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Aggregated Demand Response Modelling for Future

Grid Scenarios
Hesamoddin Marzooghi, Gregor Verbič, and David J. Hill

Abstract

With the increased penetration of intermittent renewable energy sources (RESs) in future grids (FGs), balancing between

supply and demand will become more dependent on demand response (DR) and energy storage. Thus, FG feasibility studies

will need to consider DR for modelling nett future demand. Against this backdrop, this paper proposes a demand model which

integrates the aggregated effect of DR in a simplified representation of the effect of market/dispatch processes aiming at minimising

the overall cost of supplying electrical energy. The conventional demand model in the optimisation formulation is augmented by

including the aggregated effect of numerous users equipped with rooftop photovoltaic (PV)-storage systems. The proposed model

is suited for system studies at higher voltage levels in which users are assumed to be price anticipators. As a case study, the

effect of the demand model is studied on the load profile, balancing and loadability of the Australian National Electricity Market

in 2020 with the increased penetration of RESs. The results are compared with the demand model in which users are assumed to

be price takers.

Index Terms

Aggregated demand modelling, battery storage, demand response, future grids, photovoltaic generation, renewable energy

sources.

NOMENCLATURE

n ∈ N Supplier n and set of N suppliers.

m ∈M Load aggregator m and set of M load aggregators.

h ∈ H Time slot h and set of H slots in the horizon.

ri ∈ R Node i in the system and set of R Nodes.

i, j Indices.

α, β Incremental changes for Pmax,m
B,cha and EB,m

loss calculation.

∆h Time step interval.

Pn
G (h) Generated active power by supplier n in slot h.

Cn
G(Pn

G ) Cost function of supplier n.
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ρnG(Pn
G ) Bid of supplier n for generating Pn

G .

Pmax,n
G Maximum power limit of supplier n.

Pmin,n
G Minimum power limit of supplier n.

Em Total energy requirement of aggregator m over a horizon.

Pm
F (h) Aggregated flexible power demand of aggregator m in slot h.

Pmax,m
F Maximum flexible demand limit of aggregator m.

Pmin,m
F Minimum flexible demand limit of aggregator m.

Pm
L (h) Aggregated inflexible demand of aggregator m in slot h.

Pm
U (h) Aggregated demand of price-responsive users communicating with aggregator m before reshaping in slot h.

Pm
PV(h) Aggregated PV generation of price-responsive users communicating with aggregator m in slot h.

Pm
LF(h) Aggregated nett demand of aggregator m in slot h.

Pm
B (h) Battery storage power for aggregator m in slot h.

Pmax,m
B,cha Maximum battery charging rate for aggregator m. This is a limiting variable to ensure that the total storage capacity

is not exceeded.

Bm
SOC(h) Battery storage state of charge (SOC) of price-responsive users communicating with aggregator m.

Bmax,m
SOC Maximum battery storage SOC limit of price-responsive users communicating with aggregator m.

Bmin,m
SOC Minimum battery storage SOC limit of price-responsive users communicating with aggregator m.

EB,m
loss Total battery energy loss of price-responsive users communicating with aggregator m over a horizon.

P
ri,rj
L (h) Transferred power by line from ri to rj in slot h.

P
ri,rj
L,max Maximum line power limit from ri to rj .

P
ri,rj
L,min Minimum line power limit from ri to rj .

Bri,rj Susceptance of line between ri and rj .

δri(h) Voltage angle at node ri in slot h.

I. INTRODUCTION

FUTURE grid (FG) feasibility studies have demonstrated that relying on high penetration of diverse renewable energy

sources (RESs) is possible assuming enough backup generation and/or utility storage are available to keep the network

in balance [1]–[6]. A preliminary study by the University of Melbourne Energy Research Institute has proposed a zero-carbon

electrical grid for Australia in 2020 [1]. The University of New South Wales researchers have analysed the viability of 100 %

RES scenarios considering a copper plate model for the Australian National Electricity Market (NEM) [2], [3]. They have

suggested 100 % RESs electricity in the NEM, at the current reliability standard, would be technologically feasible. Also, the

least-cost mix of 100 % RESs scenario has been determined for the future of the NEM. Similarly, the least-cost mix of high

penetration of diverse RESs and conventional generation has been determined for the future of the PJM, California and New

Zealand networks in [4]–[6], respectively.

However, these studies have only focused on simple balancing by using a simplified grid model such as the copper plate
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model. On the other hand, the penetration of distributed generation (DG) has been increasing significantly in recent years,

and greater penetration of battery storage is anticipated in power systems [7]–[13]. In particular, global installed capacity of

rooftop photovoltaic (PV) has increased from approximately 4 GW in 2003 to nearly 128 GW in 2013 mainly due to electricity

price increases, government incentives and also worldwide drop of PV capital cost [7], [8]. In Australia, installed capacity of

rooftop PV (which is mostly installed by residential and commercial customers) has grown from approximately 0.8 GW in

2011 to over 4 GW in 2014 [10]. Recent studies have demonstrated that users equipped with PV-battery systems will reach

retail price parity in the foreseeable future in the USA grids and the NEM [7]–[9]. In light of these developments, a question

arises how to model the aggregated nett demand (including DG, storage and demand response (DR)) to study FG scenarios.

While the effect of DR is neglected in most of the existing FG feasibility studies [1]–[5], it is considered in few studies

mainly through two different ways:

Implicit modelling: DR is considered implicitly, but it is not reflected into the loads. For instance in [6], the effect of DR is

considered through improving the capacity credit value for intermittent RESs (i.e. intermittency of RESs is decreased). However,

due to the significant effect of loads on performance and stability of power systems, it can be expected that incorporating DR

explicitly into the load models will affect the results of FG feasibility studies significantly.

Explicit modelling: In few recent studies [13]–[18], the aggregated effect of DR is reflected into the conventional demand

models. Including the effect of DR into the demand models requires allowing for the interaction between demand and supply

sides in some ways. This is mainly done through three different approaches. Firstly, in some studies, the supply-side is modelled

physically while price-responsive users are not represented physically [14], [15]. In [14], the effect of flexible loads is analysed

on reserve markets. That study presumes flexible load to be represented precisely by a tank model. Also, the reserve market

is too simplified and physical constraints of the electrical grids (e.g. line limits) are not considered. In [15], flexible demand

is represented via a price-elasticity matrix. The elasticities are a measure of the change in demand in response to a change in

the electricity price, and are typically obtained from the analysis of historical data. Secondly, there are some other studies that

model demand-side technologies physically while the supply-side is represented through the electricity price profile [16]. That

model assumes user to be price takers, i.e. the effect of user actions is not considered in the electricity price. Thirdly, in few

recent studies, both demand-side technologies and supply-side are modelled physically [17], [18]. This approach necessitates

the need for integrated simulations in which both supply and demand sides need to be optimised jointly. As discussed in [17],

this approach can provide more realistic results. In [18], the aggregated charging management approaches for plug-in electrical

vehicles (PEVs) is integrated into the market clearing process. The market process, however, is too simplified and physical

constraints of the electrical grids are not considered.

Although those models have proven their merits, a generic modelling approach is still required which can be used for any

granularity level in the grid (e.g. from a city, a state or even the whole network). Furthermore, for studying FG scenarios of

uptake of the various demand-side technologies, it is necessary to have a model which can easily integrate them. Against this

backdrop, in this paper, we make a further step by proposing a model that integrates the aggregated effect of DR in a simplified

representation of the effect of market/dispatch processes. The proposed optimisation formulation aims at minimising the overall

cost of supplying electrical energy in which the conventional demand model is augmented by including the aggregated effect of
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numerous price anticipating users equipped with PV-storage systems. Due to the price anticipating assumption, load aggregators

are considered implicitly. As a case study, the effect of the demand model on the load profile, balancing and loadability of the

NEM is studied using a 14-generator model [19]. The results are also compared with the demand model in [16] in which users

are assumed to be price takers. Eight scenarios are analysed with one business as usual (BAU) and seven different DR scenarios

with renewable integration. For the BAU Scenario in 2020, the electricity supply is dominated by coal, gas, hydro, and biomass;

and in the Renewable Scenarios, some of the conventional coal generators in Queensland and South Australia are replaced

with wind farms (WFs) and concentrated solar plants (CSPs) with storage, as suggested in [1], [11] to meet Australia’s RES

target [20]. Simulation results show that increasing the penetration of DR with price anticipating users, improves loadability

with the increased intermittent supply penetration in the grid.

The remainder of the paper is organised as follows: Section II proposes the aggregated demand model considering DR. Section

III describes the test-bed assumptions and modelling. Section IV describes simulation scenarios, and discusses simulation results.

Finally, Section V gives conclusions.

II. AGGREGATED DEMAND MODEL CONSIDERING DR

Aggregated load models are commonly used in system studies to reflect the combined effect of numerous physical loads [21],

[22]. These can be inspired by physical devices, e.g. using a large induction motor to represent all the motors connected, or by

data-driven approaches. Conventional aggregate load models only account for the accumulated effect of numerous independent

load changes and some relatively minor control actions. Including the effect of DR requires allowing for the interaction between

demand and supply sides in some way, e.g. price signals. In this study, we propose a model that integrates the aggregated effect

of DR in a simplified representation of the effect of market/dispatch processes inspired by the traditional unit commitment

problem. The proposed optimisation problem aims at minimising the overall cost of supplying electrical energy in which the

conventional demand model is augmented by including the aggregated effect of numerous users equipped with newer demand

technologies. The demand model consists of two parts: (i) a fixed electricity demand profile (inflexible demand), and (ii) flexible

demand equipped with demand-side technologies (we consider a large homogeneous population of residential and commercial

PV-storage systems, but the model allows for an easy integration of other demand technologies as well). Also, the demand

model considers the following assumptions:

Assumption 1: Users are assumed to be price anticipators, i.e. the effect of users actions is considered on the electricity price

by the load aggregators. Due to the price anticipating assumption, load aggregators are considered implicitly. We assume that

users are incentivised by the load aggregators through a proper price signal derived using mechanism design [23].

Assumption 2: Aggregators do not aim to change the total energy consumption of the users, but instead to systematically

manage and shift it. Furthermore, all load aggregators are connected to not only the power grid but also to a communication

infrastructure to enable two-way communication with the users.

Assumption 3: Users have smart meters equipped with smart home energy management systems (SHEMSs). SHEMS

implements an algorithm to schedule energy resources and storage, and so achieves DR.



5

A. Optimisation model

The optimisation model aims at minimising the overall electricity cost. The objective function of the model can be written

as:

min
H∑

h=1

N∑
n=1

Cn
G(Pn

G (h)), (1)

where, each decision horizon for the model (i.e. 24-hour period) is divided into one hour time-steps, giving a total of H = 24

time-steps; denote a particular time-step by h, subject to the following constraints:

1) Power generation limit: Generation of each supplier is a decision variable, and is constrained between the minimum and

the maximum power limits as follows:

Pmin,n
G ≤ Pn

G (h) ≤ Pmax,n
G ∀h, n, (2)

2) Flexible demand, storage and PV: The following set of equations augment the conventional demand model by including

the aggregated effect of numerous users equipped with PV-storage systems.

Pmin,m
F ≤ Pm

F (h) ≤ Pmax,m
F ∀h,m, (3a)

H∑
h=1

[Pm
LF(h)− Pm

PV(h)]∆h = Em + EB,m
loss ∀m, (3b)

Flexible demand of each load aggregator, Pm
F , is a decision variable which reflects the aggregated effect of DR, and is

constrained between the minimum and the maximum limits in (3a). The overall energy balance over time horizon H is given

by (3b). Fig. 1 shows a simple illustration of the demand profile. As it can be seen in Fig. 1a, the aggregated nett demand of

each load aggregator, Pm
LF , is equal to the sum of inflexible and flexible demands, i.e. Pm

LF(h) = Pm
L (h)+Pm

F (h). When Pmin,m
F

is equal or more than zero (Pm
L ≤ Pm

LF), the model represent a situation where price-responsive users would not send power

back to the grid. This situation might happen in the future if feed-in tariffs (FiTs) are much less than the retail tariffs paid by the

users. On the other hand, if there will be a reasonable incentive for users in the future to send power back to the grid, Pmin,m
F

can be relaxed to a value below zero (Pm
LF < Pm

L ) to reflect such a situation. The flexibility of loads is due to battery storage

which is modelled implicitly by considering the upper limit of the flexible load power as Pmax,m
F (h) = Pmax,m

B,cha +Pm
U (h). Note

that Pmax,m
B,cha is a limiting variable that ensures that the total storage capacity is not exceeded, and it does not represent a physical

property of a particular battery technology. This variable is determined heuristically, as explained later in this section. The battery

storage power, Pm
B , is a byproduct of the optimisation problem which can be calculated as Pm

B (h) = Pm
F (h)−Pm

U (h)−Pm
PV(h).

Fig. 1b shows the aggregated flexible demand equipped with PV-storage systems. As it is demonstrated in Fig. 1b, Pm
U (h) is

the aggregated demand of price-responsive users before utilising PV-storage systems.

The aggregated flexible demand is determined by each aggregator in (3b) in a way that the total energy requirement for that

aggregator remains constant (Assumption 2) considering aggregated PV generation and also battery storage energy loss. Total

energy requirement of aggregator m over the horizon can be written as Em =
∑H

h=1(Pm
L (h) + Pm

U (h))∆h. EB,m
loss in (3b)

guarantees that battery round-trip efficiency is taken into account. As it is shown in Fig. 1b, part of the required energy for

price responsive users is provided by PV. So, the rest of the energy has to be supplied from the grid (i.e. Em
1 + Em

3 − Em
4 ).
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Fig. 1. Simple illustration of the demand profile (a) aggregated flexible demand, inflexible demand and new nett demand profile, and (b) aggregated price-
responsive demand and PV generation.

Price-responsive users use their battery storage to shift their consumption to cheaper time slots to minimise the overall cost

of supplying electrical energy (i.e. Em
1 + Em

3 − Em
4 can be spread out over the horizon due to enough storage capacity of

price-responsive users in a way that the overall electricity cost minimises, the red area in Fig. 1a). In other words, the total

flexible demand energy over the horizon is equal to the energy which has to be supplied from the grid plus battery storage

energy loss, i.e.
∑H

h=1 P
m
F (h)∆h =

∑H
h=1(Pm

U (h)− Pm
PV(h))∆h+ EB,m

loss = Em
1 + Em

3 − Em
4 + EB,m

loss .

3) Demand supply balance: Ignoring the losses in the grid, the power balancing equation can be written as (4a):

∑
n∈ri

Pn
G (h)−

∑
m∈ri

Pm
LF(h) =

∑
rj

P
ri,rj
L (h) ∀h, ri ∈ R, (4a)

P
ri,rj
L (h) = Bri,rj (δri(h)− δrj (h)) ∀h, (ri, rj) ∈ R, (4b)

P
ri,rj
L,min ≤ P

ri,rj
L (h) ≤ P ri,rj

L,max ∀h, (ri, rj) ∈ R, (4c)

where, the power transferred between different nodes in the system is given by (4b), and is constrained by the line limits in

(4c).

To solve the above optimisation problem, aggregated demand, PV power, maximum battery storage charging rate and

corresponding battery storage energy loss are required for each load aggregator. The next subsection describes how the maximum

battery storage charging rate and corresponding energy loss can be calculated for the model.

B. Modelling battery storage

In the proposed optimisation formulation, battery storage is modelled implicitly and its state of charge (SOC) is not a

decision variable. However, it is important to consider battery SOC limits to make sure that the available storage capacity
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in the grid is not exceeded. Pmax,m
B,cha is a limit parameter which ensures that the total storage capacity is not exceeded. It is

determined using a heuristic search in Algorithm 1.

Algorithm 1 : The proposed algorithm to determine Pmax,m
B,cha

1: Set i = 1,
2: Initialize Pmax,m

B,cha,i = 0,
3: Run Algorithm 2,
4: while Bm

SOC is within limits (7) do
5: Solve the model (1-4).
6: Calculate Bm

SOC (6).
7: i← i+ 1,
8: Pmax,m

B,cha,i ← Pmax,m
B,cha,(i−1) + α,

9: Run Algorithm 2,
10: end while
11: Step 3: Return Pmax,m

B,cha,(i−1).

The battery energy loss corresponding to Pmax,m
B,cha,i is also verified based on a heuristic search in Algorithm 2. Based on the

Algorithm 2, the optimisation formulation (1-4) is solved using the aggregated demand and PV power, suppliers’ data, battery

storage charging rate (from Algorithm 1) and initial value for battery energy loss. Then, EB,m
loss can be calculated based on the

storage actions as follows:

EB,m
loss = (1− η)

H∑
h=1

Pm
B (h) ifPm

B (h) > 0, (5)

If the difference between the battery energy loss calculated from the equation (5) and the battery energy loss from the jth

iteration, EB,m
loss,j , is less than the error, ε, search stops for that horizon. Otherwise, the battery energy loss value in the jth

iteration changes in a small step (β) and the optimisation formulation solves again. The search continues until the difference

between those two is less than the error.

Algorithm 2 : The proposed algorithm to verify EB,m
loss corresponding to Pmax,m

B,cha,i

1: Set j = 1,
2: Initialize EB,m

loss,j = 0,

3: while EB,m
loss − E

B,m
loss,j > ε do

4: Solve the model (1-4).
5: Calculate EB,m

loss (5).
6: j ← j + 1,
7: EB,m

loss,j ← EB,m
loss,(j−1) + β,

8: end while
9: Step 4: Return EB,m

loss,j .

After battery energy loss calculation from Algorithm 2, the optimisation formulation can be solved in Algorithm 1 for

determining Pmax,m
B,cha . To verify Pmax,m

B,cha , battery storage SOC, Bm
SOC, which is a byproduct of the optimisation problem needs

to be calculated:

Bm
SOC(1) = Bi,m

SOC, (6a)

Bm
SOC(h) = Bm

SOC(h− 1) + Pm
B (h− 1) ∀h > 1, (6b)
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and compared with the battery storage SOC limits:

Bmin,m
SOC ≤ Bm

SOC(h) ≤ Bmax,m
SOC ∀h > 1, (7)

While Bm
SOC is within the limits, Pmax,m

B,cha increases in a small step (α), EB,m
loss corresponding to Pmax,m

B,cha,i calculates from

Algorithm 2, and the optimisation formulation solves again. This procedure repeats until Bm
SOC violates the limit. From a step

before violation, Pmax,m
B,cha can be obtained.

III. THE AUSTRALIAN NEM MODEL

A 14-generator model of the NEM, which was originally proposed for small signal stability studies [19], is used as the

test-bed. The schematic diagram of the 14-generator model of the NEM is shown in Fig. 2. Areas 1 to 5 represent Snowy Hydro

(SH), New South Wales (NSW), Victoria (VIC), Queensland (QLD) and South Australia (SA), respectively. The Australian

Electricity Market Operator (AEMO) has proposed 16 zones for the NEM to capture differences in generation technology

capabilities, costs, weather and so on in the future [11]. In order to extract data for the proposed model and generators in

2020, the 14-generator model is matched with the 16 zones, as shown in Fig. 2.

The generator technologies and the test-bed assumptions in this study follow Reference [16]. In power system studies,

generators’ cost functions are often modelled as quadratic. In this study, it is assumed that conventional generators submit their

block bidding curves, while RESs are assumed to bid at zero cost. So, the cost function of the conventional generators can be

approximated by a piece-wise linear function as:

Cn
G(Pn

G (h)) = ρnG(Pn
G (h))Pn

G (h) ∀n, (8)

where, ρnG(Pn
G (h)) are suppliers’ bids. Generators’ bids mimic the bidding behaviour of the generators in the NEM and use

the predicted fuel price, thermal efficiency, and variable O&M costs 2020 [11], [24]. Table I lists bids of the suppliers (ρ1, ρ2

and ρ3) in the 14-generator model in 2020.

Each region of the 14 generator model (i.e. QLD, NSW, VIC and SA) is considered as a node for the demand model.

Consequently, interstate lines are considered explicitly in the demand model. However, balancing and loadability studies are

done using the 14 generator model shown in Fig. 2. The dispatch results from the market are used for balancing and loadability

studies in DIgSILENT Power Factory. In the balancing studies, if supply cannot meet the demand, the hour is recorded as

unserved hour. However, if available generation exceeds demand (i.e. due to high generation of RESs), the surplus power is

recorded as dumped energy and that hour is marked as a dumped hour.

IV. SIMULATION SCENARIOS AND RESULTS

The effect of price anticipating and price taking assumptions, and different DR penetrations on the load profile, balancing

and loadability of the NEM in 2020 with the increased penetration of RESs in the grid is demonstrated in this section.
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Fig. 2. 14-generator model of the NEM.

TABLE I
THE GENERATORS’ BIDS IN 2020

Gen. Type AEMO ρ1 ρ2 ρ3
zone ($/MWh) ($/MWh) ($/MWh)

BPS 2 Coal NNS 28.45 42.66 56.90
EPS 2 GT CAN 69.20 346.0 692.0
MPS 2 Coal SWNSW 27.43 41.15 54.86
VPS 2 Coal NCEN 26.40 39.60 52.80
LPS 3 Biomass MEL 39.50 59.25 79.00
YPS 3 Coal LV 21.88 32.82 43.76
CPS 4 Coal CQ 26.14 39.21 52.28
GPS 4 Coal CQ 26.14 39.21 52.28
SPS 4 Coal NQ 32.74 49.11 65.48
TPS 4 GT SWQ 73.84 369.2 738.4
NPS 5 Coal NSA 30.89 46.34 61.78
PPS 5 Coal SESA 30.89 46.34 61.78
TPS 5 GT ADE 69.20 346.0 692.0
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TABLE II
THE AGGREGATED STORAGE AND PV CAPACITIES FOR EACH REGION OF THE NEM FOR DIFFERENT UPTAKE SCENARIOS

Region Scenario Bmin,m
SOC -Bmax,m

SOC Pmax,m
B,cha PV capacity

(GWh) (GW) (GW)
Low 0.4-4.3 0.44 1.3

QLD Medium 0.6-6.4 0.63 1.9
High 0.9-8.5 0.83 2.6
Low 0.7-6.7 0.62 2.0

NSW Medium 1.0-10.1 1.01 3.0
High 1.4-13.5 1.34 4.1
Low 0.5-5.0 0.47 1.5

VIC Medium 0.8-7.5 0.72 2.3
High 1.0-10.0 0.95 3.0
Low 0.1-1.2 0.10 0.3

SA Medium 0.2-1.7 0.16 0.5
High 0.2-2.3 0.22 0.7

A. Simulation scenarios

Eight scenarios are analysed with one BAU and seven different DR scenarios with renewable integration. The Renewable

Scenarios are analysed with the conventional load, and different levels of DR in the proposed demand model (Section II) and

the demand model in [16]. For the BAU Scenario, combinations of coal, gas, hydro, and biomass are considered for the NEM

to supply the load in 2020. Then, some of the conventional coal generators in QLD and SA are replaced with CSPs together

with storage and WFs, respectively to meet Australia’s RES target. Displacement of conventional generators in the Renewable

Scenarios and chosen capacities for RESs are inspired by studies in [1], [11]. NPS 5 in SA is replaced with a WF with the

capacity of 3 GW using NSA data [11]. Also, SPS 4 and GPS 4 in QLD are replaced with two CSPs with the capacity of

4.5 GW each and using NQ and CQ data [11], respectively. It was found that delaying CSP output by 12 hours minimises the

unserved and dumped energy. The RESs serve about 20 % of the total demand in the Renewable Scenarios.

In this study, hourly demand and PV power for the proposed demand model are obtained from the AEMO predications

for 2020 [11]. Also, DR is considered for the residential and commercial customers, i.e. 60 % of the total system load in the

NEM in 2020 [11]. The industrial customers are left unaffected. Furthermore, the percentage of the residential and commercial

customers with PV are considered 20 %, 30 % and 40 % for low, medium and high uptake scenarios, respectively. Table II

shows the aggregated storage and PV capacities for each region of the NEM for different uptake scenarios. The chosen PV

capacities for different uptake scenarios are inspired by the AEMO study [12]. Moreover, the chosen storage capacities roughly

correspond to typical PV and storage capacity for a household in Australia. Using the algorithms in Section II, Pmax,m
B,cha is also

calculated for different DR scenarios, and is reported in Table II.

B. Accuracy of the load model

Fig. 3 demonstrates the results of the demand model in NSW for low DR Scenario during the 30th and 31st of January

2020. As it can be seen in Fig. 3a, flexible demand, PNSW
F , increases during cheap hours in comparison with PNSW

U because

price-responsive users use their battery storage to store cheaper electricity (Fig. 3b). However, flexible demand decreases during

peak hours due to PV generation, PNSW
PV , and also battery storage discharge (Fig. 3b). Also, Fig. 3a clearly illustrates that
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Fig. 3. (a) Aggregated demand of price-responsive users before reshaping, PNSW
U , aggregated flexible demand, PNSW

F , and aggregated PV generation, PNSW
PV ,

(b) battery charging, discharging and SOC in NSW during 30th and 31st of January 2020.

∑H
h=1 P

m
F (h)∆h =

∑H
h=1(Pm

U (h) − Pm
PV(h))∆h + EB,m

loss . Furthermore, Fig. 3b shows that with appropriate selection of the

Pmax,m
B,cha , battery SOC remains within the bounds. This shows the efficacy of the proposed model.It should be noted that all the

results in this section assume that price anticipating users do not sent power back to the grid (Pm
L ≤ Pm

LF).

C. Comparison of the load profile with different approaches

Figs. 4a and 4b compare the effect of price anticipating and price taking assumptions, and also different levels of DR on

the load profile resulting from solving the proposed model and the demand model in [16] in NSW during the 25th to 28th of

May 2020, respectively. As it is shown in the Figs. 4a and 4b, in both approaches, the users shift their consumption (using

PV-storage system) from expensive hours to cheaper ones to utilise zero cost electricity produced by RESs. In the proposed

model, the effect of the users’ action on the electricity price signal is considered by the load aggregators. As a result, the load

profile with price anticipating assumption (Fig. 4a) is smoother than the load profile with price taking assumption (Fig. 4b). In

the latter approach the effect of users’ action is not considered on the electricity price signal. So, price-responsive users may

shift their consumption to cheaper time slots all-together, which results in secondary load peaks due to load synchronisation,

as it can be seen in Fig. 4b.

In the next subsection, the effect of the both demand models on balancing and loadability of the NEM in 2020 are studied

with the increased penetration of RESs.

D. Balancing and loadability results

1) BAU Scenario: In the BAU Scenario, a big portion of the demand is supplied by coal-fired power plants and the peak

loads are met with backup supply (i.e. gas turbines (GTs)). The results for spilled energy and hours, supplied electrical energy

from GTs and average loadability for all the scenarios over the simulated year are summarised in Table III. For the loadability

calculation, we checked different load/generation increase scenarios. Among them, we showed the results for one of the critical
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Fig. 4. Demand profile in NSW during 25th to 28th of May 2020 with (a) price anticipating and (b) price taking assumptions.

ones in Table III in which all loads in QLD are assumed to increase uniformly in small steps with constant power factor. Also,

it is assumed that all the generators in QLD are scheduled with the same participation factor to pick up the system loads. The

loadability is computed for each hour until a step before power flow divergence.

2) Renewable Scenarios: In the rest of the paper, Renewable Scenarios with the conventional load, the load model in [16]

and the proposed model are called CL, PTDR and PADR, respectively. Also, PTDR and PADR scenarios with low, medium and

high DR penetrations are called PTDR1-PTDR3 and PADR1-PADR3 respectively in Table III. Unserved hours for all scenarios

are zero. Comparing the BAU Scenario and the Renewable Scenario with the conventional load (CL), it can be seen that with

the increased penetration of RESs, the loadability is reduced from 27.13 GW to 22.17 GW.Also, the required electrical energy

from the backup generation (i.e. GTs) is increased from 18.73 TWto 18.77 TW.

Compared to the CL Scenario (i.e. zero DR penetration), higher penetrations of DR (PADR and PTDR) improve the

performance and loadability, and reduce the required energy from backup supply. High DR Scenario with price anticipating

assumption (PADR3) has the highest loadability followed by the medium and low DR Scenarios. The loadability is increased

from 22.17 GW for the CL Scenario to 26.24 GW for the PADR3 Scenario, which implies a considerable improvement in

loadability. However, with price taking assumption, medium DR Scenario (PTDR2) has the highest loadability (i.e. 25.53 GW).

Increasing the penetration of DR with price taking assumption beyond a certain point (from PTDR2 to PTDR3), fails to

improve loadability further. This is because of secondary peaks for high DR scenario which deteriorates loadability compared

to lower DR penetrations. Furthermore, in both approaches, high DR Scenario has the lowest spilled energy and hours followed

by medium and low DR Scenarios. Also, the required energy from the backup generation for DR scenarios with price taking

assumption is slightly higher than DR scenarios with price anticipating assumption. This happens as the price taker users may

shift their consumption to the cheaper time slots all-together, and therefore some backup supply might be required to keep the

network in balance.

Fig. 5 shows the the effect of different DR scenarios on the load profile when users are price anticipators in one of the

critical summer (i.e. 07th to 10th of February) and winter peaks (i.e. 19th to 22th of July) for the NEM. The balancing results
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TABLE III
BALANCING AND LOADABILITY RESULTS FOR ALL THE SCENARIOS

Scenarios Spilled energy Spilled hours GT energy Loadability
(TWh) (%) (TWh) (GW)

BAU - - 18.73 27.13
CL 0.71 13.65 18.77 22.17

PADR1 0.66 13.03 18.28 24.82
PADR2 0.61 12.67 17.78 25.86
PADR3 0.54 11.71 17.04 26.24
PTDR1 0.66 13.03 18.33 23.78
PTDR2 0.61 12.67 17.85 25.53
PTDR3 0.54 11.71 17.28 24.41

for the high DR scenario during those peak hours are demonstrated in Fig. 6. As shown in Fig. 6, in the critical summer

days the wind is not strong enough and the output of WF is low, and in critical winter days the solar exposure reduces and

CSP output decreases as well. However, due to enough response capacity from DR (Fig. 5) and backup supply, balancing and

loadability under these worst-case conditions are maintained. Figs. 5 and 6 show that DR can help balance fluctuating RESs

and demand in real-time even under the worst-case conditions.

V. CONCLUSION

This paper proposes a demand model which integrates the aggregated effect of DR in a simplified representation of the

effect of market/dispatch processes. The model is intended to be used for system studies at transmission levels in which users

are assumed to be price anticipators. In the proposed optimisation formulation, the conventional demand model is augmented

by including the aggregated effect of numerous price anticipating users equipped with PV-storage systems. As a case study,

the effect of the demand model on performance and loadability of the NEM in 2020 with the increased penetration of RESs

is studied using a 14-generator model. Also, the results are compared with the demand model in which users are assumed to

be price takers.

Simulation results show that with the increased penetration of RESs and no DR loadability is reduced. With DR, however,

loadability is improved and the required backup supply is reduced. Increasing the penetration of DR with price anticipating

assumption improves loadability. However, when users are price takers, increasing the penetration of DR beyond a certain

point does not necessarily improve the loadability and might even deteriorate it. This is due to load synchronisation of price

taking users, which might results in secondary peaks.

The future research aims at expanding the idea in this paper by using bi-level optimisation to avoid implicit modelling

of battery storage and heuristic search. Also, the effect of the aggregated demand model including DR will be studied on

performance and stability of FG scenarios.
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[16] Marzooghi, H. and Hill, D.J. and Verbič, G., “Aggregated Demand Modelling Including Distributed Generation, Storage and Demand Response,”

Submitted to IET Generation, Transmission & Distribution, 2014. [Online]. Available: http://arxiv.org/abs/1412.3143

[17] Bruninx, K. and Patteeuw, D. and Delarue, E. and Helsen, L. and D’haeseleer, W., “Short-term demand response of flexible electric heating systems:

The need for integrated simulations,” in 10th International Conference on the European Energy Market (EEM 2012), May 2012.

[18] Gonzalez Vaya, M. and Andersson, G., “Optimal bidding strategy of a plug-in electric vehicle aggregator in day-ahead electricity markets under

uncertainty,” IEEE Transactions on Power Systems, vol. PP, no. 99, pp. 1–11, 2014.

[19] Gibbard, M. and Vowles, D., “Simplified 14-generator model of the SE Australian power system,” Tech. Rep., 2010.

[20] Australian Government, Department of Industry, “Energy facts, statistics and publications,” 2014. [Online]. Available: http://www.innovation.gov.au/

Energy/Pages/default.aspx

[21] Kundur, P., Power System Stability and Control. EPRI Power System Engineering Series, McGraw-Hill, 1994.

[22] T. van Cutsem and C. Vournas, Voltage Stability of Electric Power Systems, ser. Kluwer international series in engineering and computer science.

Springer, 1998.

[23] Samadi, P. and Mohsenian-Rad, A.-H. and Schober, R. and Wong, V.W.S., “Advanced Demand Side Management for the Future Smart Grid Using

Mechanism Design,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1170–1180, 2012.

[24] Australian Government, Bureau of Resources and Energy Economics, “Australian Energy Technology Assessment,” Tech. Rep., 2012.

http://reneweconomy.com.au/2014/australia-reaches-4gw-rooftop-solar-pv-44719
http://reneweconomy.com.au/2014/australia-reaches-4gw-rooftop-solar-pv-44719
http://www.aemo.com.au/Electricity/Planning/National-Transmission-Network-Development-Plan/Assumptions-and-Inputs
http://www.aemo.com.au/Electricity/Planning/National-Transmission-Network-Development-Plan/Assumptions-and-Inputs
http://www.csiro.au/Organisation-Structure/Flagships/Energy-Flagship/Future-Grid-Forum-brochure.aspx
http://www.csiro.au/Organisation-Structure/Flagships/Energy-Flagship/Future-Grid-Forum-brochure.aspx
http://arxiv.org/abs/1412.3143
http://www.innovation.gov.au/Energy/Pages/default.aspx
http://www.innovation.gov.au/Energy/Pages/default.aspx

	I Introduction
	II Aggregated Demand Model Considering DR
	II-A Optimisation model
	II-A1 Power generation limit
	II-A2 Flexible demand, storage and PV
	II-A3 Demand supply balance

	II-B Modelling battery storage

	III The Australian NEM Model
	IV Simulation Scenarios and Results
	IV-A Simulation scenarios
	IV-B Accuracy of the load model
	IV-C Comparison of the load profile with different approaches
	IV-D Balancing and loadability results
	IV-D1 BAU Scenario
	IV-D2 Renewable Scenarios


	V Conclusion
	References

