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ON SIGN CHANGES OF CUSP FORMS AND THE HALTING OF AN
ALGORITHM TO CONSTRUCT A SUPERSINGULAR ELLIPTIC CURVE WITH

A GIVEN ENDOMORPHISM RING

KING CHEONG FUNG AND BEN KANE

ABSTRACT. Chevyrev and Galbraith recently devised an algorithm which inputs a maximal
order of the quaternion algebra ramified at one prime and infinity and constructs a supersingular
elliptic curve whose endomorphism ring is precisely this maximal order. They proved that their
algorithm is correct whenever it halts, but did not show that it always terminates. They did
however prove that the algorithm halts under a reasonable assumption which they conjectured
to be true. It is the purpose of this paper to verify their conjecture and in turn prove that their
algorithm always halts.

More precisely, Chevyrev and Galbraith investigated the theta series associated with the norm
maps from primitive elements of two maximal orders. They conjectured that if one of these theta
series “dominated” the other in the sense that the nth (Fourier) coefficient of one was always
larger than or equal to the nth coefficient of the other, then the maximal orders are actually
isomorphic. We prove that this is the case.

1. INTRODUCTION

In this paper, we investigate the construction of certain elliptic curves defined over finite
fields. For a prime p, let E be an elliptic curve over Fp2 . Deuring [4] showed that the endomor-
phism ring of E is either an order in an imaginary quadratic field (the ordinary case) or an order
in the quaternion algebra Bp (see Section 2.1) which is ramified at p and infinity (the supersin-
gular case). The supersingular case is the primary interest of this paper. To motivate one area
of study related to such curves, we momentarily consider elliptic curves over a number field,
in which case the endomorphism ring is either isomorphic to Z or it is isomorphic to an order
in an imaginary quadratic field (the Complex Multiplication or CM case). In the second case,
we say that the elliptic curve has (exact) CM by this order. Next recall that the orders of an
imaginary quadratic field are entirely determined by their discriminants; that is to say, for each
discriminant d < 0, there is a unique order Od of discriminant d in the ring of integers OQ(

√
d)

of Q(
√

d). When p is a prime of good reduction, there is a natural reduction map from elliptic
curves over the Hilbert class field of Q(

√
d) (a certain number field) to elliptic curves over Fp2 .

Moreover, when p is inert or ramified in Q(
√

d), this map sends CM elliptic curves to super-
singular elliptic curves. An interesting question arises from this connection. Namely, for which
d is the reduction map from the set of elliptic curves with CM by Od to supersingular elliptic
curves surjective? This question was studied by a number of authors (cf. [6] and [13]). It turns
out that the reduction map is not always surjective and is not in general one-to-one. Different
authors have also approached the question in different directions and from slightly different
perspectives. Elkies, Ono and Yang [6] worked on the question when the discriminant d was
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restricted to be fundamental. In other words, they considered those elliptic curves with exact
CM by the ring of integers OQ(

√
d) of an imaginary quadratic field and varied the field. They

proved that for d sufficiently large, the image of the reduction map is surjective and furthermore
that it is equidistributed across all supersingular elliptic curves. A slight modification of this
was investigated by Jetchev and the second author [13], where it was shown that the reduction
from curves with exact CM by Od is surjective for d sufficiently large but not necessarily fun-
damental (albeit with some minor restriction on the choice of d). The approach taken in [6]
and [13] was to use a correspondence between elliptic curves with CM by Od which reduce to
a supersingular elliptic curve and optimal embeddings of Od in its endomorphism ring; roughly
speaking, if Od embeds into the quaternionic order, then Odr2 also embeds by multiplying by
r, and optimal embeddings are those which do not come from smaller discriminants. These
optimal embeddings, in turn, correspond to primitive representations of d by the norm map on
trace zero elements in the quaternionic order.

Having given one area of study centered around supersingular elliptic curves, we return to
the study of supersingular elliptic curves themselves. Chevyrev and Galbraith [3] constructed
an algorithm to compute a supersingular elliptic curve with a given endomorphism ring (a
maximal order in the quaternion algebra). Their construction involved successive minima (the
smallest, second smallest, etc. positive integers that are primitively represented) of the qua-
dratic form corresponding to the reduced norm map on the maximal order. They showed that
their algorithm gives the correct answer whenever it terminates, but they did not show that the
algorithm indeed halts. Although they did not show that it halts, they were able to prove that
the algorithm would halt unless there exist a pair of maximal orders satisfying a peculiar re-
lation between their norm maps. Roughly speaking, their algorithm halts unless there are two
different maximal orders for which the first one contains more optimal embeddings of Od than
the second one for all d. For such a pair of maximal orders, Chevyrev and Galbraith said that
the first order “dominates” the second order. They then conjectured that no such pair exists (see
Conjecture 3.1 for a precise statement and (2.1) for the definition of the relevant quantities).

Conjecture 1.1 (Chevyrev–Galbraith). Suppose that O and O ′ are maximal orders in the
quaternion algebra Bp ramified precisely at p and ∞. If O ′ “dominates” O in the sense that
(3.1) holds for all n ∈ N := {n ∈ Z : n≥ 1}, then O and O ′ are isomorphic.

The goal of this paper is to prove Conjecture 1.1, and in turn prove the halting of the algo-
rithm of Chevyrev and Galbraith.

Theorem 1.2. Conjecture 1.1 is true. Furthermore, the algorithm of Chevyrev and Galbraith
halts.

The peculiar relation mentioned above involves the theta series of maximal orders generated
by their norm maps on their trace zero elements, which are in fact ternary quadratic forms.
Therefore, in order to solve our problem, some properties and facts about ternary quadratic
forms and their theta series are required. As reviewed in Section 2, by the general theory of
modular forms we know that the theta series are modular forms of weight 3/2. Conjecture
1.1 essentially states that if the nth (Fourier) coefficient of the theta series associated with
one maximal order is always greater than the nth coefficient of the theta function associated
to another maximal order, then the theta functions are the same. Our strategy to attack the
problem is to take the difference of the corresponding theta series. Using the mass formula,
which was introduced by Siegel [24] and later was extended by Schulze-Pillot [22], one can
show that the difference of these theta series is a cusp form and that this cusp form is orthogonal
to certain functions known as unary theta functions (see Lemma 4.1). The central idea is
to use the fact that coefficients of such forms must either vanish identically or change sign
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infinitely often. Sign changes of cusp forms have a long history going back to Siegel [25]. The
existence of sign changes and bounds for the occurrence of the first sign change were more
recently revisited and extended by a number of authors (cf. [1, 2, 10, 11, 14, 16, 17]). We are
specifically interested in sign changes of half-integral weight cusp forms (since the theta series
are weight 3/2 modular forms as noted above). The investigation of sign changes of such forms
appears to have been instigated by Bruinier and Kohnen [2], who showed the existence of sign
changes and conjectured a distribution of the sign changes. This conjecture was later shown
in a number of cases by collaboration of Arias-de-Reyna, Inam, and Wiese (see [1, 10, 11]).
Bruinier and Kohnen (as well as Arias-de-Reyna, Inam, and Wiese) considered sign changes
of special cusp forms known as Hecke eigenforms. For our application we do not always
have Hecke eigenforms, so we rely on results about sign changes of more general half-integral
weight cusp forms proven by Kohnen, Lau and Wu [16].

The paper is organized as follows. In Section 2 we introduce some of the necessary back-
ground and notation for quaternion algebras and modular forms, in Section 3 we give a precise
statement of Chevyrev and Galbraith’s conjecture, and in Section 4 we prove the their conjec-
ture.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referee for comments which greatly im-
proved the exposition of the paper.

2. PRELIMINARIES

In this section, we introduce some notation and give the main necessary definitions.

2.1. Quaternion algebras. A quaternion algebra B over Q is a non-commutative rank 4 al-
gebra with the following properties (see [26, Chapter 1] for further information).
(1) As a vector space over Q, there are four generators, 1, α , β , and αβ .
(2) There exist r,s ∈Q× such that α2 = r and β 2 = s.
(3) We have αβ =−βα .
(4) There is an involution, known as the standard involution defined for a,b,c,d ∈Q by

a+bα + cβ +dαβ = a−bα− cβ −dαβ .

The reduced trace of an element h := a+bα + cβ +dαβ ∈ B is

Tr(h) := h+h = 2a.

The trace zero elements we denote by

B0 := {h ∈ B : Tr(h) = 0} .
The reduced norm of h is

Nr(h) := hh = a2− rb2− sc2 + rsd2.

The norm Nr is a quadratic form (i.e., a homogeneous degree 2 polynomial) in 4 variables over
Q. We call the quaternion algebra definite if the norm map is positive-definite. If B is definite,
then it is also a division algebra. For h ∈ B, the reduced characteristic polynomial for h is

x2−Tr(h)x+Nr(h).

For h /∈Q, this is the minimal polynomial of h over Q. If the coefficients are furthermore in Z,
then we call h an integral element.

An order of B is a rank 4 lattice (over Z) of B which is also a subring of B. An order is
called maximal if it is not a proper suborder of another order of B. Unlike orders in the ring
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of integers of a quadratic field, there may be more than one maximal order; for example, given
a maximal order O and h ∈ B, since B is non-commutative one may obtain a distinct order by
conjugation. If two maximal orders O and O ′ are conjugate (i.e., there exists c ∈ Bp for which
O ′ = c−1Oc or equivalently the orders are isomorphic), then one says that they have the same
type and write O ∼ O ′. Note further that the elements h of an order O are necessarily integral
because for h ∈ O , the Z-module Z[h] is a sublattice of O and is therefore finitely generated.

Taking the tensor product B⊗Q K with a local field K = R or K = Qp, one obtains either
the ring of 2× 2 matrices M(2,K) or a quaternion division algebra. The quaternion division
algebra over K is unique up to isomorphism (cf. [26, p. 31]). We say that B is ramified at a
prime p (resp. ramified at ∞) if B⊗QQp (resp. B⊗QR) is the divison algebra and we say that
B is split (or unramified) at p (resp. ∞) otherwise. In this paper, we are particularly interested
in the quaternion algeba Bp ramified precisely at p and ∞. As noted above, the reduced norm
on Bp is a quaternary (4-variable) quadratic form. For a maximal order O , the reduced norm
restricted to the set of trace-zero elements O ∩B0

p is an integral ternary (3-variable) quadratic
form. Slightly modifying this, we define the so-called “Gross lattice” [7, (12.8)] to be

OT := (2O +Z)
⋂

B0
p = {2x−Tr(x) : x ∈ O} .

By [7, Proposition 12.9], elements of OT with norm d are essentially in one-to-one correspon-
dence with embeddings of the quadratic order Od into O . More precisely, denote the generators
of OT over Z by u1,u2,u3 and let

aOT (d) := #
{

h = h1u1 +h2u2 +h3u3 ∈ OT : Nr(x) = d, g(h) = 1
}
, with (2.1)

g(h) := gcd(h1,h2,h3) , (2.2)

be the number of primitive representations of d for the reduced norm Nr on OT . Then

aOT (d) =
hO(d)
u(d)

, (2.3)

where hO(d) denotes the number of optimal embeddings of Od into O and u(d) denotes the
number of units in Od .

2.2. Quadratic forms and theta functions. As noted above, a quadratic form Q is a homo-
geneous polynomial in n variables of degree 2. We may associate Q with its (symmetric) Gram
matrix A, in which case the quadratic form for X ∈ Qn may be written

Q(X) =
1
2

XT AX .

We say that Q is integral if all of the entries of A are in Z and we call Q integer-valued if
Q(X) ∈ Z for all X ∈ Zn; to see the difference, consider Q(X ,Y ) = X2 +XY +Y 2. We call
Q positive-definite (resp. negative-definite) if Q(X) ≥ 0 (resp. Q(X) ≤ 0) for all X ∈ Qn and
Q(X) = 0 if and only if X = 0. In this paper, we are mostly interested in positive-definite
integral ternary quadratic forms. For further information about ternary quadratic forms, a good
survey may be found in [9].

We split the quadratic forms into classes, sets of quadratic forms which are equivalent under
the action of GL3(Z). Two forms Q and Q in the same class are referred to as globally-
equivalent and we simply write Q ∼Z Q for this relation. Classes are then grouped together
based on their local conditions. For a positive-definite integral quadratic form (ai j ∈ Z)

Q(X) = ∑
1≤i≤ j≤n

ai jXiX j,
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since Z embeds into the `-adic integers Z`, it is natural to allow X ∈ Z` and consider Q as a
quadratic form over Z` (equivalently, we may tensor the Gram matrix with Z` over Z). Con-
sidering Q over all Z` simultaneously leads to an adelic interpretation; we do not investigate
this further here, but simply note that we obtain a quadratic form Q` for each prime `. Two
quadratic forms Q and Q are locally-equivalent at the prime ` if they are equal under the action
of an element of GL3(Z`), and we denote this equivalence by Q∼Z`

Q. The set of equivalence
classes which are locally-equivalent at all primes we call the genus of Q, and (a set of repre-
sentatives for) the classes in the genus we denote by gen(Q). For the ternary case, the genus is
then further subdivided into sub-genera called spinor genera formed by equivalence under the
spin group; see [18, Section 102, pp. 297–305] for a description of this equivalence. We use
spn(Q) to denote (a set of representatives for) the classes of the spinor genus of Q.

For a positive-definite integral n-ary quadratic form Q and m ∈ N0 := {n ∈ Z : n ≥ 0}, let
rQ(m) denote the number of representations of m by Q. Denoting q := e2πiz, the theta series
associated with Q is

ΘQ(z) := ∑
m∈N0

rQ(m)qm = ∑
X∈Zn

qQ(X). (2.4)

Denoting the number of automorphs of Q (i.e., the size of the stabilizer of Q in GL3(Z)) by
ωQ, we can also define theta series

Θgen(Q)(z) :=
1

∑Q∈gen(Q)ω
−1
Q

∑
Q∈gen(Q)

ΘQ

ωQ

for the genus of Q and

Θspn(Q)(z) :=
1

∑Q∈spn(Q)ω
−1
Q

∑
Q∈spn(Q)

ΘQ

ωQ

for the spinor genus of Q.
The theta series ΘQ are part of a more general family of theta series, where we may insert

a polynomial P(X) in front of qQ(X). We only need these more general theta series in the case
that n = 1, in which case for an odd (Dirichlet) character ψ : Z/NZ→ C and t ∈ N we define
the unary theta function

hψ,t(z) := ∑
m≥1

ψ(m)mqtm2
. (2.5)

2.3. Modular forms. In this paper, we view the theta series associated with quadratic forms
from the perspective of (classical holomorphic) modular forms, which we require a few pre-
liminaries to define.

2.3.1. Basic definitions. Let H denote the upper half-plane, i.e., those z = x+ iy ∈ C with
x ∈ R and y > 0. The matrices γ =

(
a b
c d

)
∈ SL2(Z) (the group of two-by-two integral matrices

with determinant 1) act on H via fractional linear transformations γz := az+b
cz+d . For

j(γ,z) := cz+d,

a multiplier system for a subgroup Γ⊆ SL2(Z) and weight r ∈ R is a function ν : Γ 7→ C such
that for all γ,M ∈ Γ (cf. [20, (2a.4)])

ν(Mγ) j(Mγ,z)r = ν(M) j(M,γz)r
ν(γ) j(γ,z)r.

The slash operator |r,ν of weight r and multiplier system ν is then

f |r,νγ(z) := ν(γ)−1 j(γ,z)−r f (γz).
5



A (holomorphic) modular form of weight r ∈ R and multiplier system ν for Γ is a function
f : H→ C satisfying the following criteria:
(1) The function f is holomorphic on H.
(2) For every γ ∈ Γ, we have

f |r,νγ = f . (2.6)
(3) The function f is bounded towards every cusp (i.e., those elements of Γ\(Q∪{i∞})). This

means that at each cusp ρ of Γ\H, the function fρ(z) := f |r,νγρ(z) is bounded as y→ ∞,
where γρ ∈ SL2(Z) sends i∞ to ρ .

Furthermore, if f vanishes at every cusp (i.e., the limit limz→i∞ fρ(z) = 0 for all cusps ρ), then
we call f a cusp form.

2.3.2. Half-integral weight forms. We are particularly interested in the case where r = k+1/2
with k ∈ N0 and

Γ = Γ0(M) :=
{(

a b
c d

)
: M | c

}
for some M ∈N divisible by 4. The multiplier system is given such that there exists a character
(also commonly called Nebentypus) χ : Z/MZ→ C for which

f (γz)
f (z)

= χ(d)
Θ2k+1(γz)
Θ2k+1(z)

,

where Θ(z) := ∑n∈Z e2πin2z is the classical Jacobi theta function. The space of such modular
forms we call the space of weight k + 1/2 modular forms of level 4N and character χ and
denote the space by Mk+1/2(4N,χ). The subspace of cusp forms we denote by Sk+1/2(4N,χ).
Whenever the character is trivial, we omit it from the notation. By (2.6) with γ = T :=

(
1 1
0 1
)
, we

see that for f ∈Mk+1/2(4N,χ), we have f (z+1) = f (z), and hence f has a Fourier expansion
(c f (n) ∈ C)

f (z) = ∑
n≥0

c f (n)e2πinz. (2.7)

The restriction n ≥ 0 follows from the fact that f is bounded as z→ i∞. One commonly sets
q := e2πiz and associates the above expansion with the corresponding formal power series, using
them interchangeably unless explicit analytic properties of the function f are required.

2.3.3. Kohnen’s plus space and natural operators. We say that a form f ∈ Mk+1/2(4N,χ) is
in Kohnen’s plus space [15] if c f (n) = 0 for all n ∈ N0 with (−1)kn ≡ 2,3 (mod 4). The
subspace of forms in Kohnen’s plus space is written M+

k+1/2(N,χ) and the subspace of cusp
forms is denoted by S+k+1/2(N,χ). For every ` - N, there is a natural family of Hecke operators
T`2 , whose action on the Fourier expansion (2.7) of f ∈M+

k+1/2(N,χ) is given by

f |T`2(z) := ∑
n≥1

(
c f
(
`2n
)
+χ(`)

(
(−1)kn

`

)
`k−1c f (n)+ `2k−1c f

( n
`2

))
qn.

The operators T`2 preserve the space S+k+1/2(N,χ). We also make use of the operator U`2 given
by

f
∣∣U`2(z) :=

∞

∑
n=1

c f
(
n`2)qn.

It is well-known (cf. Section 3.2 in [19]) that if f ∈ Sk+1/2(4N,χ), then

f
∣∣U`2 ∈ Sk+ 1

2

(
4N`2,

(
4`2

·

)
χ

)
. (2.8)
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Moreover, for `1, `2 relatively prime with (`1,N) = 1, the operators T`2
1

and U`2
2

commute. Thus
if f is a Hecke eigenform, then f |U`2 is also a Hecke eigenform with the same eigenvalues.

2.3.4. Theta series and modular forms. Siegel [24] (see also [23, Proposition 2.1]) proved that
if Q is an (2k+1)-ary quadratic form with Gram matrix A, then ΘQ ∈Mk+1/2(N,χ) for N ∈N
such that NA−1 has integral coefficients and moreover

ΘQ−Θgen(Q) ∈ Sk+1/2(N,χ). (2.9)

Moreover, by [19, Theorem 1.44 and Proposition 3.7 (1)] or [23, Proposition 2.1], the unary
theta functions ht,ψ defined in (2.5) are elements of S3/2(4tN2

ψ ,χ) for χ = ψχ−4
(4t
·
)

and
where Nψ denotes the conductor of ψ . The subspace of S3/2(N,χ) spanned by unary theta
functions we denote by U3/2(N,χ) and its orthogonal complement in S3/2(N,χ) we denote by
U⊥3/2(N,χ), where orthogonality is taken with respect to the Petersson inner product

〈 f ,g〉 :=
1

[SL2(Z) : Γ0(4N)]

∫
Γ0(4N)\H

f (z)g(z)y3/2 dxdy
y2 .

Here [SL2(Z) : Γ0(4N)] is the index of Γ0(4N) in SL2(Z). We use the fact that orthogonality
from unary theta functions is preserved by U`2; this is well-known to the experts but we provide
a proof for the convenience of the reader.

Lemma 2.1. If f ∈U⊥3/2(N,χ) for some N ∈ N and character χ , then

f
∣∣U`2 ∈U⊥3

2

(
4N`2,

(
4`2

·

)
χ

)
.

Proof. By (2.8), f |U`2 is a cusp form of weight 3/2, level 4N`2, and character χ ′ :=
(

4`2

·

)
χ . It

remains to show that the projection of f |U`2 to the subspace of unary theta functions is trivial.
The basic argument is to show that if this projection is non-zero, then the coefficients of f |U`2

grow too fast.
We first decompose

f |U`2 = f0 + f1 (2.10)

with f0 ∈U3/2(4N`2,χ ′) and f1 ∈U⊥3/2(4N`2,χ ′). However, for f1 ∈U⊥3/2(4N`2,χ ′), Duke [5]
has shown that for every ε > 0, we have∣∣c f1(n)

∣∣� f1,ε n
13
28+ε . (2.11)

Suppose for contradiction that c f0(n0) 6= 0 for some n0 ∈ N. Since

f0 = ∑
ψ,t

αψ,thψ,t ,

where the sum runs over ψ and t for which hψ,t belongs to S3/2(4N`2,χ ′) (in particular, the
conductor of ψ is a divisor of 4N`2 and t | 4N`2). By (2.5), we conclude that n0 = t0m2

0 for
some t0,m0 ∈ N with t0 squarefree and

c f0(n0) = ∑
ψ

∑
t

t0
∈Z2

t
t0
|m2

0

αψ,tchψ,t

(
t0m2

0
)
= ∑

ψ

∑
t

t0
∈Z2

t
t0
|m2

0

αψ,tψ

(
m0

√
t0
t

)
m0

√
t0
t
. (2.12)
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Note that for every m ≡ 1 (mod 4N`2), we have t/t0 | m2
0m2 if and only if t/t0 | m2

0 (because
t | 4N`2) and

ψ

(
m0m

√
t0
t

)
= ψ

(
m0

√
t0
t

)
.

Hence (2.5) and (2.12) imply that for every m≡ 1 (mod 4N`2), we have

c f0
(
n0m2)= ∑

ψ

∑
t

t0
∈Z2

t
t0
|m2

0m2

αψ,tψ

(
m0m

√
t0
t

)
m0m

√
t0
t

= m∑
ψ

∑
t

t0
∈Z2

t
t0
|m2

0

αψ,tψ

(
m0

√
t0
t

)
m0

√
t0
t
= mc f0(n0) .

Combining this with (2.10) and (2.11), for m≡ 1 (mod 4N`2), we obtain

c f
(
n0m2`2)= c f |U

`2

(
n0m2)= mc f0(n0)+O

(
m

13
14+ε

)
.

Since f ∈ U⊥3/2(4N,χ), for m sufficiently large this contradicts Duke’s bound (2.11). This
contradiction implies that c f0(n0) = 0 for all n0, so that f0 = 0, yielding the claim.

�

3. PRECISE STATEMENT OF CONJECTURE 1.1

Let Bp over Q be the unique quaternion algebra which ramifies at exactly the primes p and ∞

and let O be one of its maximal orders. The algorithm by Chevyrev and Galbraith [3] constructs
an elliptic curve E over Fp2 , such that the endomorphism ring is isomorphic to the maximal
order, i.e. End(E) ∼= O . They proved that their algorithm halts unless there exists another
non-conjugate maximal order O ′ for which

aO ′T (n)≥ aOT (n) (3.1)

for every n ∈ N0, where aOT (n) is defined in (2.1). Following [3], we thus say that O ′T opti-
mally dominates OT if (3.1) holds for all n ∈ N0. Chevyrev and Galbraith then conjectured in
[3, Conjecture 1] that no maximal order may optimally dominate another.

Conjecture 3.1 (Chevyrev–Galbraith [3]). Let O and O ′ be maximal orders of Bp. If O ′T

optimally dominates OT , then O and O ′ are of the same type.

Remarks 3.2.
(1) Conjecture 3.1 is equivalent to Conjecture 1.1 because all isomorphisms of orders come

from conjugation.
(2) Paralleling the definition of type for maximal orders, we say that O ′T and OT have the

same type if there is a non-zero element c ∈ Bp such that cOT c−1 = O ′T , and we write
OT ∼ O ′T . By Lemma 4 in [3], we know that OT ∼O ′T if and only if O ∼ O ′.

(3) There is a second conjecture of Chevyrev and Galbraith about the occurrence of the smallest
n0 for which both aO ′T (n1)≥ aOT (n1) and aO ′T (n2)< aOT (n2) occur for some n1,n2 < n0.
They conjecture in particular that n0 = O(p) and determine the running time of their algo-
rithm under this assumption. In our context, this n0 corresponds to the first sign change.
Although there is some discussion in [16] about the size of n0, there are a number of inex-
plicit constants which would need to be worked out to determine the size of n0 implied by
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their theorem, and it is not expected that their proof would yield a bound anywhere close to
the conjectured O(p). The first author is trying to determine (and improve upon) an explicit
bound for n0 in his Masters thesis.

(4) By Lemma 11 in [3], we have aO ′T (n) ≥ aOT (n) for all n if and only if rO ′T (n) ≥ rOT (n)
for all n.

4. PROOF OF THEOREM 1.2

Recall that for a maximal order O of Bp, the associated reduced norm Nr on OT is a positive-
definite integral ternary quadratic form QOT . Gross [7, (12.8)] constructed the associated theta
series

ϑOT := ΘQOT , (4.1)

which is an element of Kohnen’s plus space M+
3/2(p). The following lemma plays a key role in

the proof of Conjecture 3.1.

Lemma 4.1. If O and O ′ are two maximal orders in the quaternion algebra Bp, then

ϑOT −ϑO ′T ∈ S+3
2
(p).

Furthermore, ϑOT −ϑO ′T ∈U⊥3/2(4p).

Proof. As noted by Gross (see [7, p. 130]), for all primes ` the maximal orders of Bp are all
locally conjugate over Z`, from which we conclude that for all primes `

QOT ∼Z`
QO ′T .

Thus QOT and QO ′T are in the same genus by definition. Hence, by (2.9),

ϑOT −ϑO ′T = ΘQOT −Θgen(QOT ) +Θgen(QOT )−ΘQO′T

= ΘQOT −Θgen(QOT )+Θgen(QO′T )
−ΘQO′T

=
(

ΘQOT −Θgen(QOT )

)
+
(

Θgen(QO′T )
−ΘQO′T

)
is a cusp form. Moreover, it is contained in Kohnen’s plus space of level p by construction.

It remains to show that ϑOT −ϑO ′T is orthogonal to unary theta functions. However, since p
is squarefree and odd, Kohnen has proven in [15, Theorem 2] that S+3/2(p) is Hecke-isomorphic
to S2(p) under a linear combination of the Shimura lifts defined in [23] (and hence has a basis
of simultaneous Hecke eigenforms). Since every element of S+3/2(p) may be written as a linear
combination of Hecke eigenforms, it suffices to show that all of the Hecke eigenforms are
orthogonal to unary theta functions.

Next recall that the Hecke operators are Hermitian with respect to the Petersson inner product
(see [15, Section 3]). Denoting the eigenvalue of ht,ψ under the Hecke operator T`2 by λ` and
the eigenvalue of an eigenform f in S+3/2(p) by λ f ,`, we see that

λ`

〈
ht,ψ , f

〉
=
〈
ht,ψ |T`2, f

〉
=
〈
ht,ψ , f |T`2

〉
= λ f ,`

〈
ht,ψ , f

〉
. (4.2)

We conclude that if ht,ψ and f are not orthogonal, then λ` = λ f ,` for all `, where we use
the fact that the eigenvalues must be real because the Hecke operator is Hermitian. However,
the elements of U3/2(4p) ⊂ S3/2(4p) have the same eigenvalues as weight 2 Eisenstein series
and λ f ,` is the eigenvalue for a weight 2 cusp form by Kohnen’s Hecke-isomorphism. The
eigenvalues cannot always coincide and therefore ht,ψ and f are orthogonal.

�

The strategy of our proof is to study the sign changes of the Fourier coefficients of the
differences ϑO ′T −ϑOT . For this, we require [16, Theorem 1] of Kohnen, Lau, and Wu.
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Theorem 4.2 (Kohnen, Lau, and Wu). Let N ≥ 4 an integer divisible by 4 and χ be a Dirichlet
character modulo N. If g ∈U⊥3/2(N,χ), then for each positive squarefree integer t for which
cg(t) 6= 0 and the sequence

{
cg(tn2)

}
n∈N is real, the sequence

{
cg(tn2)

}
n∈N contains infinitely

many sign changes.

Remarks 4.3.
(1) Kohnen, Lau and Wu actually gave much stronger results in their paper [16] but this sim-

plified version is strong enough for our use.
(2) One can use an argument involving the sign changes to directly show that ϑO ′T −ϑOT ∈

U⊥3/2(4p) if O ′T optimally dominates OT . To illustrate the usage of Theorem 4.2, we briefly
sketch the proof; further details may be found in the first author’s upcoming Masters thesis.
One sees directly from (2.5) that the coefficients of unary theta functions alternate in sign.
Using a bound of Duke [5] for the coefficients of elements of U⊥3/2(4p), the coefficients
of the difference ϑOT −ϑO ′T are dominated by the coefficients of the contribution from
unary theta functions and hence alternate unless the contribution from U⊥3/2(4p) is trivial.
However, slightly abusing notation by abbreviating

rOT (n) := rQOT (n),

we may split the elements of h ∈ OT by g(h) = f (see (2.2)) to obtain

rOT (n) = ∑
f∈Z
f 2|n

aOT

(
n
f 2

)
. (4.3)

Hence if O ′T optimally dominates OT , then rO ′T (n) ≥ rOT (n), and we conclude that the
contribution from unary theta functions is trivial.

The next proposition is a key step in the proof of Theorem 1.2.

Proposition 4.4. Let O and O ′ be maximal orders of Bp. If O ′T optimally dominates OT , then
ϑO ′T (z) = ϑOT (z).

Write
g(z) := ϑO ′T (z)−ϑOT (z).

By Lemma 4.1, g ∈U⊥3/2(4p), and we have cg(n) ≥ 0 for all n ∈ N by assumption. Hence to
conclude Proposition 4.4, it suffices to prove the following slightly stronger proposition.

Proposition 4.5. If g ∈U⊥3/2(4N,χ) for some N ∈ N and character χ and cg(n) ≥ 0 for all n,
then g = 0.

Proof. We show the claim by proving that cg(n) = 0 for all n ∈ N. To give the idea of the
argument suppose that there exists a squarefree t ∈N such that cg(t) 6= 0, then by Theorem 4.2,
the sequence

{
cg(tm2)

}
m∈N has sign changes. But then this contradicts the fact that cg(n)≥ 0

for all positive n. Hence we have cg(n) = 0 for all squarefree n ∈ N.
We proceed similarly to show that cg(n) = 0 for n = tm2

0 with t squarefree and

m0 =
J

∏
j=1

` j ∈ N,

where ` j are (not necessarily distinct) primes. Suppose for contradiction that cg(tm2
0) 6= 0.

Denoting

Um2
0

:=
J

∏
j=1

U`2
j
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and repeatedly using Lemma 2.1, there exists a character χ ′ for which

g|Um2
0
∈U⊥3

2

(
4pm2

0,χ
′) .

Thus we may apply Theorem 4.2 to g|Um2
0

to conclude that {cg|Um2
0
(tm2) : m ∈ Z} has infinitely

many sign changes. However, since

cg|Um2
0

(
tm2)= cg

(
tm2

0m2)≥ 0,

we obtain a contradiction. Thus cg(tm2
0) = 0, as desired. �

We have now established most of the ingredients necessary to prove Theorem 1.2. The main
remaining piece is an equivalence between theta series ϑOT and ϑO ′T agreeing and OT and O ′T

having the same type.

Lemma 4.6. Let O and O ′ be maximal orders of Bp. Then the following statements are equiv-
alent:
(a) OT ∼ O ′T ;
(b) ϑOT = ϑO ′T ;
(c) QOT ∼Z QO ′T .

Proof. (a)⇒(b): Suppose that there is a non-zero element c ∈ Bp such that cOT c−1 = O ′T .
Since

Nr
(
cXc−1)= Nr(X)

for all X ∈ Bp and non-zero c ∈ Bp, we conclude (b) by the definition (4.1) of the theta series.
(b)⇒(c): If ϑOT (z) = ϑO ′T (z), then all the coefficients of their Fourier expansions are the

same. By Schiemann [21], we have Q1 ∼Z Q2 (actually, Schiemann gave a much stronger
result; roughly speaking, it only requires the first few coefficients of the Fourier expansions to
be the same).

(c)⇒(a): This is shown in [8, Section 4] by defining the associated ternary quadratic form
on [8, p. 1473] and then showing that the map forms a bijection between orbits under GL3(Z)
and isomorphism classes of quaternion rings over Z in [8, Proposition 4.1].

�

We are finally ready to prove our main theorem, Theorem 1.2, which we state again for the
convenience of the reader.

Theorem 4.7. Let O and O ′ be maximal orders of Bp. If O ′T optimally dominates OT , then O
and O ′ are of the same type. Furthermore, the algorithm of Chevyrev and Galbraith halts.

Proof of Theorem 1.2. By Proposition 4.4, if O ′T optimally dominates OT , then ϑOT = ϑO ′T .
Hence by the equivalence of (b) and (a) in Lemma 4.6, we obtain that OT ∼ O ′T . Finally, by
Lemma 4 of [3], we conclude that O and O ′ have the same type. �
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