + b(σ2)

D−→ N (0, 1),

where b(σ2) =
√

c
2

(
m+ σ2

∑m
i=1

1
αi

)
.

The proof is given in Appendix. Therefore, for high-dimensional data, the m.l.e.

σ̂2 has an asymptotic bias −b(σ2) (after normalization). This bias is a complex

function of the noise variance and the m non-null eigenvalues of the loading matrix

ΛΛ′. The above CLT is still valid if c̃n = (p −m)/n is substituted for c. Now if

indeed p� n, i.e. the dimension p is infinitely smaller than the sample size n, so

that c̃n ' 0 and b(σ2) ' 0, and hence

(p−m)

σ2
√

2c
(σ̂2 − σ2) + b(σ2) '

√
p−m
σ2
√

2

√
n(σ̂2 − σ2)

D−→ N (0, 1) .

This is the CLT (4) for σ̂2 known under the classical low-dimensional scheme. In

a sense, Theorem 1 constitutes a natural and continuous extension of the classical

CLT to the high-dimensional context.

Theorem 1 recommends to correct the negative bias of σ̂2. As the bias depends

on σ2 which we want to estimate, a natural correction is to use the plug-in estimator

σ̂2
∗ = σ̂2 +

b(σ̂2)

p−m
σ̂2
√

2cn. (7)

This estimator will be hereafter referred as the bias-corrected estimator. The fol-

lowing CLT is an direct consequence of Theorem 1.
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Theorem 2. We assume the same conditions as in Theorem 1. Then, we have

p−m
σ2
√

2cn

(
σ̂2
∗ − σ2

) D−→ N (0, 1) .

The proof is given in Appendix. Compared to the m.l.e. σ̂2 in Theorem 1, the

bias-corrected estimator σ̂2
∗ has no more a bias after normalization by p−m

σ2
√

2cn
, and

it should be a much better estimator than σ̂2.

For the implementation of σ̂2
∗ in practice, we need the value of b(σ̂2) which

depends on the unknown spike values {αi}. It is remarked that only consistent

estimate of b(σ̂2) is needed here and this is achieved by substituting some consistent

estimates α̂i for αi in b(σ̂2). This is done as follows. Following Theorem 1, σ̂2 P−→

σ2. Then using the function ψ in (6), and by solving in αi the equation λn,i =

ψ(σ̂2, p/n, αi), we find an estimator α̂i for αi. Since p/n → c, σ̂2 P−→ σ2 and ψ is

known to be invertible, we deduce easily that α̂i
P−→ αi. This procedure will be

used for real data analysis in Section 2.4.

2.1 Monte-Carlo experiments

We first check by simulation the effect of bias-correction obtained in σ̂2
∗ and its

asymptotic normality. Independent Gaussian samples of size n are considered in

three different settings:

• Model 1: spec(Σ) = (25, 16, 9, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 4, c = 1;

• Model 2: spec(Σ) = (4, 3, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 2, c = 0.2;

• Model 3: spec(Σ) = (12, 10, 8, 8, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 3, c = 1.5.
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Table 1: Comparison between the empirical and the theoretical bias.

Settings
Empirical bias Theoretical bias |Difference|

Mod. p n

1

100 100 -0.1556 -0.1589 0.0024

400 400 -0.0391 -0.0388 0.0003

800 800 -0.0197 -0.0193 0.0003

2

20 100 -0.0625 -0.0704 0.0052

80 400 -0.0166 -0.0162 0.0027

200 1000 -0.0064 -0.0064 0.0011

3

150 100 -0.1609 -0.1634 0.0025

600 400 -0.0401 -0.0400 0.0001

1500 1000 -0.0161 -0.0159 0.0002

In Table 1, we compare the empirical bias of σ̂2 (i.e. the empirical mean of

σ̂2 − σ2 = 1
p−m

∑p
i=m+1 λn,i − σ2) over 1000 replications with the theoretical one

−σ2
√

2cb(σ2)/(p−m). In all the three models, the empirical and theoretical bias

are close each other. As expected, their difference vanishes when p and n increase.

The table also shows that this bias is quite significant even for large dimension

and sample size such as (p, n) = (1500, 1000). In addition, we have drawn the

histograms from 1000 replications of (p − m)(σ2
√

2cn)−1(σ̂2 − σ2) + b(σ2) of the

three models above, with sample size n = 100 and dimensions p = c × n and

they match very well the density of the standard Gaussian distribution (see the

supplementary report).

Next, we compare our bias-corrected estimator σ̂2
∗ to the m.l.e. σ̂2 and other

three existing estimators in the literature. For the reader’s convenience, we recall

their definitions:
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1. The estimator σ̂2
KN of Kritchman and Nadler (2008): it is defined as the

solution of the following non-linear system of m+ 1 equations involving the

m+ 1 unknowns ρ̂1, . . . , ρ̂m and σ̂2
KN:

σ̂2
KN −

1

p−m

[
p∑

j=m+1

λn,j +
m∑
j=1

(λn,j − ρ̂j)

]
= 0, and

ρ̂2
j − ρ̂j

(
λn,j + σ̂2

KN − σ̂2
KN

p−m
n

)
+ λn,jσ̂

2
KN = 0, j = 1, . . . ,m.

We use the code available on the authors’ web-page to carry out the simu-

lation. Notice that σ̂2
KN is only implicitly defined and no precise asymptotic

analysis has been provided in Kritchman and Nadler (2008) for σ̂2
KN. We men-

tion one common feature shared by σ̂2
KN and σ̂2

∗: both methods use the same

relationship between the population spike eigenvalues and their asymptotic

limits which are equation (6) in our paper and equation (16) in Kritchman

and Nadler (2008) (this leads to the second equation in the system above

satisfied by σ̂2
KN).

2. The estimator σ̂2
US of Ulfarsson and Solo (2008): it is defined as the ratio

σ̂2
US =

median(λn,m+1, . . . , λn,p)

mp/n,1

,

where mα,1 is the median of the Marčenko-Pastur distribution Fα,1.

3. The estimator σ̂2
median of Johnstone and Lu (2009): it is defined as the median

of the p sample variances (the data {xij} are assumed centered)

σ̂2
median = median

(
1

n

n∑
i=1

x2
ij, 1 ≤ j ≤ p

)
.

Table 2 presents the ratios of the empirical MSEs of these estimators over the

empirical MSE of the bias-corrected estimator σ̂2
∗. The performance of σ̂2

∗ and σ̂2
KN

are similar but σ̂2
∗ is slightly better. The estimator σ̂2

median is better than σ̂2
US and
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Table 2: Comparison between four existing estimators and the proposed σ̂2
∗ in

terms of ratios of MSEs: MSE(σ̂2)

MSE
(
σ̂2
∗

) ,
MSE
(
σ̂2

KN

)
MSE
(
σ̂2
∗

) ,
MSE
(
σ̂2

US

)
MSE
(
σ̂2
∗

) and
MSE
(
σ̂2

median

)
MSE
(
σ̂2
∗

) .

Settings
σ̂2 σ̂2

KN σ̂2
US σ̂2

median
Mod. p n σ2

1

100 100

4

7.8232 1.0130 14.6394 1.5085

400 400 8.5905 0.9980 25.5941 1.6429

800 800 8.1162 1.0019 39.9444 1.6639

2

20 100

2

1.7045 1.0220 2.4980 1.5926

80 400 2.0406 1.0045 3.8686 1.5433

200 1000 1.9729 1.0011 3.8731 1.5427

3

150 100

3

19.2114 1.2292 41.7319 1.4274

600 400 20.8471 0.9958 48.3130 1.6096

1500 1000 21.6207 1.0001 51.9302 1.8071

the m.l.e. σ̂2. But σ̂2
median and σ̂2

US performs poorly compared to σ̂2
∗ and σ̂2

KN. The

reader is, however reminded that the theoretic properties of σ̂2
KN, σ̂2

US and σ̂2
median

are unknown and so far they have been checked via simulations only. A careful

look at the defining formula of both σ̂2
US and σ̂2

median reveals that these estimators

are close to σ̂2, all of them being close to average or median of sample eigenvalues.

Therefore they might have a similar performance as σ̂2.

2.2 Extension to non-Gaussian data

In this section, we provide some extension of the main results to cover non-

Gaussian data. Following a common approach in high-dimensional statistics (Bai

and Saranadasa, 1996), we assume xi can be generated as

xi = Ayi + µ, (8)
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where A = Σ1/2 and yi = {yij}1≤j≤p has p i.i.d and standardized components. We

set γ = E|y11|4 − 1 (γ = 2 under normal assumption).

Theorem 3. Consider the PPCA model (1) where the observation vectors {xi}1≤i≤n

are generated as in (8). Assume that p→∞, n→∞ and cn = p/(n− 1)→ c > 0.

Then, we have
(p−m)

σ2
√
γc

(σ̂2 − σ2) + b(σ2)
D−→ N (0, 1).

The proof is given in Appendix. Similarly to the the plug-in estimator σ̂2
∗ in

(7) for Gaussian data, we define a new plug-in estimator

σ̂2
∗0 = σ̂2 +

b(σ̂2)

p−m
σ̂2√γcn. (9)

Notice that when γ = 2 (Gaussian case), σ̂2
∗0 coincides with σ̂2

∗.

Theorem 4. We assume the same conditions as in Theorem 3. Then, we have

p−m
σ2
√
γcn

(
σ̂2
∗0 − σ2

) D−→ N (0, 1).

The proof of this theorem is omitted because it is the same for Theorem 2.

For the implementation of σ̂2
∗0, there is however a new problem to solve with non-

Gaussian data, namely the parameter γ in (9) needs to be first estimated. Again

we use the random matrix theory to resolve this issue.

Proposition 1. Under the same conditions in Theorem 3, as p, n→∞,

p∑
i=1

λ2
n,i − p

(
β2 + cnβ

2
1

) D−→ N
(
cσ4(γ − 1), v

)
,

where v > 0 denotes an (computable) asymptotic variance, and

β1 = σ2 +
1

p

m∑
j=1

αj, β2 = σ4 +
1

p

m∑
j=1

α2
j +

2

p
σ2

m∑
j=1

αj.
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This result does not provide directly an consistent estimator of γ. There-

fore, bootstrap method is applied to the sample eigenvalues {λn,i}1≤i≤p to get

say B bootstrapped sample {λ∗n,i}1≤i≤p. We find the bootstrap mean w∗ of w =(∑p
i=1 λ

2
n,i − p(β2 + cnβ

2
1)
)
/cσ4 (here σ2 is approximated by the m.l.e. σ̂2), and

finally by letting w∗ = γ̂∗ − 1 we find a bootstrap estimator γ̂∗ of the unknown γ.

Plugging γ̂∗ in (9), the final bias-corrected estimator we propose is

σ̂2
∗∗ = σ̂2 +

b(σ̂2)

p−m
σ̂2
√
γ̂∗cn. (10)

We conclude the section by some simulation experiments to check the perfor-

mance of σ̂2
∗∗ for non-Gaussian data. We start with the same setting of covariance

matrix of Table 1 and use independent gamma and continuous uniform distributed

variables for the components of xi’s. The gamma distributed data are drawn from

Gamma(k, θ) with fixed shape parameter k = 2 and accordingly determined scale

parameter θ; the uniform distributed data are drawn from U(a, b) with fixed a = 0

and accordingly determined b. The bootstrap sample are repeated B = 500 times.

The simulation results are summarized in Table 3. The estimator σ̂2
∗∗ has a very

good performance for both tested non-Gaussian distributions. The MAD and MSE

decrease when p and n increase in all model settings.

2.3 Determination of the number of PCs

So far we have assumed that the number m of PCs is known. It is however desirable

to estimate m directly from the data. In the literature, consistent estimators of

m have been proposed in the high-dimensional context, e.g. in Kritchman and

Nadler (2008), Ulfarsson and Solo (2008), Onatski (2009) and Passemier and Yao

(2012). As a benchmark work, Bai and Ng (2002) proposes six criteria to determine

the number of PCs (or factors) under the framework of large cross-sections (N)
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Table 3: Empirical mean, MAD and MSE of σ̂2
∗∗ for gamma and uniform samples.

Settings Gamma Continuous uniform

Mod. p n σ2 σ̂2
∗∗ MAD MSE σ̂2

∗∗ MAD MSE

1

100 100

4

4.0807 0.1697 0.0411 4.0150 0.1052 0.0161

400 400 4.0561 0.0571 0.0040 4.0424 0.0429 0.0022

800 800 4.0304 0.0306 0.0011 4.0236 0.0237 0.0006

2

20 100

2

1.9570 0.1150 0.0194 1.9175 0.0849 0.0089

80 400 1.9978 0.0241 0.0009 1.9858 0.0166 0.0004

200 1000 2.0016 0.0090 0.0001 1.9968 0.0054 < 10−4

3

150 100

3

3.3637 0.3637 0.1415 3.3336 0.3336 0.1143

600 400 3.1060 0.1060 0.0116 3.0957 0.0957 0.0093

1500 1000 3.0434 0.0434 0.0019 3.0391 0.0391 0.0015

and large time dimensions (T ). These criteria are popular and widely used in

factor modeling literature: for example, they are one of the starting-blocks of the

newly proposed POET-estimator in Fan et al. (2013). Notice that the dimension-

sample-size pair is denoted here as (N, T ) instead of (p, n). Three of these criteria

applicable to PPCA models are

PCj(m) = V (m, F̂m) +mσ̂2
BNgj(N, T ), j ∈ {1, 2, 3}, (11)

where σ̂2
BN is a consistent estimate of (NT )−1

∑N
i=1

∑T
j=1E(eij)

2, V (m, F̂m) =

(NT )−1
∑N

i=1 ê′iêi, and gj(N, T ) denote the penalty functions

g1(N, T ) =
N + T

NT
ln

NT

N + T
, g2(N, T ) =

N + T

NT
ln Ñ , g3(N, T ) =

ln Ñ

Ñ
,

with Ñ = min{N, T}. The corresponding estimators of the number of PCs are

m̂j = arg min0≤m≤m0 PCj(m), j ∈ {1, 2, 3}, where m0 is a predetermined maximum

value of m. In applications, σ̂2
BN is replaced by V (m0, F̂

m0). The calculations of

σ̂2
BN and V (m, F̂m) have no explicit formula and are based on the estimation of
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the residuals {êi}. It is worth mentioning that V (m, F̂m) and σ̂2
BN are indeed the

estimates of the noise variance if the underlying model is the PPCA model.

To start with and in order to assess the quality of our bias-corrected estimator

σ̂2
∗ in the current context, we substitute σ̂2

∗ for empirical V (m, F̂m) and σ̂2
BN in

the criteria PCj’s. Notice that the noise variance estimator σ̂2
∗ depends on the

supposed number m of PCs, and we let σ̂2
∗(m) = σ̂2

∗ to denote explicitly this

dependency. The modified criteria and estimators using σ̂2
∗(m) are thus

PC∗j (m) = σ̂2
∗(m) +mσ̂2

∗(m0)gj(N, T ),

and

m̂∗j = arg min
0≤m≤m0

PC∗j (m), j ∈ {1, 2, 3}, (12)

respectively. These modified criteria PC∗j ’s will be compared below to their original

counterparts by simulation.

Under appropriate conditions, Bai and Ng (2002) established the consistency

of the criteria PCj when both N and T grow to infinity. A careful examination

of their method reveals that the modified criteria PC∗j are also consistent under

the same conditions (this thus means that potential differences between the two

families of criteria are of higher asymptotic order). There is however a main

issue here: such consistency results require that the variances of the PCs (or their

strengths) grow to infinity with the dimension N , see Assumption B of their paper.

This pervasiveness assumption is not satisfied in our context where these variances

can be weaker and remain bounded. Consequently, the proof of Bai and Ng (2002)

does not apply here and we are forced to seek for a new asymptotic result. We

thus introduce a new penalty function

g(N, T ) =
(c+ 2

√
c)(1 + T/N1+δ)

N
, (13)
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and define a new criterion

PC∗(m) = σ̂2
∗(m) +mσ̂2

∗(m0)g(N, T ). (14)

Here δ > 0 is a small pre-fixed constant. As another main contribution of the

paper, we establish the consistency of the corresponding estimator

m̂∗ = arg min
0≤m≤m0

PC∗(m). (15)

Theorem 5. We assume the same conditions as in Theorem 1: in particular

N, T →∞ and cn = N/(T − 1)→ c > 0. With the condition αi > σ2
√
c, we have

limN,T→∞ Prob(m̂∗ = m̄) = 1 where m̄ is the true number of PCs.

The proof is given in Appendix. Simulation experiments are conducted to show

the performance of the new estimator m̂∗ in comparison with both the modified

estimators m̂∗j ’s and the original m̂j’s. As in Bai and Ng (2002), the data are

generated from the model:

Xit =
m∑
j=1

λijFtj +
√
θeit,

where the PCs, the loadings and the errors (eit) are N(0, 1) variates, the common

component of Xit has variance m and the idiosyncratic component has variance

θ. The noise variance is σ2 = θ and Λ = (λij). Typically, a PC corresponding to

αj is detectable when αj ≥
√

N
T
θ, see (6). We conduct extensive simulation by

reproducing the configuration of N and T used in Bai and Ng (2002). In all the

experiments, the same value of δ = 0.05 is used in (13).

Tables 4 and 5 report the empirical means of the estimator of the number of

PCs over 1000 replications, for m = 1 and 5 respectively, with standard errors

in parentheses. When a standard error is actually zero, no standard error is thus

indicated. For all cases, the predetermined maximum number m0 of PCs is set
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Table 4: Comparison between PC∗, PC∗j and PCj for m = 1, θ = 1.

N T PC∗ PC∗
1 PC∗

2 PC∗
3 PC1 PC2 PC3

100 40 1.00 1.00 1.00 1.00 1.17(0.37) 1.01(0.10) 3.78(0.75)

100 60 1.00 1.00 1.00 1.00 1.00 1.00 3.63(0.76)

200 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00

500 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2000 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 100 1.00 1.00 1.00 1.00 1.00 1.00 5.36(0.80)

40 100 1.00 1.00 1.00 1.00 1.79(0.72) 1.19(0.40) 4.91(0.90)

60 100 1.00 1.00 1.00 1.00 1.01(0.08) 1.00 4.30(0.85)

60 200 1.00 1.00 1.00 1.00 1.00 1.00 1.02(0.16)

10 50 7.19(1.92) 8.00 8.00 8.00 8.00 8.00 8.00

10 100 4.95(3.13) 8.00 8.00 8.00 8.00 8.00 8.00

20 100 1.00(0.03) 1.01(0.15) 1.01(0.12) 1.08(0.53) 6.96(0.88) 6.35(0.98) 7.84(0.40)

100 10 2.10(2.52) 1.08(0.73) 1.03(0.50) 1.15(1.01) 8.00 8.00 8.00

100 20 1.00 1.00(0.03) 1.00(0.03) 1.00(0.03) 5.88(0.76) 5.12(0.77) 7.35(0.63)

to 8. When the true number of PCs is 1 (Table 4), the new criterion PC∗ and

the modified criteria PC∗j can correctly detect the number almost surely and the

corresponding standard errors are all zeros. In comparison, there are 11 cases where

the original criteria PCj lose efficiency in finding the true number of PCs with a

non-zero standard error. In the small dimensions situations (last five rows), all the

modified PC∗j and the original PCj fail when the value of N is 10: they all report

the maximum value m0. But the new criterion PC∗ outperforms the others in all

cases in terms of mean and standard error. Meanwhile, the modified criteria PC∗j

globally perform better than the original PCj’s and this establishes the superiority

of the bias-corrected estimator σ̂2
∗. In Table 5, the common component has variance

5 and the idiosyncratic component has a smaller variance 3, and the situation is a

bit more difficult. We can however draw the same conclusion that the new criterion

PC∗ outperforms the other criteria in all tested cases, and the modified criteria

PC∗j have an overall better performance than the original PCj’s. In both Tables

4 and 5, only a part of the tested combinations of N and T is reported and the
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Table 5: Comparison between PC∗, PC∗j and PCj for m = 5, θ = 3.

N T PC∗ PC∗
1 PC∗

2 PC∗
3 PC1 PC2 PC3

100 40 5.00 4.91(0.30) 4.81(0.41) 4.99(0.11) 5.00(0.03) 5.00 5.59(0.57)

100 60 5.00 5.00(0.04) 4.99(0.11) 5.00 5.00 5.00 5.58(0.57)

200 60 5.00 5.00 5.00 5.00 5.00 5.00 5.00

500 60 5.00 5.00 5.00 5.00 5.00 5.00 5.00

1000 60 5.00 5.00 5.00 5.00 5.00 5.00 5.00

2000 60 5.00 5.00 5.00 5.00 5.00 5.00 5.00

100 100 5.00 5.00 5.00 5.00 5.00 5.00 6.84(0.65)

40 100 4.98(0.14) 4.97(0.17) 4.92(0.27) 5.00(0.04) 5.02(0.12) 5.00 6.22(0.66)

60 100 5.00 5.00(0.04) 4.99(0.08) 5.00 5.00 5.00 6.03(0.64)

60 200 5.00 5.00 5.00 5.00 5.00 5.00 6.03(0.03)

10 50 7.47(1.00) 8.00 8.00 8.00 8.00 8.00 8.00

10 100 5.77(1.53) 8.00 8.00 8.00 8.00 8.00 8.00

20 100 3.74(0.84) 4.74(0.51) 4.62(0.57) 4.92(0.45) 7.11(0.63) 6.65(0.64) 7.85(0.37)

100 10 6.66(1.97) 4.59(1.99) 4.35(1.91) 4.88(2.09) 8.00 8.00 8.00

100 20 4.68(0.51) 3.86(0.79) 3.69(0.81) 4.13(0.73) 6.74(0.63) 6.19(0.62) 7.77(0.43)

other combinations where all criteria detect the right number m with zero error are

omitted. Additional simulation results and tables are in the supplementary report.

In conclusion, the proposed criterion has the best performance in determining the

number of PCs, and the modified criteria perform better by using the bias-corrected

estimator proposed in this paper for PPCA model.

2.4 Real data

Though the new and modified estimators seems to perform better than the original

ones in the simulation experiments, we now compare them on two real data sets.

The first data set contains stock returns. Following Bai and Ng (2002), we extract

data from the CRSP US Stock Database using the monthly returns for all common

stocks listed in NYSE, Amex, and NASDAQ over twenty years (January 1991 to

December 2010). Stocks that do not trade for cumulative two years during the

period are deleted. The final data set includes 1913 stocks with 240 monthly
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Table 6: Comparison between the modified and the original criteria.

PC∗ PC∗1 PC∗2 PC∗3 PC1 PC2 PC3

Data 1 (m0 = 15) 2 2 2 2 4 4 6

Data 2 (m0 = 20) 13 18 18 19 20 20 20

returns for each of them (T = 240, N = 1913). Notice that the data set does

not match exactly the one used in Bai and Ng (2002) as they selected 4883 firms

for a shorter period January 1994 to December 1998; however this selected data

set is not publicly available. The second one is the fMRI data set. This data

set is freely available on the web-site http://afni.nimh.nih.gov/afni/. A human

brain was scanned when the person performed finger-thumb opposition. There are

T = 124 observations on 21 brain slices. We pick out one brain slice and only

keep the variables (pixels) that significantly corresponded to brain tissue, so that,

N = 1126 variables are selected. We transform both data respectively so that

each series is mean zero. The results of rank estimates of the new and modified

criteria on these two data sets are shown in Table 6. The original criteria PCj

display a significant variation for the first data set and fail for the second one

by only reporting the maximum value m0 = 20. In contrary, the new criterion

PC∗ and the modified criteria PC∗j ’s with the proposed variance estimator σ̂2
∗

seem mutually consistent by giving very close if not identical rank estimates. In

particular, the original criteria PCj have a significant over-estimation effect and

this is much reduced and stabilized either with a more accurate estimation of the

noise variance by σ̂2
∗ or with the new penalty function g(N, T ) in (13).
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3 Application to the goodness-of-fit test of a PPCA

model

As an additional application of the bias-corrected estimator σ̂2
∗, we consider the

following goodness-of-fit test for the PPCA model (1). The null hypothesis is

H0 : Σ = ΛΛ′ + σ2Ip,

where the number of PCs m is specified. Following Anderson and Rubin (1956),

the likelihood ratio test (LRT) statistic is

Tn = −nL∗, with L∗ =

p∑
j=m+1

log
λn,j
σ̂2

,

and σ̂2 is the m.l.e. (3) of the variance. Keeping p fixed while letting n → ∞,

the classical low-dimensional theory states that Tn converges to χ2
q, where q =

p(p + 1)/2 + m(m − 1)/2 − pm − 1. However, this classical approximation is

again useless in large-dimensional situation. Indeed, this criterion leads to a high

false-positive rate (see Table 7).

In a way similar to Section 2, we now construct a corrected version of Tn using

the calculus done in Bai et al. (2009) and Zheng (2012). As we consider the

logarithm of the eigenvalues of the sample covariance matrix, we will assume in

the sequel that p < n and c < 1 to avoid null eigenvalues.

Theorem 6. Assume the same conditions as in Theorem 1 and in addition c < 1.

Then, we have

v(c)−
1
2 {L∗ −m(c)− ph(cn) + η + (p−m) log(β)} D−→ N (0, 1),
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where

m(c) =
log (1− c)

2
, h(cn) =

cn − 1

cn
log(1− cn)− 1, η =

m∑
i=1

log(1 + cσ2α−1
i ),

β = 1− c

p−m
(m+ σ2

m∑
i=1

α−1
i ), v(c) = −2 log(1− c) +

2c

β

(
1

β
− 2

)
.

The proof is given in the supplementary report. The above statistic depends on

the unknown variance σ2 and the spike eigenvalues {αi}. First of all, as explained

in Section 2, consistent estimates of {αi} are available. By using these estimates

and substituting bias-corrected estimate σ̂2
∗ for σ2, we obtain consistent estimates

v̂(cn), η̂ and β̂ of v(c), η and β, respectively. Therefore, to test H0, it is natural

to use the statistic

∆n := v̂(cn)−
1
2

(
L∗ −m(cn)− ph(cn) + η̂ + (p−m) log(β̂)

)
.

Since ∆n is asymptotically standard normal, the critical region {∆n > qα} where

qα is the αth upper quantile of the standard normal, will have an asymptotic size

α. This test is referred as the corrected likelihood ratio test (CLRT).

Next, we present some simulation experiments to compare the classical likeli-

hood ratio test and the corrected likelihood ratio test. We consider again Models

1 and 2 described in Section 2, and a new one (Model 4):

• Model 1: spec(Σ) = (25, 16, 9, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 4, c = 0.9;

• Model 2: spec(Σ) = (4, 3, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 2, c = 0.2;

• Model 4: spec(Σ) = (8, 7, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 1, varying c.

Table 7 presents the empirical sizes of the LRT and the CLRT. For the LRT,

we use the correction proposed by Bartlett (1950), that is replacing Tn = −nL∗
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Table 7: Comparison of the empirical size of LRT and CLRT in various settings.

Settings
Empirical size of CLRT Empirical size of LRT

Mod. p n

1

90 100 0.0522 0.9997

180 200 0.0515 1.0000

720 800 0.0483 1.0000

2

20 100 0.0375 0.0321

80 400 0.0440 0.0368

200 1000 0.0481 0.0514

4

5 500 0.0122 0.0475

10 500 0.0217 0.0482

50 500 0.0421 0.0419

100 500 0.0438 0.0424

200 500 0.0498 0.2216

250 500 0.0501 0.7416

300 500 0.0461 0.9991

by T̃n = −(n − (2p + 11)/6 − 2m/3)L∗. The computations are done under 10000

independent replications and the nominal test level is 0.05. The empirical sizes of

the CLRT are very close to the nominal one, except when the ratio p/n is very

small (less than 0.1). On the contrary, the empirical sizes of the classical LRT are

much higher than the nominal level especially when c is not too small, and the test

will always reject the null hypothesis when p becomes large. In particular when

p/n ≥ 1
2
, the LRT test tends to reject automatically the null.
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4 Conclusions

In this paper, we propose a bias-corrected estimator of the noise variance for PPCA

model in the high-dimensional framework. The main appeal of our estimator is that

it is developed under the assumption that p/n → c > 0 as p, n → ∞ and is thus

appropriate for a wide range of large-dimensional data sets. Extensive Monte-

Carlo experiments demonstrated the superiority of the proposed estimator over

several existing estimators (however no theoretical justification has been proposed

in the literature for these estimators). In addition, by implementing the proposed

estimator of the noise variance within the well-known determination algorithms for

the number of principal components proposed by Bai and Ng (2002), we construct

a new joint consistent estimator of the pair (m,σ2) with a new penalty function

to cope with non pervasive PCs. In an additional application of our methodology,

we develop an asymptotic theory of the goodness-of-fit test for high-dimensional

PPCA model. The overall message from the paper is that in a high-dimensional

PPCA model, when an estimator of the noise variance σ2 is needed, the bias-

corrected estimator σ̂2
∗ from the paper should be recommended.

To conclude, we like to mention an important question that requires further

investigation, namely the impact of the size of m and of the PC eigenvalues on the

methodology developed in this paper. In the numerical simulations, m is typically

small compared to min{p, n}. Can one expect different behavior if (a) some of the

PC eigenvalues are fairly big compared to σ2, say of the order O(p), as is often

the case in some econometric problems (?) or, (b) when m is relatively big, e.g.

increasing with p, while many of the PC eigenvalues are small, possibly below

the size where the phase transition of eigenvalues take place? Unfortunately, these

questions go much beyond the scope the existing literature including this paper: for

instance we are not aware of any work capable of integrating both large and small

24



PC eigenvalues. Similarly, the treatment of varying number m of PC components

will require the development of new mathematical techniques. Needless to say,

these questions are of fundamental importance and worth much research effort in

the future.
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Appendix

Proof of Theorem 1. We have (p−m)σ̂2 =
∑p

i=1 λn,i −
∑m

i=1 λn,i. By (6),

m∑
i=1

λn,i −→
m∑
i=1

(
αi +

cσ4

αi

)
+ σ2m(1 + c) a.s. (16)

For the first term, we have

p∑
i=1

λi = p

∫
xdFn(x)

= p

∫
x d(Fn − Fcn,Hn)(x) + p

∫
x dFcn,Hn(x)

= Gn(x) + p

∫
x dFcn,Hn(x).

By Proposition 1 in the supplement report, the first term is asymptotically normal

Gn(x) =

p∑
i=1

λn,i − p
∫
x dFcn,Hn(x)

D−→ N (m(x), v(x)) ,

with asymptotic mean

m(x) = 0 (17)

and asymptotic variance

v(x) = 2cσ4. (18)

Furthermore, by Lemma 1 of Bai et al. (2010),∫
x dFcn,Hn(x) =

∫
t dHn(t) = σ2 +

1

p

m∑
i=1

αi.

So we have

p∑
i=1

λn,i − pσ2 −
m∑
i=1

αi
D−→ N (0, 2cσ4). (19)
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By (16) and (19) and using Slutsky’s lemma, we obtain

(p−m)(σ̂2 − σ2) + cσ2

(
m+ σ2

m∑
i=1

1

αi

)
D−→ N (0, 2cσ4).

Proof of Theorem 2. We have

p−m
σ2
√

2cn

(
σ̂2
∗ − σ2

)
=

p−m
σ2
√

2cn

(
σ̂2 − σ2

)
+ b
(
σ̂2
) σ̂2

σ2

=

{
p−m
σ2
√

2cn

(
σ̂2 − σ2

)
+ b(σ2)

}
+

1

σ2

{
b
(
σ̂2
)
σ̂2 − b(σ2)σ2

}
.

Since σ̂2 P−→ σ2, by continuity, the second expression tends to 0 in probability and

the conclusion follows from Theorem 1.

Proof of Theorem 3. By Lemma 2.2 of Wang and Yao (2013), we have

Gn(x) =

p∑
i=1

λn,i − p
∫
x dFcn,Hn(x)

D−→ N (m(x), v(x)).

The asymptotic mean does not change for non-Gaussian data, m(x) = 0, but the

asymptotic variance is v(x) = cγσ4.

Proof of Theorem 5 We prove that limN,T→∞ P [PC∗(m) < PC∗(m̄)] = 0 for

all m 6= m̄ and m ≤ m0. Notice that by definition,

PC∗(m)− PC∗(m̄) < 0

⇔ σ̂2
∗(m)− σ̂2

∗(m̄) < (m̄−m)σ̂2
∗(m0)g(N, T )

⇔ σ̂2
∗(m̄)− σ̂2

∗(m) > (m− m̄)σ̂2
∗(m0)g(N, T ).

Consider first m < m̄. We have by (7)

σ̂2
∗(m)− σ̂2

∗(m̄) = {σ̂2(m)− σ̂2(m̄)}{1 + op(1)}.
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Moreover,

(N −m){σ̂2(m)− σ̂2(m̄)} =
∑

m<i≤m̄

λi − (m̄−m)σ̂2(m̄)

≥ (m̄−m){λm̄ − σ̂2(m̄)}.

Since λm̄ → σ2
[
αm̄
σ2 + 1 + c

(
1 + σ2

αm̄

)]
and σ̂2(m̄)→ σ2 (in probability), the lower

bound above converges to (m̄ − m)σ2{αm̄/σ2 + c(1 + σ2/αm̄)} which is positive.

The conclusion P [PC∗(m) < PC∗(m̄)]→ 0 will follow if the penalty satisfies

(N −m)g(N, T ) <
σ2

σ̂2
∗(m0)

[
αm̄
σ2

+ c

(
1 +

σ2

αm̄

)]
, (20)

for large N, T . Notice that by assumption αm̄/σ
2 >

√
c which implies that[

αm̄
σ2 + 1 + c

(
1 + σ2

αm̄

)]
> c + 2

√
c. On the other hand, we have σ2/σ̂2

∗(m0) =

1 + β/T + op(1/T ) where β is some constant (depending on m0, c and σ2). So

with the g(N, T ) in (13), we have (N − m)g(N, T ) = (c + 2
√
c)(1 + T

N1+δ ) �

(c+ 2
√
c)(1 + β/T + op(1/T )) and the conclusion follows. Next, consider the case

where m > m̄. We have

(N −m){σ̂2(m̄)− σ̂2(m)} =
∑

m̄<i≤m

λi − (m− m̄)σ̂2(m̄)

i.p.→ (m− m̄)σ2(c+ 2
√
c),

due to λi
i.p.→ σ2(1 +

√
c)2 for m̄ < i ≤ m. Notice that σ̂2

∗(m0)
i.p.→ σ2 and with the

g(N, T ) in (13), we have

lim inf
N,T→∞

(N −m)g(N, T ) ≥ c+ 2
√
c.

The conclusion follows.
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1 Figure for Section 2.1

Figure 1 presents the histograms from 1000 replications of

(p−m)

σ2
√

2cn
(σ̂2 − σ2) + b(σ2)

of the three models in Section 2.1, with sample size n = 100 and dimensions p = c × n,

compared to the density of the standard Gaussian distribution. The sampling distribution is

almost normal.

Model 1 (p=n=100)
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Figure 1. Histogram of (p−m)

σ2
√
2c
(σ̂2 − σ2) + b(σ2) compared with the density of a standard Gaussian

distribution.

2 More Monte-Carlo experiments for Section 2.3

Tables 1 and 2 report the empirical means of the estimator of the number of PCs over

1000 replications, for m = 3 and 5 respectively, with standard errors in parentheses. When

1



a standard error is actually zero, no standard error is thus indicated. For all cases, the

predetermined maximum number m0 of PCs is set to 8.

3 Application to the SURE criterion

Ulfarsson and Solo (2008) proposes to use the SURE criteria to choose the number of PCs.

This criterion uses the noise variance estimator σ̂2US defined in Section 2. It aims at minimizing

the Euclidean distance between the underlying estimator of the population mean µ and its

true value. The proposed SURE criterion for m number of PCs (to be minimized) is

Rm = (p−m)σ̂2US + σ̂4US

m∑
j=1

1

λj
+ 2σ̂2US(1− 1/n)m

−2σ̂4US(1− 1/n)
m∑
j=1

1

λj
+

4(1− 1/n)σ̂4US
n

m∑
j=1

1

λj
+ Cm, (1)

where

Cm =
4(1− 1/n)σ̂2US

n

m∑
j=1

p∑
i=m+1

λj − σ̂2US
λj − λi

+
2(1− 1/n)σ̂2US

n
m(m− 1)

−
2(1− 1/n)σ̂2US

n
(p− 1)

m∑
j=1

(
1−

σ̂2US
λj

)
.

Recall that σ̂2US is also related to m. From Section 2, we have known that σ̂2US is not as good

as our bias-corrected estimator. To examine further this difference, we replace σ̂2US with σ̂2∗
in (11), referred then as SURE∗, to see whether the performance of SURE can be improved.

Then simulation experiments are conducted to check the performance of SURE∗. The

setup follows the paper Ulfarsson and Solo (2008) and the data are simulated according

to (1) with the parameters p = 64, p/n = [2/3, 1/2, 2/5],m = [5, 10, 15, 20] and σ2 = 1.

The loading matrix is set to Λ = FD1/2, where F is constructed by generating a p × m

matrix of Gaussian random variables and then orthogonalizing the resulting matrix, and

D = diag
(
(m + 1)2,m2, . . . , 32, λm

)
, λm = 1.5. All simulations were repeated 1500 times.

Table 3 presents the percentage of correct selection of number of PCs for SURE and SURE∗,

and the results of SURE are from Table II of Ulfarsson and Solo (2008). SURE∗ largely

outperforms SURE in all of the tested cases, most of times by a wide margin. All the

percentages of correct selection of SURE∗ are larger than 90% and in 4 out of 12 cases, the
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Table 1: Comparison between PC∗ps and PCps in terms of the mean estimation numbers of

PCs for m = 3, θ = 3.

N T PC∗p1 PC∗p2 PC∗p3 PCp1 PCp2 PCp3

100 40 2.98(0.15) 2.95(0.22) 3.00(0.06) 3.00 3.00 3.90

100 60 3.00(0.03) 3.00(0.04) 3.00 3.01(0.08) 3.00 4.37(0.64)

200 60 3.00 3.00 3.00 3.00 3.00 4.18(0.63)

500 60 3.00 3.00 3.00 3.00 3.00 3.00

1000 60 3.00 3.00 3.00 3.00 3.00 3.00

2000 60 3.00 3.00 3.00 3.00 3.00 3.00

100 100 3.00 3.00 3.00 3.00 3.00 5.62(0.72)

200 100 3.00 3.00 3.00 3.00 3.00 3.00

500 100 3.00 3.00 3.00 3.00 3.00 3.00

1000 100 3.00 3.00 3.00 3.00 3.00 3.00

2000 60 3.00 3.00 3.00 3.00 3.00 3.00

40 100 2.99(0.10) 2.98(0.14) 3.00 3.07(0.26) 3.01(0.07) 5.04(0.72)

60 100 3.00 3.00(0.03) 3.00 3.00 3.00 4.65(0.69)

60 200 3.00 3.00 3.00 3.00 3.00 3.00

60 500 3.00 3.00 3.00 3.00 3.00 3.00

60 1000 3.00 3.00 3.00 3.00 3.00 3.00

60 2000 3.00 3.00 3.00 3.00 3.00 3.00

4000 60 3.00 3.00 3.00 3.00 3.00 3.00

4000 100 3.00 3.00 3.00 3.00 3.00 3.00

8000 60 3.00 3.00 3.00 3.00 3.00 3.00

8000 100 3.00 3.00 3.00 3.00 3.00 3.00

60 4000 3.00 3.00 3.00 3.00 3.00 3.00

100 4000 3.00 3.00 3.00 3.00 3.00 3.00

60 8000 3.00 3.00 3.00 3.00 3.00 3.00

100 8000 3.00 3.00 3.00 3.00 3.00 3.00

10 50 8.00 8.00 8.00 8.00 8.00 8.00

10 100 8.00 8.00 8.00 8.00 8.00 8.00

20 100 2.89(0.32) 2.85(0.37) 2.95(0.27) 6.55(0.74) 5.96(0.77) 7.62(0.55)

100 10 2.57(1.35) 2.43(1.19) 2.77(1.54) 8.00 8.00 8.00

100 20 2.46(0.63) 2.37(0.65) 2.65(0.52) 6.15(0.69) 5.46(0.68) 7.49(0.59)
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Table 2: Comparison between PC∗ps and PCps in terms of the mean estimation numbers of

PCs for m = 5, θ = 5.

N T PC∗p1 PC∗p2 PC∗p3 PCp1 PCp2 PCp3

100 40 3.83(0.77) 3.49(0.77) 4.51(0.58) 5.00(0.07) 4.98(0.15) 5.36(0.51)

100 60 4.66(0.50) 4.36(0.61) 4.98(0.13) 5.00(0.03) 5.00(0.06) 5.27(0.45)

200 60 4.95(0.22) 4.90(0.30) 4.99(0.08) 5.00 5.00 5.00

500 60 5.00(0.04) 5.00(0.07) 5.00(0.03) 5.00 5.00 5.00

1000 60 5.00(0.04) 5.00(0.04) 5.00 5.00 5.00 5.00

2000 60 5.00(0.03) 5.00(0.03) 5.00(0.03) 5.00 5.00 5.00

100 100 4.(0.12) 4.90(0.30) 5.00 5.00 5.00 6.18(0.63)

200 100 5.00 5.00 5.00 5.00 5.00 5.00

500 100 5.00 5.00 5.00 5.00 5.00 5.00

1000 100 5.00 5.00 5.00 5.00 5.00 5.00

2000 60 5.00 5.00 5.00 5.00 5.00 5.00

40 100 4.25(0.68) 3.92(0.75) 4.77(0.44) 4.98(0.04) 5.66(0.14) 5.66(0.57)

60 100 4.76(0.44) 4.47(0.60) 4.76(0.10) 5.00(0.03) 4.99(0.08) 5.46(0.56)

60 200 4.97(0.17) 4.94(0.24) 5.00 5.00 5.00 5.00

60 500 5.00(0.05) 5.00(0.06) 5.00(0.04) 5.00 5.00 5.00

60 1000 5.00(0.03) 5.00(0.03) 5.00 5.00 5.00 5.00

60 2000 5.00 5.00 5.00 5.00 5.00 5.00

4000 60 5.00 5.00 5.00 5.00 5.00 5.00

4000 100 5.00 5.00 5.00 5.00 5.00 5.00

8000 60 5.00 5.00 5.00 5.00 5.00 5.00

8000 100 5.00 5.00 5.00 5.00 5.00 5.00

60 4000 5.00 5.00 5.00 5.00 5.00 5.000

100 4000 5.00 5.00 5.00 5.00 5.00 5.00

60 8000 5.00 5.00 5.00 5.00 5.00 5.00

100 8000 5.00 5.00 5.00 5.00 5.00 5.00

10 50 8.00 8.00 8.00 8.00 8.00 8.00

10 100 8.00 8.00 8.00 8.00 8.00 8.00

20 100 3.64(0.91) 3.38(0.94) 4.08(0.79) 6.65(0.64) 6.12(0.64) 7.63(0.51)

100 10 3.10(2.01) 2.83(1.86) 3.53(2.27) 8.00 8.00 8.00

100 20 2.18(0.92) 1.93(0.92) 2.65(0.0.90) 6.56(0.62) 5.97(0.62) 7.66(0.50)
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Table 3: Comparison between SURE and SURE∗ in terms of percentage of correct selection

of PCs.

m p/n = 2/3 p/n = 1/2 p/n = 2/5

5
SURE∗ 1.000 1.000 1.000

SURE 0.408 0.621 0.807

10
SURE∗ 0.992 1.000 0.998

SURE 0.512 0.739 0.858

15
SURE∗ 0.920 0.978 0.989

SURE 0.598 0.783 0.911

20
SURE∗ 0.909 0.966 0.990

SURE 0.617 0.810 0.899

detection rate is 100%. Therefore, by implementing our bias-corrected estimator of the noise

variance instead of the one provided by its authors, the SURE criterion has a much better

performance.

4 Proofs

Before giving the proofs, we first recall some important results from the random matrix theory

which laid the foundation for the proofs of the main results of the paper.

4.1 Useful results from random matrix theory

Random matrix theory has become a powerful tool to address new inference problems in

high-dimensional scheme. For general background and references, we refer to review papers

Johnstone (2007) and Johnstone and Titterington (2009).

Let H be a probability measure on R+ and c > 0 a constant. We define the map

g(s) = gc,H(s) =
1

s
+ c

∫
t

1 + ts
dH(t) (2)

in the set C+ = {z ∈ C : =z > 0}. The map g is a one-to-one mapping from C+ onto

itself (see Bai and Silverstein, 2010, Chapter 6), and the inverse map m = g−1 satisfies

all the requirements of the Stieltjes transform of a probability measure on [0,∞). We call

this measure F
¯ c,H . Next, a companion measure Fc,H is introduced by the equation cFc,H =
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(c− 1) δ0 + F
¯ c,H (note that in this equation, measures can be signed). The measure Fc,H is

referred as the generalized Marčenko-Pastur distribution with index (c,H).

Let Fn = 1
p

∑p
i=1 δλn,i be the empirical spectral distribution (ESD) of the sample covari-

ance matrix Sn defined in (2) in main paper with the {λn,i} denoting its eigenvalues. Then, it

is well-known that under suitable moment conditions, Fn converges to the Marčenko-Pastur

distribution of index (c, δσ2), simply denoted as Fc,σ2 , with the following density function

pc,σ2(x) =

 1
2πxcσ2

√
{b(c)− x}{x− a(c)} , a(c) ≤ x ≤ b(c) ,

0 , otherwise.

The distribution has an additional mass (1− 1/c) at the origin if c > 1.

The ESD Hn of Σ is

Hn =
p−m
p

δσ2 +
1

p

m∑
i=1

δαi+σ2 ,

and Hn → δσ2 . Define the normalized empirical process

Gn(f) = p

∫
R
f(x)[Fn − Fcn,Hn ](dx), f ∈ A,

where A is the set of analytic functions f : U → C, with U an open set of C such that

[1(0,1)(c)a(c), b(c)] ⊂ U . We will need the following CLT which is a combination of Theorem

1.1 of Bai and Silverstein (2004) and a recent addition proposed in Zheng et al. (2015).

Proposition 1. We assume the same conditions as in Theorem 1. Then, for any func-

tions f1, . . . , fk ∈ A, the random vector (Gn(f1), . . . , Gn(fk)) converges to a k-dimensional

Gaussian vector with mean vector

m(fj) =
fj(a(c)) + fj(b(c))

4
− 1

2π

∫ b(c)

a(c)

fj(x)√
4cσ4 − (x− σ2 − cσ2)2

dx, j = 1, . . . , k,

and covariance function

v(fj , fl) = − 1

2π2

∮
C1

∮
C2

fj(z1)fl(z2)

(m(z1)−m(z2))2
dm(z1)dm(z2), j, l = 1, . . . , k, (3)

where m(z) is the Stieltjes transform of F
¯ c,σ2 = (1 − c)δ0 + cFc,σ2. The contours C1 and C2

are non overlapping and both contain the support of Fc,σ2.

An important and subtle point here is that the centering term in Gn(f) in the above CLT

is defined with respect to the Marcčenko-Pastur distribution Fcn,Hn with “current” index
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(cn, Hn) instead of the limiting distribution Fc,σ2 with index (c, σ2). In contrast, the limiting

mean function m(fj) and covariance function v(fj , fl) depend on the limiting distribution

Fc,σ2 only.

4.2 Proof of Proposition 1 in main paper

By Lemma 2.2 of Wang and Yao (2013),

p∑
i=1

λ2i − p
∫
x2dFcn,Hn(x)

D−→ N (m(x2), v),

with m(x2) = cσ4(γ−1) and some computable v > 0. Furthermore, by Lemma 1 of Bai et al.

(2010), ∫
x2dFcn,Hn(x) = β2 +

p

n
β21 ,

where

β1 = σ2 +
1

p

m∑
j=1

αj , and β2 = σ4 +
1

p

m∑
j=1

α2
j +

2

p
σ2

m∑
j=1

αj .

The conclusion follows.

4.3 Proof of Theorem 6 in main paper

We have

L∗ =

p∑
i=m+1

log
λn,i
σ̂2

=

p∑
i=m+1

log
λn,i
σ2
−

p∑
i=m+1

log
σ̂2

σ2

=

p∑
i=m+1

log
λn,i
σ2
− (p−m) log

(
1

p−m

p∑
i=m+1

λn,i
σ2

)

= L1 − (p−m) log

(
L2

p−m

)
,

where we have defined a two-dimensional vector (L1, L2) = (
∑p

i=m+1 log
λn,i
σ2 ,

∑p
i=m+1

λn,i
σ2 ).
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CLT when σ2 = 1. To start with, we consider the case σ2 = 1. We have

L1 = p

∫
log(x) dFn(x)−

m∑
i=1

log λn,i

= p

∫
log(x) d(Fn − Fcn,Hn)(x) + p

∫
log(x) dFcn,Hn(x)−

m∑
i=1

log λn,i.

Similarly, we have

L2 = p

∫
x d(Fn − Fcn,Hn)(x) + p

∫
x dFcn,Hn(x)−

m∑
i=1

λn,i.

By Proposition 1, we find that

p

( ∫
log(x) d(Fn − Fcn,Hn)(x)∫
x d(Fn − Fcn,Hn)(x)

)
D−→ N

((
m1(c)

m2(c)

)
,

(
v1(c) v1,2(c)

v1,2(c) v2(c)

))
(4)

with m2(c) = 0 and v2(c) = 2c and

m1(c) =
log (1− c)

2
, (5)

v1(c) = −2 log (1− c), (6)

v1,2(c) = 2c. (7)

Formulae of m2 and v2 have been established in the proof of Theorem 1 and the others are

derived in next subsection.

In Theorem 1, with σ2 = 1, we found that∫
x dFcn,Hn(x) = 1 +

1

p

m∑
i=1

αi,

and
m∑
i=1

λn,i
a.s.−→

m∑
i=1

(
αi +

c

αi

)
+m(1 + c).

For the last term of L1, by (6) in main paper, we have

log λn,i −→ log(φ(αi + 1)) = log
(
(αi + 1)(1 + cα−1i )

)
a.s.

8



Furthermore, by Wang et al. (2014), we have∫
log(x) dFcn,Hn(x) =

1

p

m∑
i=1

log(αi + 1) + h(cn) + o

(
1

p

)
,

where

h(cn) =

∫
log(x)dFcn,δ1(x) =

cn − 1

cn
log(1− cn)− 1. (8)

can be calculated using the density of the Marčenko-Pastur law (see 4.1). Summarising, we

have obtained that

L1 −m1(c)− ph(cn) + η(c, α)
D−→ N (0, v1(c)) ,

where h(cn) = cn−1
cn

log(1− cn)− 1 and η(c, α) =
∑m

i=1 log(1 + cσ2α−1i ). Similarly, we have

L2 − (p−m) + ρ(c, α)
D−→ N (0, v2(c)) ,

where ρ(c, α) = c(m+
∑m

i=1 α
−1
i ).

Using (4) and Slutsky’s lemma,(
L1

L2

)
D−→ N

((
m1(c) + ph(cn)− η(c, α)

p−m− ρ(c, α)

)
,

(
v1(c) v1,2(c)

v1,2(cn) v2(cn)

))
,

with h(cn) = cn−1
cn

log(1 − cn) − 1, η(c, α) =
∑m

i=1 log(1 + cσ2α−1i ) and ρ(c, α) = c(m +∑m
i=1 α

−1
i ).

CLT with general σ2. When σ2 = 1,

spec(Σ) = (α1 + 1, . . . , αm + 1, 1, . . . , 1),

whereas in the general case

spec(Σ) = (α1 + σ2, . . . , αm + σ2, σ2, . . . , σ2)

= σ2
(α1

σ2
+ 1, . . . ,

αm
σ2

+ 1, . . . , 1
)

.

Thus, if we consider λi/σ
2, we will find the same CLT by replacing the (αi)1≤i≤m by αi/σ

2.

Furthermore, we divide L2 by p−m to find(
L1
L2
p−m

)
D−→ N

((
m1(c) + ph(cn)− η(c, α/σ2)

1− ρ(c,α/σ2)
p−m

)
,

(
2c

(p−m)2
2c
p−m

2c
p−m −2 log(1− c)

))
,(9)
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with η(c, α/σ2) =
∑m

i=1 log(1 + cσ2α−1i ), ρ(c, α/σ2) = c(m + σ2
∑m

i=1 α
−1
i ) and h(cn) =

cn−1
cn

log(1− cn)− 1.

Asymptotic distribution of L∗. We have L∗ = g(L1, L2/(p−m)), with g(x, y) = x− (p−
m) log(y). We will apply the multivariate delta-method on (9) with the function g. We have

5g(x, y) =
(

1,−p−m
y

)
and

L∗
D−→ N (β1 − (p−m) log(β2),5g(β1, β2) cov(L1, L2/(p−m))5 g(β1, β2)

′),

with β1 = m1(c)+ph(cn)−η(c, α/σ2) and β2 = 1− ρ(c,α/σ2)
p−m . After some standard calculation,

we finally find

L∗
D−→ N

(
m1(c) + ph(cn)− η

(
c,
α

σ2

)
− (p−m) log(β2),−2 log(1− c) +

2c

β2

(
1

β2
− 2

))
.

4.4 Complementary proofs

Proof of (4) in main paper

The general theory of the m.l.e. for the PPCA model (1) in the classical setting has been

developed in Anderson and Amemiya (1988) with in particular the following result.

Proposition 2. Let Θ = (θij)1≤i,j≤p = Ψ−Λ(Λ′Ψ−1Λ)−1Λ′. If (θ2ij)1≤i,j≤p is nonsingular,

if Λ and Ψ are identified by the condition that Λ′ΨΛ is diagonal and the diagonal elements

are different and ordered, if Sn → ΛΛ′ + Ψ in probability and if
√
n(Sn −Σ) has a limiting

distribution, then
√
n(Λ̂ −Λ) and

√
n(Ψ̂ −Ψ) have a limiting distribution. The covariance

of
√
n(Ψ̂ii−Ψii) and

√
n(Ψ̂jj−Ψjj) in the limiting distribution is 2Ψ2

iiΨ
2
jjξ

ij (1 ≤ i, j ≤ p),
where (ξij) = (θ2ij)

−1.

To prove the CLT (4) in main paper, by Proposition 2, we know that the inverse of

the Fisher information matrix is I−1(ψ11, . . . , ψpp) = (2ψ2
iiψ

2
jjξ

ij)ij . We have to change the

parametrization: in our case, we have ψ11 = · · · = ψpp. Let g : R→ Rp, a 7→ (a, . . . , a). The

information matrix in this new parametrization becomes

I(σ2) = J ′I(g(σ2))J ,

where J is the Jacobian matrix of g. As

I(g(σ2)) =
1

2σ8
(θ2ij)ij ,
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we have

I(σ2) =
1

2σ8

p∑
i,j=1

θ2ij ,

and

Θ = (θij)ij = Ψ−Λ(Λ′Ψ−1Λ)−1Λ′

= σ2(Ip −Λ(Λ′Λ)−1Λ′).

By hypothesis, we have Λ′Λ = diag(d21, . . . , d
2
m). Consider the Singular Value Decomposition

of Λ, Λ = UDV, where U is a p× p matrix such that UU′ = Ip, V is a m×m matrix such

that V′V = Im, and D is a p×m diagonal matrix with d1, . . . , dm as diagonal elements. As

Λ′Λ is diagonal, V = Im, so Λ = UD. By elementary calculus, one can find that

Λ(Λ′Λ)−1Λ′ = diag(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
p−m

),

so

Θ = σ2diag(0, . . . , 0︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
p−m

).

Finally,

I(σ2) =
1

2σ8
(p−m)σ4 =

p−m
2σ4

,

and the asymptotic variance of σ̂2 is

s2 = I−1(σ2) =
2σ4

p−m
.

Proof of (17) in main paper

By Proposition 1, for g(x) = x, by using the variable change x = σ2(1 + c − 2
√
c cos θ),

0 ≤ θ ≤ π, we have

m(g) =
g(a(c)) + g(b(c))

4
− 1

2π

∫ b(c)

a(c)

x√
4cσ4 − (x− σ2 − cσ2)2

dx, j = 1, . . . , k

=
σ2(1 + c)

2
− σ2

2π

∫ π

0
(1 + c− 2

√
c cos θ) dθ

= 0.

11



Proof of (18) in main paper

Let s(z) be the Stieltjes transform of (1− c)1[0,∞) + cFc,δ1 . One can show that

m(z) =
1

σ2
s
( z
σ2

)
.

Then, in Proposition 1, we have

v(fj , fl) = − 1

2π2

∮ ∮
fj(σ

2z1)fl(σ
2z2)

(s(z1)− s(z2))2
ds(z1) ds(z2), j, l = 1, . . . , k. (10)

For g(x) = x, we have

v(g) = − 1

2π2

∮ ∮
g(σ2z1)g(σ2z2)

(s(z1)− s(z2))2
ds(z1) ds(z2)

= − σ4

2π2

∮ ∮
z1z2

(s(z1)− s(z2))2
ds(z1) ds(z2)

= 2cσ4,

where− 1
2π2

∮ ∮
z1z2

(s(z1)−s(z2))2 ds(z1) ds(z2) = 2c is calculated in Bai et al. (2009) (it corresponds

to v(z1, z2), Section 5, proof of (3.4)).

Proof of (5)

By Proposition 1, for σ2 = 1 and g(x) = log(x), by using the variable change x = 1 + c −
2
√
c cos θ, 0 ≤ θ ≤ π, we have

m(g) =
g(a(c)) + g(b(c))

4
− 1

2π

∫ b(c)

a(c)

x√
4c− (x− 1− c)2

dx, j = 1, . . . , k

=
log(1− c)

2
− 1

2π

∫ π

0
log(1 + c− 2

√
c cos θ) dθ

=
log(1− c)

2
− 1

4π

∫ 2π

0
log |1−

√
ceiθ|2 dθ

=
log(1− c)

2
,

where
∫ 2π
0 log |1−

√
ceiθ|2 dθ = 0 is calculated in Bai and Silverstein (2010).
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Proof of (6)

By Proposition 1 and (10), for σ2 = 1 and g(x) = x, we have

v(g) = − 1

2π2

∮ ∮
g(z1)g(z2)

(s(z1)− s(z2))2
ds(z1) ds(z2)

= − 1

2π2

∮ ∮
log(z1) log(z2)

(s(z1)− s(z2))2
ds(z1)ds(z2)

= −2 log(1− cn),

where the last integral is calculated in Bai and Silverstein (2010).

Proof of (8)

Fcn,δ1 is the Marčenko-Pastur distribution of index cn. By using the variable change x =

1 + cn − 2
√
cn cos θ, 0 ≤ θ ≤ π, we have∫
log(x)dFcn,δ1(x) =

∫ b(cn)

a(cn)

log x

2πxcn

√
(b(cn)− x)(x− a(cn)) dx

=
1

2πcn

∫ π

0

log(1 + cn − 2
√
cn cos θ)

1 + cn − 2
√
cn cos θ

4cn sin2 θ dθ

=
1

2π

∫ 2π

0

2 sin2 θ

1 + cn − 2
√
cn cos θ

log |1−
√
cne

iθ|2 dθ

=
cn − 1

cn
log(1− cn)− 1,

where the last integral is calculated in Bai and Silverstein (2010).

Proof of (7)

In the normal case with σ2 = 1, Zheng (2012) gives the following equivalent expression of (3):

v(fj , fl) = − lim
r→1+

κ

4π2

∮ ∮
|ξ1|=|ξ2|=1

fj(|1 + hξ1|2)fl(|1 + hξ2|2)
1

(ξ1 − rξ2)2
dξ1 dξ2,

where κ = 2 in the real case and h =
√
c in our case. We take fj(x) = log(x) and fl(x) = x,

so we need to calculate

v(log(x), x) = − lim
r→1+

1

2π2

∮ ∮
|ξ1|=|ξ2|=1

|1 +
√
cξ2|2

log(|1 +
√
cξ1|2)

(ξ1 − rξ2)2
dξ1 dξ2.

13



We follow the calculations done in Zheng (2012): when |ξ| = 1, |1 +
√
cξ|2 = (1 +

√
cξ)(1 +

√
cξ−1), so log(|1 +

√
cξ|2) = 1

2

(
log(1 +

√
cξ)2 + log(1 +

√
cξ−1)2

)
. Consequently,∮

|ξ1|=1

log(|1 +
√
cξ1|2)

(ξ1 − rξ2)2
dξ1 =

1

2

∮
|ξ1|=1

log(1 +
√
cξ1)

2

(ξ1 − rξ2)2
dξ1 +

1

2

∮
|ξ1|=1

log(1 +
√
cξ−11 )2

(ξ1 − rξ2)2
dξ1

=
1

2

∮
|ξ1|=1

log(1 +
√
cξ1)

2

(
1

(ξ1 − rξ2)2
+

1

(1− rξ1ξ2)2

)
dξ1

= 0 + iπ

 1

(rξ2)2
2
√
c

1 +
√
c

rξ2


= 2iπ

√
c

rξ2(rξ2 +
√
c)

.

Thus,

v(log(x), x) =
1

iπ

∮
|ξ2|=1

|1 +
√
cξ2|2

√
c

ξ2(ξ2 +
√
c)

dξ2

=
1

iπ

∮
|ξ|=1

(
1 + c+ c(ξ + ξ−1)

) √
c

ξ(ξ +
√
c)

dξ

=
1

iπ

∮
|ξ|=1

(√
c(1 + c)

ξ(ξ +
√
c)

+
c

ξ +
√
c

+
c

ξ2(ξ +
√
c)

)
dξ

= 2(1 + c− (1 + c) + c+ 1− 1)

= 2c.
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