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Abstract. Let (εt )t>0 be a sequence of independent real random vectors of p-dimension and let XT = ∑s+T
t=s+1 εt ε

∗
t−s/T be the

lag-s (s is a fixed positive integer) auto-covariance matrix of εt . Since XT is not symmetric, we consider its singular values, which
are the square roots of the eigenvalues of XT X∗

T
. Using the method of moments, we are able to investigate the limiting behaviors

of the eigenvalues of XT X∗
T

in two aspects. First, we show that the empirical spectral distribution of its eigenvalues converges
to a nonrandom limit F , which is a result previously developed in (J. Multivariate Anal. 137 (2015) 119–140) using the Stieltjes
transform method. Second, we establish the convergence of its largest eigenvalue to the right edge of F .

Résumé. Soit (εt )t>0 une suite de vecteurs aléatoires indépendants de Rp et XT = ∑s+t
t=s+1 εt ε

∗
t−s/T la matrice d’autocovariance

empirique d’ordre s de la suite (s est un ordre fixé). Comme XT n’est pas symétrique, nous considérons ses valeurs singulières,
c’est-à-dire les racines carrées des valeurs propres de la matrice aléatoire XT X∗

T
. En utilisant la méthode des moments, nous

établissons les propriétés limites de ces valeurs singulières dans deux directions. D’abord, nous démontrons que leur distribution
empirique converge vers une limite déterministe F , retrouvant ainsi un résultat établi dans (J. Multivariate Anal. 137 (2015) 119–
140) par la méthode de la transformée de Stieltjes. Ensuite, nous montrons que la plus grande de ces valeurs singulières converge
vers le point extrémal du support de F .

MSC: 15A52; 60F15
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1. Introduction

Let (εt )t>0 be a sequence of independent real random vectors of p-dimension and let XT = ∑s+T
t=s+1 εt ε

∗
t−s/T be the

lag-s (s is a fixed positive integer) auto-covariance matrix of εt . The motivation of the above set up is due to the study
of dynamic factor model, see [7]. Set

xt = Λft + εt + μ, (1.1)

where xt is a p-dimensional sequence observed at time t , {ft } a sequence of m-dimensional “latent factor” (m � p)
uncorrelated with the error process {εt } and μ ∈ R

p is the general mean. Therefore, the lag-s auto-covariance matrix
of the time series xt can be considered as a finite rank (rank m) perturbation of the lag-s auto-covariance matrix of εt .
Therefore, the first step is to study the base component, which is the lag-s auto-covariance matrix of the error term.
Besides, we are considering the random matrix framework, where the dimension p and the sample size T both tend
to infinity with their ratio converging to a constant: limp/T → y > 0.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
http://dx.doi.org/10.1214/15-AIHP693
mailto:wqw8813@gmail.com
mailto:jeffyao@hku.hk
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One of the main problems in random matrix theory is to investigate the convergence of the sequence of empirical
spectral distribution {FAn} for a given sequence of symmetric or Hermitian random matrices {An}, where

FAn(x) := 1

p

p∑
j=1

δlj ,

lj are the eigenvalues of An. The limit distribution F , which is usually nonrandom, is called the limiting spectral
distribution (LSD) of the sequence {An}. The study of spectral analysis of large dimensional random matrices dates
back to the Wigner’s famous semicircular law [18] for Wigner matrix, which is further extended in various aspects:
Marčenko–Pastur (M–P) law [10] for large dimensional sample covariance matrix; and circular law for complex
random matrix [4]. Another aspect is the bound on extreme eigenvalues. The literature dates back to [3], who proved
the almost sure convergence of the largest eigenvalue of a sample covariance matrix under however some moment
restrictions, which is later improved by [19]. For Wigner matrix, [2] found the sufficient and necessary condition for
the almost sure convergence of its largest eigenvalue. Vu [15] presented an upper bound for the spectral norm of
symmetric random matrices with independent entries and [11] derived the lower bound. Vershynin [14] studied the
sharp upper bound of the spectral norm of products of random and deterministic matrices, which behave similarly to
random matrices with independent entries, etc.

Notice that lag-0 auto-covariance matrix of εt reduces to the standard sample covariance matrix 1
T

∑T
t=1 εt ε

∗
t and

its property in large-dimension has been well developed in the literature. In contrast, very little is known for the lag-s
auto-covariance matrix XT . Recent related work include [8,9] and [6] for the LSD of the symmetrized auto-covariance
matrix and [16] for its exact separation, which also ensures the convergence of its largest eigenvalue.

Since XT is not symmetric, its singular values are the square roots of the p nonnegative eigenvalues of

AT := XT X∗
T . (1.2)

Therefore, the main purpose of this paper is on the limiting behaviors of the eigenvalues of AT . First, the LSD of AT

has been found in [8] using the method of Stieltjes transform. However, no results on the largest eigenvalue of AT

has been so far found. The main contribution of the paper is using moment method to prove the convergence of this
largest eigenvalue to the right edge of the LSD under an appropriate moment condition. As a by product of the moment
approach, we provide a new proof of the convergence of ESD of AT to its LSD. A distinctive feature here is that the
matrix AT can be considered as the product of four matrices involving εt , new methodology is needed with respect
to the existing literature on moment method in random matrix theory. In particular, we provide in Section 5 some
complex recursion formulas related to enumeration of a particular family of “walk paths” on nonnegative integers,
which further leads to our moment result, and these formulas may be of independent interest.

The rest of the paper is organized as follows. Preliminary introduction on the related graph theory is provided
in Section 2. Section 3 derives the exact moment formula for the limiting spectral distribution of AT using graph
theory, which further leads to the expression of its corresponding Stieltjes transform. Section 4 gives details of the
convergence of the largest eigenvalue of AT . In Section 5, we provide some techniques to derive a system of recursion
formulas for two families of “walk paths”, which further leads to the limiting moments in Section 3.

2. Some graph theory

In order to enumerate the moments of the LSD of AT by moment method, we need some information from graph
theory. The concepts and notations are close to those used in [1].

For a pair of vectors of indexes i = (i1, . . . , i2k) (1 ≤ il ≤ T , l ≤ 2k) and j = (j1, . . . , j2k) (1 ≤ jl ≤ p, l ≤ 2k),
construct a graph Q(i, j) in the following way. Draw two parallel lines, referred to as the I-line and J-line. Plot
i1, . . . , i2k on the I-line and j1, . . . , j2k on the J-line, called the I-vertices and J-vertices, respectively. Draw k down
edges from i2u−1 to j2u−1, k down edges from i2u + s to j2u, k up edges from j2u−1 to i2u, k up edges from j2u

to i2u+1 + s (all these up and down edges are called vertical edges) and k horizontal edges from i2u to i2u + s, k

horizontal edges from i2u−1 + s to i2u−1 (with the convention that i2k+1 = i1), where all the u’s are in the region:
1 ≤ u ≤ k. An example of a Q graph with k = 3 is shown in Figure 1.
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Definition 2.1. The subgraph of all I-vertices is called the roof of Q and is denoted by H(Q) (see the subgraph inside
the dashed line in Figure 1 for illustration of H(Q)).

Definition 2.2. The M-minor or pillar of Q is defined as the minor of Q by contracting all horizontal edges, which
means that all horizontal edges are removed from Q and all I-vertices connected through horizontal edges are glued
together. We denote the M-minor or pillar of Q by M(Q) (see Figure 2).

Definition 2.3. For a given M(Q), glue all coincident vertical edges; namely, we regard all vertical edges with a
common I-vertex and J-vertex as one edge. Then we get an undirectional connected graph. We call the resulting graph
the base of the graph Q, and denote it by B(Q) (see Figure 3).

Definition 2.4. For a vertical edge e of B(Q), the number of up (down) vertical edges of Q coincident with e is called
the up (down) multiplicity of e.

Definition 2.5. The degree of a vertex il is the number of edges incident to this vertex.

Fig. 1. An example of a Q graph with k = 3.

Fig. 2. The M-minor or pillar M(Q) of the graph Q in Figure 1.

Fig. 3. The base B(Q) of the graph Q in Figure 1.
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Fig. 4. Characteristic sequence associated with the pillar M(Q) in Figure 2.

Definition 2.6. For a cycle in M(Q) from i1 to j1, then from j1 to i2, and so forth until we finally return to i1 from
j2k . On each leg of this journey, say from il to jl , if jl has not been visited before, i.e. for all k < l, we have jk �= jl ,
then this edge is called an innovation. An up (down) innovation e is an up (down) vertical edge that is an innovation.

Definition 2.7. Two graphs are said to be isomorphic if one becomes the other by a suitable permutation on (1, . . . , T )

and a suitable permutation on (1, . . . , p).

Definition 2.8. Define a characteristic sequence as (d1u1 · · ·d2ku2k), where {u1, . . . , u2k} and {d1, . . . , d2k} are asso-
ciated with the 2k up edges and 2k down edges of a pillar M(Q) according to the following rule:

ul =
{

1, the lth up edge is an up innovation,
0, otherwise,

and

dl =
{

0, the lth down edge is an down innovation,
−1, otherwise.

An example of the characteristic sequence associated with the pillar in Figure 2 is given in Figure 4 with

{u1, u2, u3, u4, u5, u6} = {1,1,0,0,0,0},
{d1, d2, d3, d4, d5, d6} = {0,0,0,−1,−1,0};

that is, the corresponding characteristic sequence is (0 1 0 1 0 0 −1 0 −1 0 0 0). Conversely, it can be verified
that any characteristic sequence (d1u1 · · ·d2ku2k) uniquely defines a pillar M(Q).

3. LSD of AT using moment method

The problem of showing the convergence of the ESD of AT reduces to showing that the sequence of its moments
mk(AT ) := trAk

T /p (k ≥ 1 is a constant number) tends to a limit (mk)k , and this limit determines properly a proba-
bility distribution. For example, the later property is guaranteed if the moment sequence (mk)k satisfies the Carleman
condition:

∞∑
k=1

m
−1/2k

2k = ∞. (3.1)

The following theorem gives the exact formula for the limiting moments (mk)k .

Theorem 3.1. Suppose the following conditions hold:
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(a) The p×(T +s) table (εij )1≤i≤p,1≤j≤T +s are made with an array of independent real random variables satisfying

E(εij ) = 0, E
(
ε2
ij

) = 1, sup
it

E
(
ε4
it

)
< ∞.

(b) p and T tend to infinity proportionally, that is,

p → ∞, T → ∞, yT := p/T → y ∈ (0,∞).

Then, with probability one, the empirical spectral distribution FAT of the matrix AT in (1.2) tends to a limiting
distribution F whose kth moment (k is a fixed positive number) is given by:

mk =
k−1∑
i=0

1

k

(
2k

i

)(
k

i + 1

)
y2k−1−i .

Remark 3.1. Using the expression of the limiting moment above, we are able to derive that the Stieltjes transform
of F :

s(z) :=
∫

1

x − z
dF (x)

satisfies the following equation:

y2z2s3(z) + y2zs2(z) − yzs2(z) − zs(z) − 1 = 0, (3.2)

which coincides with an earlier result in [8] found by using the Stieltjes transform method.
Indeed, by the series expansion of the function 1

1−x
, the Stieltjes transform of a LSD can be expanded using its

moments:

s(z) =
∫

1

x − z
dF (x) = −1

z
−

∞∑
i=1

1

zi+1
· mi

= −1

z
− 1

z
·

∞∑
i=1

mi

zi
.

Let h(z) be the moment generating function of mi :

h(z) =
∞∑
i=0

miz
i,

then the part
∑∞

i=1 mi/z
i equals to h(1/z) − 1. Therefore, we have the relationship between the Stieltjes transform

s(z) and the moment generating function h(z):

s(z) = −1

z
h

(
1

z

)
. (3.3)

In the proof of Theorem 3.1, we will see that h satisfies the equation:

xy2h3(x) + x
(
y − y2)h2(x) − h(x) + 1 = 0,

which is detailed in Section 5, see (5.32). Let x = 1/z in it and combine with (3.3) leads to (3.2).
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Fig. 5. The Q(i, j)-graph that corresponds to (3.4).

Proof of Theorem 3.1. After truncation and centralization, see Appendix A in [8], we may assume in all the following
that

|εij | ≤ ηp1/4, E(εij ) = 0, Var(εij ) = 1,

where η is chosen such that η → 0 but ηp1/4 → ∞. And for convenience, we denote M = ηp1/4 below. With a little
bit calculation, we have

mk(AT ) = 1

p

T∑
i=1

p∑
j=1

1

T 2k
[εj1i1εj1i2εj2s+i2εj2s+i3εj3i3εj3i4εj4s+i4εj4s+i5

· · · εj2k−1i2k−1εj2k−1i2k
εj2ks+i2k

εj2ks+i1]

= 1

pT 2k

∑
i,j

EQ(i,j),

where the summation runs over all Q(i, j)-graph of length 4k (see Section 2 for the definition of the Q graph).
The indices in i = (i1, . . . , i2k) run over 1,2, . . . , T and the indices in j = (j1, . . . , j2k) run over 1,2, . . . , p. See the
following Figure 5 for illustration.

Now suppose the pillar of the Q-graph in Figure 5 has t noncoincident I -vertices and s noncoincident J -vertices,
which results in s down innovation and t −1 up innovation (we make the convention that the first down edge is always
a down innovation and the last up edge is not an innovation). Then in the corresponding characteristic sequence
(d1u1 · · ·d2ku2k), the number of “1” (“1” only appears in the even position as it corresponds to the up edge) is
t − 1, the number of “−1” (“−1” only appears in the odd position) is 2k − s and the sequence starts and ends with
“0.”

We classify the Q-graphs in Figure 5 into three categories:
Category 1 (denoted by Q1) contains all the Q-graphs that in its pillar M(Q), each down edge must coincide

with one and only one up edge and its base B(Q) is a tree of 2k edges. In this category, t + s − 1 = 2k and thus s

is suppressed for simplicity. Figure 6 shows an example of Q1 (see the left panel) with k = 3, t = 2 and s = 5. Its
corresponding pillar and base are in the middle and right panel.

Category 2 (denoted by Q2) contains all the Q-graphs that have at least one single vertical edge.
Category 3 (denoted by Q3) contains all other Q-graphs. See Figure 7 for an example of Q3 (the left panel)

with k = 3, t = 1 and s = 3. In this example, the multiplicities of each edge in its pillar is four (the middle panel).

The almost sure convergence of the ESD of AT will result from the following two assertions:

E
(
mk(AT )

) = 1

p

T∑
i=1

p∑
j=1

1

T 2k
E[εj1i1εj1i2εj2s+i2εj2s+i3εj3i3εj3i4εj4s+i4εj4s+i5

· · · εj2k−1i2k−1εj2k−1i2k
εj2ks+i2k

εj2ks+i1] (3.4)
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Fig. 6. An example of Q1 (left panel) with its pillar (middle panel) and base (right panel).

Fig. 7. An example of Q3 (left panel) with its pillar (middle panel) and base (right panel).

= 1

pT 2k

∑
i,j

E(EQ(i,j))

=
k−1∑
i=0

1

k

(
2k

i

)(
k

i + 1

)
y2k−1−i
T + o(1), (3.5)

and

Var
(
mk(AT )

) = 1

p2T 4k

∑
i1,j1,i2,j2

[
E(EQ1(i1,nj1)EQ2(i2,j2)) −E(EQ1(i1,j1))E(EQ2(ni2,nj2))

]
= O

(
p−2). (3.6)

Proof of (3.5). Since Eεij = 0, the only non-vanishing terms in (3.4) are those for which each edge in the Q-graph
occurs at least twice. So the contribution of Category 2 is zero.

Next, we only consider those Q-graphs that fall in Category 1 and 3. Denote bl the degree associated to the I -vertex
il (1 ≤ l ≤ t) in its corresponding M-pillar, then we have b1 + · · · + bt = 4k, which is the total number of edges. On
the other hand, since we glue the I -vertex il and il + s in the definition of M-pillar, each degree bl should be no less
than 4; otherwise, there will be some single vertical edges in the Q-graph, which results in Category 2. Therefore, we
have

4k = b1 + · · · + bt ≥ 4t,

which is t ≤ k.
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Category 1: In Category 1, since in the Q-graph, each down edge must coincide with one and only one up edge,
the total number of non-coincident edges is 2k. Besides, due to the restriction that the base B(Q) is a tree, we have
s + t −1 = 2k (according to the definition of a tree that #{edges} = #{vertices}−1), and this means that the summation
over the elements in the corresponding characteristic sequence is zero (it is because we have the number of “1” equals
t − 1 and the number of “−1” equals 2k − s).

The characteristic sequence of a M-pillar whose corresponding Q-graph lies in Category 1 has the following
features (see Remarks 3.4 and 3.5):

(1) The total length of the characteristic sequence is 4k;
(2) The sequence starts with a zero and ends with a zero (the first down edge is a down innovation and the last up

edge is not an innovation);
(3) The number “1” appears only in the even position in the sequence and the number “−1” only in the odd position

(down edges are in the odd position while up edges are in the even);
(4) The total number of “1” in the characteristic sequence is t −1 (t −1 up innovation), which equals the total number

of “−1”;
(5) The sequences are made with the following subsequence structure:

1 00︸︷︷︸
two

−1

1 000000︸ ︷︷ ︸
six

−1

1 0000000000︸ ︷︷ ︸
ten

−1

· · ·
1 0000 · · ·00000︸ ︷︷ ︸

4k−6

−1. (3.7)

Denote ft−1(k) as the number of Q-graphs whose M-pillar satisfies the above conditions (1)–(5) (here, we have
two index: t − 1, which is the number of up innovations and k, which is a quarter of the total length of the sequence),
then we have the contribution of Category 1 to (3.4):

1

pT 2k
·

k∑
t=1

T (T − 1) · · · (T − t + 1)p(p − 1) · · · (p − s + 1)ft−1(k)

=
k∑

t=1

y2k−t
T ft−1(k) + O

(
1

p

)
. (3.8)

Category 3: Category 3 consists two situations, see the following lemma.

Lemma 3.1 (Lemma 4.5 in [1]). Denote the coincident multiplicities of the lth noncoincident vertical edge by al ,
l = 1,2, . . . ,m, where m is the number of noncoincident vertical edges. If Q ∈ Q3, then (a) either there is a al ≥ 3
with t + s − 1 ≤ m < 2k or (b) all al = 2 with t + s − 1 < m = 2k.

Remark 3.2. An example that illustrates situation (a) in Lemma 3.1 is presented in Figure 8. In this example, t = 2,
s = 4, k = 3, m = 5, thus we have t + s −1 = 5 = m < 2k = 6 and there exists one vertical edge with multiplicity four.
Another example is the left panel in Figure 7, which falls into situation (b). Since all its vertical edges are repeated
exactly twice. Besides, in this case m = 6, therefore we have t + s − 1 = 3 < m = 2k = 6.

First, we see the contribution of (a). By the moment assumption that the moment E|εij |a is bounded by Ma−2 for
a ≥ 2 and a1 + · · · + am = 4k, we conclude that the expectation

E[εj1i1εj1i2εj2s+i2εj2s+i3εj3i3εj3i4εj4s+i4εj4s+i5 · · · εj2ks+i2k
εj2ks+i1]



Singular values distribution of a large auto-covariance matrix 1649

Fig. 8. An example of Q3 that satisfies situation (a) in Lemma 3.1.

in (3.4) has magnitude at most M4k−2m. Then we have (3.4) bounded by

1

pT 2k
·

k∑
t=1

T tpsM4k−2m#{isomorphism class in Q3}

= O

(
k∑

t=1

pt+s−k−m/2−1 · η4k−2m

)
, (3.9)

where the equality is due to the fact that p and T are in the same order and also for fixed k, the part
#{isomorphism class in Q3} is of order O(1). Then

k∑
t=1

pt+s−k−m/2−1 ≤
k∑

t=1

pm−k−m/2 ≤
k∑

t=1

p(2k−1)/2−k = O
(
p−1/2), (3.10)

which is due to the assumption that t + s − 1 ≤ m < 2k, so the contribution of (3.9) is o(p−1/2).
Next, we consider the contribution of (b). Since all al = 2, we have the part of expectation equals 1. Therefore,

(3.4) is bounded by

1

pT 2k
·

k∑
t=1

T tps#{isomorphism class in Q3} = O

(
k∑

t=1

pt+s−2k−1

)
= O(1/p), (3.11)

where the equation is due to the fact that t + s ≤ 2k.
Therefore, combine (3.8), (3.10) and (3.11), we finally have

E
(
mk(AT )

) =
k∑

t=1

y2k−t
T ft−1(k) + o(1). (3.12)

To end the proof of (3.5), we need to determine the value of ft−1(k). This involves complex combinatorics and
analytic arguments and the details of the derivation is given in Section 5. Finally, using (5.34) derived in Remark 5.1
that

fm(k) = 1

k

(
2k

m

)(
k

m + 1

)
,



1650 Q. Wang and J. Yao

we have

E
(
mk(AT )

) =
k−1∑
i=0

1

k

(
2k

i

)(
k

i + 1

)
y2k−1−i
T + o(1),

which is (3.5). �

Proof of (3.6). Recall

Var
(
mk(AT )

)
= 1

p2T 4k

∑
i1,j1,i2,j2

[
E(EQ1(i1,j1)EQ2(i2,j2)) −E(EQ1(i1,j1))E(EQ2(i2,j2))

]
.

If Q1 has no edges coincident with edges of Q2, then due to the independence between Q1 and Q2, we have

E(EQ1(i1,j1)EQ2(i2,j2)) −E(EQ1(i1,j1))E(EQ2(i2,j2)) = 0.

If Q = Q1 ∪ Q2 has an overall single edge, then

E(EQ1(i1,j1)EQ2(i2,j2)) = E(EQ1(i1,j1))E(EQ2(i2,j2)) = 0,

so the contribution to Var(mk(AT )) is also zero.
Now, suppose Q = Q1 ∪ Q2 contains no single edges and there’s at least one edge in Q1 coincident with one

in Q2, then the number of non-coincident I-vertices in Q is at least t1 + t2 − 1 and J-vertices is s1 + s2 − 1. Since
t1 + s1 − 1 ≤ 2k and t2 + s2 − 1 ≤ 2k, we have

Var
(
mk(AT )

)
= 1

p2T 4k

∑
i1,j1,i2,j2

[
E(EQ1(i1,j1)EQ2(i2,j2)) −E(EQ1(i1,j1))E(EQ2(i2,j2))

]

= O

(
1

p2T 4k
T t1+t2−1ps1+s2−1

)
= O

(
p−2),

which is (3.6). �

Carleman condition. In [8], the density function that corresponds to the Stieltjes transform s(z) in (3.2) has been
derived and it has compact support [a, b], where

a = 1

8

(−1 + 20y + 8y2 − (1 + 8y)3/2) · 1{y≥1},
(3.13)

b = 1

8

(−1 + 20y + 8y2 + (1 + 8y)3/2).
Therefore, we have

mk =
k−1∑
i=0

1

k

(
2k

i

)(
k

i + 1

)
y2k−1−i ≤ bk. (3.14)

From this, it is easy to see that the Carleman condition (3.1) is satisfied.
The proof of Theorem 3.1 is complete. �
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Remark 3.3. For the verification of Carleman condition, it would be enough to use the Stirling’s formula in mk to
derive a less sharp bound mk ≤ Ak for some A ≥ b. Since the sharp bound (3.14) will also be used in Section 4, its
early introduction is thus preferred.

Remark 3.4. The explanation of (5) in (3.7) is that in the original Q-graph, each vertical edge is repeated exactly
twice, and then we glue the I -vertex il and il + s in its pillar M(Q), therefore, the degree of each I -vertex is multiple
of four, which implies that the length of each subsequence in (3.7) is multiple of four.

Remark 3.5. Note that in a characteristic sequence, subsequences in (3.7) cannot intersect each other; for example,
if we arrange two subsequences 1 0 0 −1 and 1 0 0 0 0 0 0 −1 in the characteristic sequence of length 4k = 16, then
the following two structures are allowed:

0 1 0 0 0 0 0 0 −1 1 0 0 −1 0 0 0 (two subsequences are parallel),

0 1 0 1 0 0 −1 0 −1 0 0 0 0 0 0 0 (one is completely contained in another);

while

0 1 0 0 0 0 0 1 −1 0 −1 0 0 0 0 0 (two subsequences intersect each other)

is not.

4. Convergence of the largest eigenvalue of AT

Recall that due to (3.5) and (3.14) in the previous section, we have the following:

E
(
mk(AT )

) =
k−1∑
i=0

1

k

(
2k

i

)(
k

i + 1

)
y2k−1−i
T + o(1)

≤ b(yT )k + o(1)

for bounded k, where b(yT ) is the value of b in (3.14) while substituting yT for y. The main point in this section is to
improve this estimation in order to allow a growing k such that:

E
(
mk(AT )

) =
k−1∑
i=0

1

k

(
2k

i

)(
k

i + 1

)
y2k−1−i
T · (1 + ok(1)

)
, (4.1)

where this ok(1) now (depending on k) tends to zero when k → ∞. The derivation of the convergence of the largest
eigenvalue in Wigner case can be referred to [13].

Proposition 4.1. Suppose the following conditions hold:

(a) The p×(T +s) table (εij )1≤i≤p,1≤j≤T +s are made with an array of independent real random variables satisfying

E(εij ) = 0, E
(
ε2
ij

) = 1, sup
it

E
(|εit |4

)
< ∞.

(b) p and T tend to infinity proportionally, that is,

p → ∞, T → ∞, yT := p/T → y ∈ (0,∞).

(c) k is an integer of satisfying k = (logp)1.01 (say).



1652 Q. Wang and J. Yao

Then we have

E
(
mk(AT )

) =
k−1∑
i=0

1

k

(
2k

i

)(
k

i + 1

)
y2k−1−i
T · (1 + ok(1)

)
.

Proof. After truncation, centralization and rescaling as the same route in Appendix B in [17], we may assume that
the εit ’s satisfy the condition that

E(εit ) = 0, Var(εit ) = 1, |εit | ≤ δT 1/2, (4.2)

where δ is chosen such that{
δ → 0,

δT 1/4+β → 0, for any β > 0,

δT 1/2 → ∞.

(4.3)

When k → ∞, the term #{isomorphism class} in (3.9) is no more a constant order. Then the main task is to show
that the contribution of Category 3 to the kth moment of AT when k → ∞ can still be negligible compared with
Category 1. And this will be achieved by counting precisely the number of isomorphism graphs in Category 3 as a
function of k.

Since in Category 3, we have t + s − 1 < 2k. Using the previous notion of the characteristic sequence, we have
#{1} = t − 1 and #{−1} = 2k − s, and this is equivalent to the fact that #{1} < #{−1}.

First, we consider the case that t = 1, which is to say #{1} = 0 and #{−1} = 2k − s. The way we choose 2k − s

positions from the total 2k (the total number of length is 4k, only the odd ones are allowed for “−1”) is(
2k

2k − s

)
.

Then since we have s noncoincident J -vertices on the J -line, the noncoincident vertical edges is at most 2s (since we
have each edge repeated at least twice). Therefore, the expectation

E[εj1i1εj1i2εj2s+i2εj2s+i3εj3i3εj3i4εj4s+i4εj4s+i5 · · · εj2ks+i2k
εj2ks+i1]

is bounded by (δT 1/2)4k−2s . Therefore, we have the contribution to (3.4):

1

pT 2k

2k−1∑
s=1

Tps
(
δT 1/2)4k−2s

(
2k

2k − s

)
= T

p
δ4k

2k−1∑
s=1

(
p

δ2T

)s (
2k

s

)
. (4.4)

Since (
p

δ2T

)s (
2k

s

)
≤

(
2kp

δ2T

)s

and
2kp

δ2T
→ ∞,

the dominating term in the summation at the right-hand side of (4.4) is when s = 2k − 1. Therefore, the left-hand side
of (4.4) can be bounded as

O

(
2k

T

p
δ4k

(
p

δ2T

)2k−1)
= O

(
2ky2k−2δ2).

Then consider the term when t = 1 in

k−1∑
t=0

1

k

(
2k

t

)(
k

t + 1

)
y2k−t−1
T ,
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which is

1

k

(
2k

1

)(
k

2

)
y2k−2
T = O

(
k2y2k−2

T

)
.

We have

2ky2k−2δ2 = k2y2k−2
T · ok(1)

=
k−1∑
t=0

1

k

(
2k

t

)(
k

t + 1

)
y2k−t−1
T · ok(1). (4.5)

Then consider the case that t > 1. Since #{1} = t − 1 < #{−1} = 2k − s, we can first construct a characteristic
sequence that satisfies (1)–(5) in (3.7). Therefore, we have the degree of each I -vertex at least four and each edge in
the Q-graph repeated exactly twice, which ensures that the Q-graph will not fall in Category 2. And the possible ways
for constructing such a characteristic sequence is ft−1(k) by definition. Since in the characteristic sequence, 2(t − 1)

positions have been taken to place the “1” and “−1,” there leaves 4k − 2(t − 1) − 2/2 (the sequence starts and ends
with a zero, so we should exclude the two positions at the beginning and at the end, and also “−1” appears in the odd
positions, so we should divide it by two) positions to place the remaining “−1,” whose number is 2k − t − s + 1, so
the choice is bounded by(

2k − t

2k − t − s + 1

)
.

Let m be the number of noncoincident vertical edges, which is no less than t + s − 1, see Lemma 3.1, then the
expectation

E[εj1i1εj1i2εj2s+i2εj2s+i3εj3i3εj3i4εj4s+i4εj4s+i5 · · · εj2ks+i2k
εj2ks+i1]

is bounded by (δT 1/2)4k−2m ≤ (δT 1/2)4k−2(t+s−1). Finally, the contribution to (3.4) is bounded by:

1

pT 2k

∑
s

∑
t

(
δT 1/2)4k−2(t+s−1)

ft−1(k)T tps

(
2k − t

s − 1

)
(4.6)

= 1

pT 2k

k∑
t=1

(
δT 1/2)4k−2t+2

ft−1(k)T t
2k−t∑
s=1

(
p

δ2T

)s (
2k − t

s − 1

)
. (4.7)

Since (
p

δ2T

)s (
2k − t

s − 1

)
≤

(
2kp

δ2T

)s

and
2kp

δ2T
→ ∞,

the dominating term in

2k−t∑
s=1

(
p

δ2T

)s (
2k − t

s − 1

)

is when s = 2k − t . Then (4.7) can be bounded as

O

(
2k

pT 2k

k∑
t=1

(
δT 1/2)4k−2t+2

ft−1(k)T t

(
p

δ2T

)2k−t
)

= O

(
2kδ2

k∑
t=1

ft−1(k)y2k−1−t
T

)
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= O

(
2kδ2

k∑
t=1

1

k

(
2k

t − 1

)(
k

t

)
y2k−1−t
T

)

= O

(
2kδ2y−1

T

k−1∑
t=0

1

k

(
2k

t

)(
k

t + 1

)
y2k−1−t
T

)

=
k−1∑
t=0

1

k

(
2k

t

)(
k

t + 1

)
y2k−t−1
T · ok(1), (4.8)

where the last equality is due to the choice of k that

kδ2 = (logp)1.01δ2 = o
((

δp1/4+β
)2) → 0, as p → ∞.

Finally, combine (4.5) and (4.8) leads to the fact that the contribution of Q3 to (3.4) is

k−1∑
t=0

1

k

(
2k

t

)(
k

t + 1

)
y2k−t−1
T · ok(1).

The proof of Proposition 4.1 is complete. �

Using the estimate in Proposition 4.1, we are able to prove the main result of this section, that is, the convergence
of the largest eigenvalue of AT to the right edge point of its support.

Theorem 4.1. Under the same conditions as in Proposition 4.1, the largest eigenvalue of AT converges to the right
endpoint b defined in (3.14) almost surely.

Proof. First we show that almost surely,

lim inf l1 ≥ b. (4.9)

Indeed on the set {lim inf l1 < b}, we have lim inf l1 < b − δ for some δ = δ(ω) > 0. Let g : R → R+ be a continuous
and positive function supported on [b − δ, b], with

∫
g(x)dF (x) = 1, where F is the LSD of FAT . Then

lim inf
∫

g(x)dFAT (x) ≤ 0. (4.10)

For such ω, FAT will not converge weakly to F . Since this convergence occurs almost surely by Theorem 3.1, the
claim (4.9) is proved.

Next, we claim that for any � > 0,

∞∑
p=1

P(l1 > b + �) < ∞. (4.11)

Write

l1 − b = (l1 − b)+ − (l1 − b)−,

with its positive and negative parts. Claim (4.11) implies that almost surely, (l1 − b)+ → 0. Therefore, a.s.

lim sup(l1 − b) ≤ lim sup(l1 − b)+ = 0.

Combine with (4.9), we have a.s. lim(l1 − b) = 0. It remains to prove claim (4.11).
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Since we have

P(l1 > b + �) ≤ P
(
trAk

T ≥ (b + �)k
) ≤ E trAk

T

(b + �)k
= p ·E(mk(AT ))

(b + �)k
, (4.12)

and by (4.1), we have

p ·E(
mk(AT )

) = p

k−1∑
i=0

1

k

(
2k

i

)(
k

i + 1

)
y2k−1−i
T · (1 + ok(1)

)
. (4.13)

Combining (3.14), (4.12) and (4.13) leads to:

P(l1 > b + �) ≤ p
∑k−1

i=0
1
k

(2k
i

)(
k

i+1

)
y2k−1−i
T · (1 + ok(1))

(b + �)k

≤ p

(
b(yT )

b + �

)k

· (1 + ok(1)
)
. (4.14)

Since yT → y, for T sufficiently large, we have b(yT ) ≤ b + �/2. Hence, (4.14) could be bounded by

p

(
b + �/2

b + �

)(logp)1.01

· (1 + op(1)
) := pα(logp)1.01 · (1 + op(1)

) := ap.

Then due to the fact that α = b+�/2
b+�

< 1, we have

lim
p→∞a

1/p
p = lim

p→∞ exp

(
1

p

(
logp + (logp)1.01 · logα + log

(
1 + op(1)

)))
< 1,

combining with (4.14) leads to∑
p

P (l1 > b + �) ≤
∑
p

ap < ∞.

The proof of Theorem 4.1 is complete. �

5. Determination of the sequence {fm(k)}

One of the most challenging points in the proof of Theorem 3.1 is to determine the value of the sequence {fm(k)}, i.e.

fm(k) = 1

k

(
2k

m

)(
k

m + 1

)
. (5.1)

Indeed, this enumeration cannot be done directly; rather it depends on the enumeration of a family of closely-related
graphs, see the sequence {gm(k)} below. We first establish a system of two recursion formulas on the number of
these two families in Section 5.1. Then these recursions are transferred in Section 5.2 to the generator functions
Fk(z) = ∑k

m=0 fm(k)zm and Gk(z) = ∑k
m=0 gm(k)zm. Next, we deduce in Section 5.3 two equations satisfied by

F(z, x) = ∑∞
k=0 Fk(z)x

k and G(z,x) = ∑∞
k=0 Gk(z)x

k . Finally, by solving these equations and taking the derivatives
∂F (z,x)

∂xk |x=0, we obtain the target formula (5.1).
First recall the definition of fm(k), which is the number of M-pillars whose characteristic sequence satisfies the

following conditions:

(1) The total length of the characteristic sequence is 4k;
(2) The sequence starts with a zero and ends with a zero;
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(3) The number “1” appears only in the even position in the sequence and the number “−1” only in the odd position;
(4) The total number of “1” in the characteristic sequence is m;
(5) The sequences are made with the following subsequence structure:

1 00︸︷︷︸
two

−1

1 000000︸ ︷︷ ︸
six

−1

1 0000000000︸ ︷︷ ︸
ten

−1

· · ·
1 0000 · · ·00000︸ ︷︷ ︸

4k−6

−1.

Also, we define another M-pillar, whose characteristic sequence also satisfies the above condition (1)–(5), but with
(2) replaced by the following (2)∗:

(2)∗ The sequence starts with a zero and ends with three zeros.

We denote gm(k) as the number of such M-pillar satisfying (1), (2)∗, (3)–(5).

5.1. Master recursions on fm(k) and gm(k)

In this subsection, we derive a system of two master recursions on fm(k) and gm(k).
Once a characteristic sequence with length 2k is given, we denote Sn (1 ≤ n ≤ 2k) as the partial sums of its first n

elements. To ease the understanding of the upcoming proofs, we plot the path {(n,Sn)}1≤n≤2k in Figure 9.

Definition 5.1. We say that there is a return to the origin at time n, if Sn = 0.

Definition 5.2. A random walk is said to have a first return to the origin at time n (n > 0), if Sm �= 0 for all m < n and
Sn = 0.

In Figure 9, the first return occurs at time n = 9.

5.1.1. Master recursion 1
First, we start with fm(k). Suppose the first return occurs at time i and max0≤n≤i Sn = s, which means that in the cor-
responding characteristic sequence, the number of “1” is s. We partition the random walk into two parts according to
the first return, see Figure 10. For the reason that the length of the subsequence structures list in (5) are all multiplicity

Fig. 9. The path {(n,Sn)} that corresponds to the characteristic sequence (0 1 0 1 0 0 −1 0 −1 0 0 0).
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Fig. 10. Illustration of fm(k).

of four and condition (2), all the possibilities of i are i = 5,7, . . . ,4k − 3,4k − 1, we divide it into two cases:

Case 1: i = i1 = 4j − 3 2 ≤ j ≤ k,

Case 2: i = i2 = 4j − 1 2 ≤ j ≤ k.

Case 1: First, we consider the second part, which is of length 4k − i1 = 4k − 4j + 3, with the number of “1”
being m − s in its corresponding characteristic sequence. But this time, the sequence may not start with a “0” (once it
returns to the origin, it can depart immediately, and in this case, the sequence starts with a “1”). Therefore, we add a
zero in the front artificially, leading to a total length of 4k − 4j + 4, which starts and ends with a zero. So the way of
constructing such a sequence is fm−s(k − j + 1). Then consider the first part, which has a total length of i1. Suppose
the first departure from the origin is at time n − 1, where n = 2,6, . . . , i1 − 7, i1 − 3 (also, it means that the first
arrival at 1 is at the time n), then if we move the axis to the point (n,1) (see the black dashed axis in Figure 10) and
consider the walk above the new x-axis (see the black parts in Figure 10), which has the length i1 − n − 1. Further,
this walk starts and ends with a zero, and if we add two more zeros in its end, it will lead to a walk with a total length
of i1 −n+1 = 4j −n−2, starts with a zero and ends with three zeros, with the number of “1” being s −1. Therefore,
the number of such walk is gs−1(

4j−n−2
4 ) according to the definition. So we have got the total contribution of Case 1

is:

∑
s=1,...,m

j=2,...,k

(4j−6∑
n=2

gs−1

(
4j − n − 2

4

))
· fm−s(k − j + 1). (5.2)

Case 2: We follow the same route as in Case 1. After the first return, the remaining length is 4k − i2 = 4k − 4j + 1,
then we add a zero in front and two zeros in the end, which leads to a walk of total length 4k − 4j + 4, starts with
a zero and ends with three zeros. And the number of “1” is m − s. By definition, the way of constructing such a
walk is gm−s(k − j + 1). Then for the first part, also suppose the first departure from the origin is at time n − 1
(n = 4,8, . . . , i2 − 7, i2 − 3) and consider the part of the walk that is above the new x-axis (with the new origin
located at (n,1)), which is of total length i2 − n − 1. Then we add two more zeros in the end, results in a walk of total
length i2 − n + 1 = 4j − n, starts with a zero and ends with three zeros, and the number of “1” is s − 1. The way of
constructing such a walk is gs−1(

4j−n
4 ). And combine these two parts, the contribution of Case 2 is:

∑
s=1,...,m

j=2,...,k

(4j−4∑
n=4

gs−1

(
4j − n

4

))
· gm−s(k − j + 1). (5.3)
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Overall, combine (5.2) and (5.3) leads to the following recursion:

fm(k) =
∑

s=1,...,m

j=2,...,k

(4j−6∑
n=2

gs−1

(
4j − n − 2

4

))
· fm−s(k − j + 1)

+
∑

s=1,...,m

j=2,...,k

(4j−4∑
n=4

gs−1

(
4j − n

4

))
· gm−s(k − j + 1)

=
∑

s=1,...,m

j=2,...,k

(4j−4∑
n=4

gs−1

(
4j − n

4

))
· [fm−s(k − j + 1) + gm−s(k − j + 1)

]
. (5.4)

5.1.2. Master recursion 2
Then we start with gm(k). Also suppose the first return time is i, where i = 5,7, . . . ,4k − 5,4k − 3 (in the definition
of gm(k), the characteristic sequence ends with three zeros, so the maximum value of i is 4k − 3 here). We divide
these i into two cases:

Case 1: i = i1 = 4j − 5, 3 ≤ j ≤ k,

Case 2: i = i2 = 4j − 3, 2 ≤ j ≤ k.

As before, we suppose the number of “1” is s in the first part.
Case 1: First for the second part, which ends with three zeros but may not start with a zero. Since the total length

is 4k − i1 = 4k − 4j + 5, if we add a zero in its beginning and remove the last two zeros, then it will result in a walk
whose characteristic sequence starts and ends with a zero, whose length is 4k − 4j + 5 + 1 − 2 = 4k − 4j + 4, with
the number of “1” being m − s. The total number of constructing such a walk is fm−s(k − j + 1). Then for the first
part, suppose the first departure from the origin is at time n − 1, where n = 4,8, . . . , i1 − 7, i1 − 3. We do the same
thing as before, add the new axis whose origin is located at (n,1). Then we consider the part above this new x-axis,
see the black part in Figure 11, whose length is i1 − n − 1. We add two more zeros in the end, it actually becomes the
walk with a total length of i1 − n + 1 = 4j − n − 4, starts with a zero and ends with three zeros, with the number of
“1” being s − 1. The way of constructing such a walk is gs−1(

4j−n−4
4 ). Combine all this, the contribution of Case 1 is

∑
s=1,...,m

j=3,...,k

(4j−8∑
n=4

gs−1

(
4j − n − 4

4

))
· fm−s(k − j + 1). (5.5)

Case 2: For the second part, we add a zero in the front, which leads to a walk of total length 4k − i2 + 1 =
4k − 4j + 4, starts with a zero and ends with three zeros, with the number of “1” being m − s, so the way of
constructing such a walk is gm−s(k − j + 1). Then for the first part, we also consider the part that above the new
x-axe. Since n = 2,6, . . . , i2 − 7, i2 − 3 this time, we add two more zeros in the end and this leads to a walk with total
length of i2 −n+1 = 4j −3−n+1, starts with a zero and ends with three zeros, with the number of “1” being s −1,
and the total way of constructing such a walk is gs−1(

4j−2−n
4 ). Combine these two parts, the contribution of Case 2 is

∑
s=1,...,m

j=2,...,k

(4j−6∑
n=2

gs−1

(
4j − n − 2

4

))
· gm−s(k − j + 1). (5.6)
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Fig. 11. Illustration of gm(k).

Finally, combine (5.5) and (5.6) leads to the recursion

gm(k) =
∑

s=1,...,m

j=3,...,k

(4j−8∑
n=4

gs−1

(
4j − n − 4

4

))
· fm−s(k − j + 1)

+
∑

s=1,...,m

j=2,...,k

(4j−6∑
n=2

gs−1

(
4j − n − 2

4

))
· gm−s(k − j + 1)

=
∑

s=1,...,m

j=3,...,k

(4j−6∑
n=6

gs−1

(
4j − n − 2

4

))
· (fm−s(k − j + 1) + gm−s(k − j + 1)

)

+
∑

s=1,...,m

j=2,...,k

gs−1(j − 1)gm−s(k − j + 1)

=
∑

s=1,...,m

j=3,...,k

(4j−4∑
n=8

gs−1

(
4j − n

4

))
· (fm−s(k − j + 1) + gm−s(k − j + 1)

)

+
∑

s=1,...,m

j=2,...,k

gs−1(j − 1)gm−s(k − j + 1). (5.7)

As a result, (5.4) and (5.7) lead to a system of the two recursions on fm(k) and gm(k):⎧⎨
⎩

fm(k) − gm(k) = ∑
s=1,...,m,j=2,...,k gs−1(j − 1)fm−s(k − j + 1),

gm(k) = ∑
s=1,...,m,j=3,...,k(

∑j−1
l=2 gs−1(j − l)) · (fm−s(k − j + 1) + gm−s(k − j + 1))

+ ∑
s=1,...,m,j=2,...,k gs−1(j − 1)gm−s(k − j + 1).

(5.8)

5.2. Recursions related to Fk(z) and Gk(z)

Define Fk(z) = ∑k
m=0 fm(k)zm and Gk(z) = ∑k

m=0 gm(k)zm. Recall the definition of fm(k) and gm(k), where m ≤
k − 1, so we make the convention that fk(k) = gk(k) = 0 and f0(k) = g0(k) = 1. In this subsection, the main purpose
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is to derive the following two recursions that related to Fk(z) and Gk(z):⎧⎪⎨
⎪⎩

Fk(z) − Gk(z) = z
∑k

j=2 Gj−1(z) · Fk−j+1(z),

Gk(z) = 1 + z
∑k

j=3
∑j−1

l=2 Gj−l (z)(Fk−j+1(z) + Gk−j+1(z))

+ z
∑k

j=2 Gj−1(z)Gk−j+1(z).

(5.9)

By multiplying zm on both sides in the first recursion in (5.8), and then summing from m = 1 to k, the left-hand
side equals to:

k∑
m=1

fm(k)zm −
k∑

m=1

gm(k)zm =
k∑

m=0

fm(k)zm −
k∑

m=0

gm(k)zm

= Fk(z) − Gk(z),

and the right-hand side equals to

z

k∑
m=1

∑
s=1,...,m

j=2,...,k

gs−1(j − 1)zs−1 · fm−s(k − j + 1)zm−s . (5.10)

Now consider

Gj−1(z) · Fk−j+1(z) =
j−1∑
m=0

gm(j − 1)zm ·
k−j+1∑
n=0

fn(k − j + 1)zn

:=
k∑

s=0

as · zs,

where

s = m + n,

as =
∑

m+n=s

gm(j − 1)fn(k − j + 1). (5.11)

Then (5.10) equals to

z

k∑
j=2

k∑
m=1

am−1 · zm−1 = z

k∑
j=2

k−1∑
m=0

am · zm = z

k∑
j=2

k∑
m=0

am · zm

= z

k∑
j=2

Gj−1(z) · Fk−j+1(z),

where the second equality is due to the fact that ak = 0 (since in (5.11), we have m ≤ j − 2 and n ≤ k − nj by
definition, then s = m + n ≤ k − 2, so the term ak−1 = ak = 0). Therefore, we have got

Fk(z) − Gk(z) = z

k∑
j=2

Gj−1(z) · Fk−j+1(z),

which is the first recursion in (5.9).
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Next, from the second recursion in (5.8), we have:

gm(k) =
∑

s=1,...,m

j=3,...,k

(
j−1∑
l=2

gs−1(j − l)

)
· (fm−s(k − j + 1) + gm−s(k − j + 1)

)
︸ ︷︷ ︸

(I)

+
∑

s=1,...,m

j=2,...,k

gs−1(j − 1)gm−s(k − j + 1)

︸ ︷︷ ︸
(II)

. (5.12)

Consider

Gj−l (z)Fk−j+1(z) =
j−l∑
u=0

gu(j − l)zu ·
k−j+1∑
v=0

fv(k − j + 1)zv

:=
k+1−l∑
n=0

bnz
n, (5.13)

where n = u + v, bn = ∑
u+v=n gu(j − l)fv(k − j + 1), also, we have u ≤ j − l − 1 and v ≤ k − j , which leads to

n = u + v ≤ k − l − 1, so the terms that correspond to n = k − l + 1, k − l equal zero. For the same reason,

Gj−l (z)Gk−j+1(z) =
j−l∑
u=0

gu(j − l)zu ·
k−j+1∑
v=0

gv(k − j + 1)zv

:=
k+1−l∑
n=0

cnz
n, (5.14)

where n = u + v, cn = ∑
u+v=n gu(j − l)gv(k − j + 1) and the terms that correspond to n = k − l + 1, k − l equal

zero. And

Gj−1(z)Gk−j+1(z) =
j−l∑
u=0

gu(j − l)zu ·
k−j+1∑
v=0

gv(k − j + 1)zv :=
k∑

n=0

dnz
n, (5.15)

where n = u+ v, dn = ∑
u+v=n gu(j − 1)gv(k − j + 1) and the terms that correspond to n = k, k − 1 equal zero since

u ≤ j − 2 and v ≤ k − j lead to n = u + v ≤ k − 2.
We multiply zm on both sides of (5.12) and sum from m = 1 to k, then the left-hand side equals to

Gk(z) − 1. (5.16)

Now consider the part (I):

k∑
m=1

(I) · zm =
k∑

m=1

k∑
j=3

j−1∑
l=2

(bm−1 + cm−1) · zm

= z

k∑
j=3

j−1∑
l=2

[
k−1∑
n=0

bnz
n +

k−1∑
n=0

cnz
n

]
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= z

k∑
j=3

j−1∑
l=2

[
k−l−1∑
n=0

bnz
n +

k−l−1∑
n=0

cnz
n

]

= z

k∑
j=3

j−1∑
l=2

[
k−l+1∑
n=0

bnz
n +

k−l+1∑
n=0

cnz
n

]

= z

k∑
j=3

j−1∑
l=2

[
Gj−l (z)Fk−j+1(z) + Gj−l (z)Gk−j+1(z)

]
. (5.17)

And for the part (II),

k∑
m=1

(II) · zm =
k∑

m=1

k∑
j=2

dm−1 · zm = z

k∑
j=2

k−1∑
m=0

dm · zm

= z

k∑
j=2

k∑
m=0

dm · zm = z

k∑
j=2

Gj−1(z)Gk−j+1(z). (5.18)

Combining (5.12), (5.16), (5.17) and (5.18), we have got

Gk(z) = 1 + z

k∑
j=3

j−1∑
l=2

[
Gj−l (z)Fk−j+1(z) + Gj−l (z)Gk−j+1(z)

]

+ z

k∑
j=2

Gj−1(z)Gk−j+1(z),

which is the second recursion in (5.9).

5.3. Equations related to F(z, x) and G(z,x)

Define F(z, x) = ∑∞
k=0 Fk(z)x

k , G(z,x) = ∑∞
k=0 Gk(z)x

k and the term that corresponding to k = 0 equals 0. In this
section, we derive the following equations:

{
F(z, x) − G(z,x) = zF (z, x)G(z, x),

G(z, x) = ∑∞
k=1 xk + z

∑∞
k=2 F(z, x)G(z, x)xk−1 + z

∑∞
k=2 G(z,x)G(z, x)xk−1

+ zG(z, x)G(z, x),

(5.19)

which will lead to the solutions of F(z, x) and G(z,x) as functions of z and x.
Since the first recursion in (5.9):

Fk(z) − Gk(z) = z

k∑
j=2

Gj−1(z) · Fk−j+1(z),

we multiply xk on both sides and do summation from k = 1 to ∞, then the left-hand side is exactly F(z, x)−G(z,x).
The right-hand side is

z

∞∑
k=2

k∑
j=2

Gj−1(z)Fk−j+1(z)x
k = zF (z, x)G(z, x),
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which leads to the first equation in (5.19):

F(z, x) − G(z,x) = zF (z, x)G(z, x).

Then we denote the second recursion in (5.9) as follows:

Gk(z) = 1 + z

k∑
j=3

j−1∑
l=2

Gj−l (z)Fk−j+1(z)

︸ ︷︷ ︸
(I)

+ z

k∑
j=3

j−1∑
l=2

Gj−l (z)Gk−j+1(z)

︸ ︷︷ ︸
(II)

+ z

k∑
j=2

Gj−1(z)Gk−j+1(z)

︸ ︷︷ ︸
(III)

. (5.20)

We multiply xk on both sides and then do summation from k = 1 to ∞, the left-hand side equals G(z,x). The part
(I):

∞∑
k=1

(I) · xk = z

∞∑
k=1

k∑
j=3

j−1∑
l=2

Gj−l (z)Fk−j+1(z)x
k

= z

∞∑
k=3

k−1∑
l=2

(
k∑

j=l+1

Gj−l (z)x
j−l · Fk−j+1(z)x

k−j+1

)
· xl−1

= z

∞∑
l=2

( ∞∑
k=l+1

k∑
j=l+1

Gj−l (z)x
j−l · Fk−j+1(z)x

k−j+1

)
· xl−1

= z

∞∑
l=2

F(z, x)G(z, x)xl−1, (5.21)

and for the same reason, the contribution of part (II) equals

z

∞∑
l=2

G(z,x)G(z, x)xl−1. (5.22)

For the part (III):

z

∞∑
k=1

k∑
j=2

Gj−1(z)Gk−j+1(z)x
k = z

∞∑
k=2

k∑
j=2

Gj−1(z)x
j−1 · Gk−j+1(z)x

k−j+1

= zG(z, x)G(z, x). (5.23)

Finally, combining (5.21), (5.22) and (5.23) leads to:

G(z,x) =
∞∑

k=1

xk + z

∞∑
k=2

F(z, x)G(z, x)xk−1 + z

∞∑
k=2

G(z,x)G(z, x)xk−1

+ zG(z, x)G(z, x),

which is the second equation in (5.19).
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5.4. Exact formula for mk

First, since F(z, x) = ∑∞
k=0 Fk(z)x

k , we have

Fk(z) = 1

k! · ∂F (z, x)

∂xk

∣∣∣
x=0

. (5.24)

In the following, we will use the shorthands F = F(z, x), G = G(z,x) and Fk = Fk(z). In (5.19), we can first express
G in function of F using the first equation and then derive from the second equation that

F =
∞∑
l=1

xl · (1 + z2F 2 + 2zF + zF 2 + z2F 3 + zF 2).
Taking kth derivative on both sides with respect to x and combining with (5.24), we have:

Fk = 1 + 2z

k−1∑
j=1

Fj + (
z2 + 2z

) k−1∑
l=2

∑
a+b=l

a,b≥1

FaFb + z2
k−1∑
l=3

∑
a+b+c=l

a,b,c≥1

FaFbFc. (5.25)

Due to the definition of mk that mk = y2k−1Fk(
1
y
), substituting 1/y for z in (5.25) and multiplying both sides by

y2k−1, we get the recursion for mk :

mk = y2k−1 + 2

y

k−1∑
j=1

mj · y2k−2j +
(

1

y2
+ 2

y

) k−1∑
l=2

∑
a+b=l

a,b≥1

mamb · y2k−2l+1

+ 1

y2

k−1∑
l=3

∑
a+b+c=l

a,b,c≥1

mambmc · y2k−2l+2. (5.26)

Then we substitute k − 1 for k in (5.26) and multiply both sides by y2, which leads to the following:

y2 · mk−1 = y2k−1 + 2

y

k−2∑
j=1

mj · y2k−2j +
(

1

y2
+ 2

y

) k−2∑
l=2

∑
a+b=l

a,b≥1

mamb · y2k−2l+1

+ 1

y2

k−2∑
l=3

∑
a+b+c=l

a,b,c≥1

mambmc · y2k−2l+2. (5.27)

Then by combining (5.26) and (5.27), we have:

mk = (
2y + y2)mk−1 + (

y + 2y2) ·
∑

a+b=k−1
a,b≥1

mamb + y2 ·
∑

a+b+c=k−1
a,b,c≥1

mambmc. (5.28)

By the definition of mk that m0 = 1, we have∑
a+b+c=k−1

a,b,c≥1

mambmc =
∑

a+b+c=k−1
a,b,c≥0

mambmc − 3
∑

a+b=k−1
a,b≥1

mamb − 3mk−1,

(5.29)∑
a+b=k−1

a,b≥1

mamb =
∑

a+b=k−1
a,b≥0

mamb − 2mk−1.
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Bringing these two equations in (5.29) into (5.28), we get:

y2
∑

a+b+c=k−1
a,b,c≥0

mambmc + (
y − y2) ∑

a+b=k−1
a,b≥0

mamb = mk. (5.30)

Then let h(x) be the moment generating function: h(x) = ∑∞
k=0 mkx

k , we multiply xk on both sides of (5.30) and do
summation from k = 1 to ∞ and combine with the fact that

h(x) = 1 +
∞∑

k=1

mkx
k (5.31)

leading to:

xy2h3(x) + x
(
y − y2)h2(x) − h(x) + 1 = 0. (5.32)

Based on the theory of Bürmann–Lagrange series, see page 145 of [12], and let z = h(x) − 1 and ϕ = y2(z + 1)3 +
(y − y2)(z + 1)2, we may invert (5.32) to obtain that

z =
∞∑

n=1

wn

n!
[
dn−1[yn(z + 1)2n(yz + 1)n]

dzn−1

]∣∣∣
z=0

,

where w = z/ϕ = x. Then based on the Leibniz’s rule in differential calculus, we have

dn−1[(z + 1)2n(yz + 1)n]
dzn−1

=
n−1∑
i=0

(
n − 1

i

)[
di[(z + 1)2n]

dzi
· dn−1−i[(yz + 1)n]

dzn−1−i

]
,

which leads to the fact that

h(x) = 1 + z = 1 +
∞∑

n=1

[
n−1∑
i=0

1

n

(
2n

i

)(
n

i + 1

)
y2n−1−i

]
· xn,

and this is equivalent to

mk =
k−1∑
i=0

1

k

(
2k

i

)(
k

i + 1

)
y2k−1−i . (5.33)

Remark 5.1. Since

mk = y2k−1Fk

(
1

y

)
= y2k−1

k∑
m=0

fm(k)
1

ym
=

k−1∑
m=0

fm(k)y2k−1−m,

(5.33) reduces to the fact that

fm(k) = 1

k

(
2k

m

)(
k

m + 1

)
. (5.34)

Remark 5.2. The recursion (5.30) has a remarkable nature. Notice that the recursion

ck =
∑

a+b=k−1
a,b≥0

cacb
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and

dk =
∑

a+b+c=k−1
a,b,c≥0

dadbdc

define the (standard) Catalan numbers and the generalized Catalan numbers of order three, respectively (see [5]). The
moment sequence (mk) of the LSD of this paper can be thought as a complex combination of these two families of
Catalan numbers.
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