
Title Skyrmion Domain Wall Collision and Domain Wall-Gated
Skyrmion Logic

Author(s) Xing, X; Pong, PWT; Zhou, Y

Citation Physical Review B: covering condensed matter and materials
physics, 2016, v. 94, p. 054408:1-11

Issued Date 2016

URL http://hdl.handle.net/10722/231949

Rights

Physical Review B: covering condensed matter and materials
physics. Copyright © American Physical Society.; This work is
licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.



1 

Domain wall-gated skyrmion logic 

Xiangjun Xing,1,2 Philip W. T. Pong,1 and Yan Zhou3,4, 

1 Department of Electrical and Electronic Engineering, The University of Hong Kong, 

Hong Kong, China 

2 College of Physics and Electronic Information Engineering, Wenzhou University, 

Wenzhou 325035, China 

3 Department of Physics, The University of Hong Kong, Hong Kong, China 

4 School of Electronic Science and Engineering and Collaborative Innovation Center 

of Advanced Microstructures, Nanjing University, Nanjing 210093, China 

ABSTRACT 

Skyrmions and domain walls are typical spin textures of significant technological 

relevance to magnetic memory and logic applications, where they are used as carriers 

of information. The unique topology of skyrmions makes them to display distinct 

dynamical properties compared to domain walls. Some studies have demonstrated that 

the two topologically inequivalent magnetic objects could be interconverted by 

cleverly designed geometric structures. Here, we numerically address the 

skyrmion–domain wall collision in a magnetic racetrack by introducing relative 

motion between the two objects based on a specially designed junction. An electric 

current serves as the driving force that moves a skyrmion toward a trapped 

domain-wall pair. We observe different types of collision dynamics by changing the 

driving parameters. Most importantly, the domain wall modulation of skyrmion 
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transport is realized in this system, allowing a set of domain wall-gated logical NOT, 

NAND, and NOR gates to be constructed. By providing a promising logic architecture 

that is fully compatible with racetrack memories, this work is expected to speed up 

the development of skyrmion-based magnetic computation. 

 

KEYWORDS: skyrmion, domain wall, collision, skyrmionic logic, spin-transfer 

torque, Dzyaloshinskii-Moriya interaction 
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INTRODUCTION 

Skyrmions1–3 and chiral domain walls (DWs)4,5 are two different kinds of 

(meta)stable spin configurations in ultrathin magnetic multilayer nanostructures, 

where the interfacial Dzyaloshinskii-Moriya interaction (DMI)6–8—induced 

conjunctly by the broken inversion symmetry of a ferromagnetic layer and the strong 

spin-orbit coupling in a heavy-metal layer9—tends to twist adjacent magnetic 

moments and relate a specific chirality to the induced spin configurations. 

Skyrmions—firstly postulated by Skyrme in a continuous field theory to describe 

baryon stability10 and subsequently found in a variety of physical systems11,12—carry 

a conserved topological charge and thus belong to topologically protected structures, 

that is, they cannot be unwound via continuous deformation13, which allows them to 

readily move under an ultralow current density14–17 and to flexibly avoid pinning 

centers during motion18–20. Apart from these intriguing features, i.e., the flexibility 

around defects and the high sensitivity to currents, recently, it was established that 

moving magnetic skyrmions can bring about an emergent electromagnetic field,15 and 

most recently, it was demonstrated that magnetic skyrmions can even be controllably 

written and erased using a tiny mechanical force exerted by a microtip.21 Because of 

these merits, magnetic skyrmions serve as an active platform for searching new 

phenomena20,22–25 and more importantly as a promising object for building functional 

devices18,26–33. Compared to conventional DWs, chiral DWs show greatly enhanced 

mobility owing to the combined action of the DMI and the spin-Hall effect, and thus 

hold great promise for implementing new families of spintronic devices.34–37 
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Up to now, most proposed examples of racetrack memory and logic devices 

employ skyrmions or DWs as information carriers;18,26–28,32,33 few devices have been 

explored which take advantage of potential interplays between skyrmions and DWs 

for functional operations. In a previous work29, Zhou et al. proposed a hybrid 

racetrack memory based on coexisting skyrmions and DWs, where skyrmions, 

directly used for functional operation, are converted from chiral DW pairs through a 

lateral junction. As revealed in ref.38, when two skyrmions approach each other, they 

will shrink in size as a result of mutual repulsion. We now wonder what will happen 

when a skyrmion collides with a chiral DW. To this end, we need to find, first of all, a 

system that allows a skyrmion to approach a magnetic DW. Unfortunately, no such 

system has yet been established so far, although the static structures and dynamic 

properties of skyrmions and chiral DWs have been well understood4,13,37,39–41 and the 

coexistence of these objects in a chiral magnet has been demonstrated29,42. 

It is well established that, in magnetic racetracks, the relation vd 
x(β/α)J holds for 

a skyrmion in steady flow,19,43,44 where vd 
x  is the skyrmion drift velocity along the 

long axis, α is the damping constant of the used magnetic material, β is the ratio of the 

nonadiabatic and adiabatic spin torques, and J is the current density. Thus, one can 

obtain higher skyrmion velocity simply by increasing the current density  in a given 

nanotrack. To render a collision, there must be relative motion between a skyrmion 

and a DW pair, which can in principle be fulfilled by keeping one of them moving 

while the other at rest. Two pathways are possible: first, one can apply a current small 

enough to the nanotrack such that the skyrmion moves steadily when  the DW is still 
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stationary, and alternatively, one can design a potential profile to confine the DW and 

leave the skyrmion being free to move. The first scheme has a serious shortcoming, 

that is, fast skyrmion motion cannot be attained because of the low current density.18 

In turn, the skyrmion might be unable to approach the DW close enough. By contrast, 

the second scheme does not restrict the current density, and hence high skyrmion 

velocities are accessible. Comparatively, it is easier to confine a DW using geometric 

defects.45 As such, we design an H-shaped junction with four protruding vertices (Fig. 

1a) to trap a DW pair (Figs. 1b&2) via pinning effect. We choose an electric current to 

drive the skyrmion and exploit the resulting collision dynamics of the skyrmion and 

DW, with several β/α values being considered in simulations to account for the 

divergent results about β reported experimentally.46–49 

We deliver the dynamics of a single skyrmion (Fig. 3) and a single DW pair (Fig. 

4) and the collision dynamics of the skyrmion and DW pair (Figs. 5–7) with the 

current being applied along the nanotrack. It is seen that, in a certain range of J, the 

single skyrmion moves smoothly along the track and passes freely through the 

junction, whereas the single DW pair, albeit slightly distorted, remains trapped inside 

the junction, and for the coexisting skyrmion and DW pair system, the skyrmion can 

get close to the DW pair for collision. By simply varying J, we find a series of 

motional modes for the colliding skyrmion and DW pair. In this system, the skyrmion 

behaves somewhat like a “rigid ball” and the DW pair like an “elastic cord”. 

Especially intriguing is a dynamic mode raised by lower current densities, under 

which the skyrmion firstly moves toward and eventually is stopped ahead of the 
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junction by the pinned DW pair. Using this character, we build a skyrmionic 

logic-NOT gate and develop logical NAND and NOR gates by assembling two NOT 

gates in parallel and in series, respectively (Fig. 8). Complex circuits, capable of 

performing arbitrary logic operations, are expected to be implemented by combining 

these basic components (i.e., NOT, NAND, and NOR). This DW-gated skyrmion 

logic architecture, together with racetrack memory28,29, might open new opportunities 

for skyrmion-based computation. 

MATERIALS AND METHODS 

The nanotrack is a laterally confined ultrathin multilayer film (Fig. 1a) with 

asymmetric interfaces to engender an interfacial DMI8. A skyrmion and a DW pair 

(Fig. 1b) are written into the nanotrack using perpendicular currents across two 

separate nanocontact spin valves at the positions denoted by the elements in yellow 

(Fig. 1a). The H-shaped junction is used mainly to stabilize the DW pair immersed in 

an in-plane current, although it can also assist the nucleation of the DW pair initiated 

by a perpendicular current. In the following, we will describe, firstly, the injection 

process of a DW pair under a vertical current (Fig. 2). The injection of a skyrmion 

with a perpendicular current is not covered here, because it has already been 

numerically delivered in refs.19,30,50. Subsequently, we will examine successively the 

motion dynamics of a skyrmion, a DW pair, and the coexisting skyrmion and DW pair 

triggered by an in-plane current. For these studies, the nanotrack used is 600 nm long 

and 60 nm wide (see Fig. 1b for the definition of geometric parameters). Finally, we 

will demonstrate the logic NAND and NOR operations. To this end, we assemble 
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single nanotracks to form composite structures. For all simulations, the nanotracks are 

1 nm in thickness. 

Micromagnetic simulations, using the public-domain GPU code—MuMax351, 

were carried out to unravel the dynamics of the skyrmion and/or the DW pair under 

electric currents by numerically solving the Landau-Lifshitz-Gilbert equation52,53 

augmented with a spin-torque term, which is either in the Slonczewski form54 or the 

Zhang-Li form55 depending on the current direction (perpendicular or in-plane). For 

all computations, the interfacial DMI term was incorporated into the conventional 

LLG equation.39 Material parameters used in simulations are typical of the Co/Pt 

multilayer system with perpendicular magnetic anisotropy:3,19,56 the saturation 

magnetization Ms580 kAm-1, the exchange stiffness A15 pJm-1, the damping 

constant α0.3, and the electron spin polarization P0.4. For the in-plane current, 

three representative cases of β0.5α, α, and 2α are considered, where β stands for the 

nonadiabaticity efficiency of the Zhang-Li torque. A series of Ku (perpendicular 

magnetocrystalline anisotropy) and D (DMI strength) combinations were checked in 

computations to ensure that the obtained results could be applied to a variety of 

samples.5,40,42,57 The presented results correspond to Ku0.8 MJm-3 (the effective 

uniaxial anisotropy Keff0.6 MJm-3 according to KeffKu(1/2)μ0Ms
2) and D3.5 

mJm-2. The simulation volume, irrespective of its size, is discretized into an array of 

1×1×1 nm3 regular meshes for finite-difference computation. 

RESULTS 

Injection of a confined domain-wall pair 
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Figure 2a shows the vertical structure of the nanocontact used to polarize the 

perpendicular current and shape its path. The current flows across a local area (as 

enclosed by the yellow box in Fig. 2b) in the Co layer beneath the spacer layer, where 

the magnetic moments sense a spin torque. The injection process of the DW pair is 

illustrated in Fig. 2c. Under current action, the magnetic moments at the edges reverse 

at first forming two edge-merons58 (Fig. 2c1), as revealed by the increasing 

topological charge (Fig. 2d). Next, the edge-merons expand in size (Fig. 2c2) and 

approach each other generating an antivortex59 in between (Fig. 2c3), when the total 

energy of the system reaches a peak (Fig. 2e). Further, the two distorted edge-merons 

touch each other (Fig. 2c4)—with a quasi-Bloch-point60 nucleated in between and 

rapidly annihilated—before merging into a DW pair (Fig. 2c5). In the 20 ps time 

interval from 170 ps to 190 ps, the exchange energy, total energy, and topological 

charge are dissipated through releasing the Bloch-point-like object (Fig. 2e). Finally, a 

stable DW pair is formed within the junction, as indicated by the unchanging 

magnetization, topological charge, and energies in Fig. 2(d,e). 

The applied current must be sufficiently large to overcome the energy barrier 

associated with the merging of the two edge-merons, and it must be reasonably small 

to prevent the final DW pair from extending outside the junction by suppressing rapid 

motion of the magnetic moments directly under the current as well as their strong 

correlation with other magnetic moments. The edge magnetic moments respond firstly 

because they have in-plane components (due to the DMI) and thus the spin transfer 

between these magnetic moments and the polarized electrons is most efficient. 
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Current-driven motion of a single skyrmion 

The spin valve for skyrmion injection is analogous in structure as for DW 

injection except for the difference in lateral geometry; the detailed skyrmion-injection 

process has been presented in literatures19,29,30 and  thus is not replicated here. In 

simulations, we preset a bubble-like spin configuration61 and relax it to the 

equilibrium skyrmion for dynamics study. Fig. 3a plots the skyrmion motion modes as 

a phase diagram in the two-dimensional space formed by the current density J and the 

nonadiabaticaity coefficient β. Depending on the values of J and β, the skyrmion can 

pass through the junction (denoted as “Pass” in Fig. 3a), be blocked by the junction 

(denoted as “Fail” in Fig. 3a), or be ejected from the boundary (denoted as “Fail” in 

Fig. 3a), as shown sequentially in Fig. 3(c–e). Note here that “Pass” means that the 

magnetic object, after passing the junction area, can reach the right terminal of the 

nanotrack; otherwise, the relevant mode is categorized into “Fail”. 

The reasons why the skyrmion is stopped at the junction for (J, β)(1.0×1012 

Am-2, 0.15) are: firstly, the junction’s inclusion modifies the energy landscape45 of the 

nanotrack and introduces local potential wells around the junction vertices, and, 

secondly, the skyrmion moves toward the side boundary due to skyrmion Hall 

effect24,62 (i.e., a skyrmion moves transversely because of the Magnus force 

[Fg(1β/α)J] associated with its longitudinal motion19,43) and drops into the potential 

well and cannot escape from it because of the small spin torques (adiabatic term τaJ 

and nonadiabatic term τbβJ;55 therefore both are the smallest among the cases 

considered in Fig. 3a). By contrast, skyrmion expulsion at (J, β)(4.0×1012 Am-2, 0.6) 
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is simply caused by the skyrmion Hall effect and is independent of the junction’s 

presence. In other words, assuming the same (J, β) values, a skyrmion would still be 

annihilated at the boundary even for a smooth nanotrack. 

The skyrmion position versus time curves (Fig. 3f) can provide more information 

about the skyrmion motion dependent on (J, β). The skyrmion under (J, β)(1.0×1012 

Am-2, 0.15) moves at a constant speed initially and stops eventually when it reaches 

the junction region as revealed in the snapshot image (Fig. 3d). Once falling into the 

potential well, the skyrmion is tightly bound there unless a stronger current is applied. 

The difference between the skyrmion motions under (J, β)(2.0×1012 Am-2, 0.15) and 

(1.0×1012 Am-2, 0.15) is that for the former (J, β) the skyrmion can escape from the 

potential well, because the current’s driving force exceeds the well’s restoring force. 

For (J, β)(2.0×1012 Am-2, 0.3), no Magnus force acts on the skyrmion [because 

Fg(1β/α)J0 for βα], so that the skyrmion moves along the middle axis of the 

nanotrack when it is far from the right end (Fig. 3c), resulting in a constant slope in 

the position versus time curve (Fig. 3f). The situation for (J, β)(3.0×1012 Am-2, 0.3) 

is the same as for (2.0×1012 Am-2, 0.3) except for the increased skyrmion velocity. The 

skyrmion ejection at (J, β)(4.0×1012 Am-2, 0.6) manifests itself as vanishing data 

points in the position versus time curve after 1.5 ns. We also note that the skyrmion 

slows down after it enters the junction region and recovers to its initial speed once it 

leaves the junction. The skyrmion deceleration inside the junction originates from the 

dragging of the potential well. When J is decreased to 2.0×1012 Am-2 (β kept at 0.6), 

the skyrmion only sees negligible influence of the junction, as revealed by the 
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uniform slope of the position versus time curve. In this case, the skyrmion trajectory 

is slightly away from the middle axis of the nanotrack since the Magnus force is small 

[recall that Fg(1β/α)J;19,43 J is small despite 1β/α≠0]. 

Based on Fig. 3, we can conclude that the skyrmion motion behaviors in the 

junction-contained nanotrack are much similar as in a straight nanotrack for most 

cases excluding (J, β)(1.0×1012 Am-2, 0.15). 

Current-driven dynamics of a confined domain-wall pair 

Figure 4 represents the results for current-driven dynamics of a confined DW 

pair. As seen from Fig. 4a, for most (J, β) combinations, the DWs fail to escape from 

the confinement potential of the junction. Among the considered cases, only for the 

largest (J, β) [i.e., (4.0×1012 Am-2, 0.6)] can the DW pair succeed in passing through 

the junction area. Fig. 4c shows the DW pair under (J, β)(2.0×1012 Am-2, 0.3). It 

indicates that the DW pair  structure is slightly modified immediately after current 

application (e.g., 0.2 ns; Fig. 4c1), and no more variation occurs to the structure from 

0.2 ns to 10 ns (compare Fig. 4c1 and Fig. 4c2), implying that the DW pair cannot be 

released by small driving forces, even for long action time. For (J, β)(4.0×1012 Am-2, 

0.6), the DW pair is firstly bent and then twisted (Fig. 4d1), resulting in an asymmetric 

DW profile with respect to the nanotrack’s middle axis, which can be attributed to the 

DMI.29,40,41 Subsequently, the near and far DWs coalesce at around the upper 

boundary, where they meet because of the heavy distortion. In this way, a DW pair, 

with two open ends pinned at two separate boundaries, is depinned from one boundary, 

resulting in an intermediate magnetic object with one open end, as shown in Fig. 4d2. 
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After escaping from the junction, the magnetic object converts into an edge-meron58, 

which flows steadily along the nanotrack boundary and ultimately leaves the 

nanotrack at the right terminal. The complex evolution process from the DW pair to 

the edge-meron manifests itself as the changing topological charge and energies of the 

system (Fig. 4e). 

By comparing Figs. 3a&4a, one can find that for every (J, β) 

combination—under which the single skyrmion can pass the junction, the DWs can be 

tightly trapped inside the junction. 

Current-driven collision dynamics of skyrmion and domain-wall pair 

Now, we turn to addressing the collision dynamics of the coexisting skyrmion 

and DW pair in response to an in-plane current. Whether the trapped DWs can stop 

any magnetic objects (the original skyrmion or other secondary objects) passing 

through the junction relies on the current parameters, i.e., (J, β), as shown in Fig. 5a. 

One can see that for lower values of (J, β), no magnetic objects can penetrate the 

junction. Only when J and β both become sufficiently large, can some magnetic 

objects enter into the right branch and move steadily along the nanotrack’s right 

branch. Next, we detailedly analyze the collision processes of the skyrmion and DWs. 

For (J, β)(1.0×1012 Am-2, 0.3), the skyrmion is finally blocked in front of the 

DW pair, as shown in Fig. 5c. Here, the current-induced force cannot overcome the 

repulsion force from the near DW as the skyrmion moves close to it, and eventually 

the two forces come into balance at a certain distance between the skyrmion and the 

near DW. Increasing J while keeping β unchanged will lead the skyrmion to be 
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expelled from the boundary (Fig. 5d). The detailed process is as follows: as the 

skyrmion gets much closer to the near DW, the repulsion force between them further 

distorts the DW pair, so that the asymmetry40,41 of the DW pair relative to the long 

axis of the nanotrack is enhanced and in turn leads to a sizable transverse (i.e., y-axis 

directed) force on the skyrmion. As a result, the skyrmion moves transversely (Fig. 

5d1), touches the lowerleft vertex of the junction (Fig. 5d2), and finally be ejected. 

Under the repulsion force of the far DW, the near DW restores and even extends 

beyond the junction (Fig. 5d3). However, it is still strongly pinned. 

The dynamic processes in Fig. 5(c,d) are apparently reflected on Q(t) and E(t) 

curves in Fig. 5(e,f). From Fig. 5e, we notice that Q changes only slightly with time, 

which is because no drastic structural variation happens to the skyrmion or DW pair 

during current action, the net effect of which is the reduced spacing between the 

skyrmion and the near DW. The jump in exchange energy before 4 ns corresponds to 

the increasing repulsion between the skyrmion and near DW. Nevertheless, from Fig. 

5f, we see a sharp decrease in Q and E at ~2.73 ns (Fig. 5d2), which characterizes the 

breakdown of the skyrmion structure at the boundary.43 

Further increasing the current density while maintaining β at 0.3 can cause the 

DW pair to partially detach from the junction. The whole process is depicted in Fig. 

6a, where the initial process before 1.6 ns is similar to that before 2.7 ns for (J, 

β)(2.0×1012 Am-2, 0.3); compare Fig. 6c with Fig. 5f. At this stage, the skyrmion 

approaches the DW pair enabling mutual repulsion; consequently, the DW pair 

distorts and the skyrmion shrinks, deviates from the nanotrack’s middle axis, and 
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ultimately touches the boundary becoming a fractional skyrmion29. After 1.6 ns, the 

fractional skyrmion continues to shrink in size, and remarkably, the DW pair, 

enclosed by two open strings, is depinned from the lower boundary, becoming the 

other fractional skyrmion encircled by a single string (Fig. 6a5), for which Q is ~0.65 

(Fig. 6c). Under current action, this fractional skyrmion reaches a dynamic 

equilibrium configuration, which is maintained by three independent forces, i.e., Fv, 

Fg, and Fp, as shown in Fig. 6a6. Once the current is switched off, the fractional 

skyrmion decays rapidly and is ejected after ~0.6 ns from the boundary (see Fig. S1 

for detail), since the force balance between Fv, Fg and Fp is broken. On the other hand, 

once the current density increases to 4.0×1012 Am-2, the fractional skyrmion is pulled 

into the nanotrack interior becoming a skyrmion (see Fig. S2). 

Force analysis. The forces—experienced by the fractional skyrmion in 

equilibrium—should satisfy the Thiele equation that reads,17,19,43,44,63 

G×(vsvd)V+D(βvsαvd)0, 

which describes the balance of the Magnus force [FgG×(vsvd)], the confining force 

(Fp-V), and the viscous force [FvD(βvsαvd)]. GGêz is a gyrocoupling vector 

with G being proportional to Q and êz representing the unit vector along z axis, V is 

the confining potential due to boundaries, and D(Dxx 

Dyx

Dxy 

Dyy
)(D 

0  0 
D) is a dissipation tensor. 

vd is the drift velocity of a spin texture, and vs-[γħP/(2μ0eMs)]Jêx is the velocity of 

conduction electrons,55 where êx is the unit vector along x, γ the gyromagnetic ratio, μ0 

the vacuum permeability, ħ the reduced Planck constant, and e the elementary charge. 

Here, the fractional skyrmion is static (dynamically stabilized), i.e., vd0; therefore, 
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FgG×vs and FvDβvs, which allow us to identify the directions of the two forces (as 

labeled in Fig. 6a6). In the present case, the confining force Fp arises sorely from the 

boundaries and acts as a passive force to counteract the Magnus and viscous forces, 

leading to zero net force upon the fractional skyrmion. 

When the current density increases further such that (J, β)(4.0×1012 Am-2, 0.3), 

the DW pair converts into a skyrmion, as illustrated in Fig. 6b. The process of the first 

1 ns still resembles the initial processes described above [compare Fig. 6(a2,b2)]. 

Because of the increased current density, the skyrmion gets closer to the DW pair, 

making the latter to undergo stronger distortion. As a result, the two DWs merge at the 

upper boundary forming a fractional skyrmion (#2 in Fig. 6b3), different from what 

occurs in Fig. 6a, and meanwhile, the skyrmion touches the lower boundary giving the 

other fractional skyrmion (#1). Next, as the fractional skyrmion #1 continues to move 

rightward, the fractional skyrmion #2 is forced to depin from the junction and 

transform into an elongated magnetic bubble19,29 (Fig. 6b4). Subsequently, the 

fractional skyrmion #1 leaves the nanotrack and the bubble (#2) relaxes into a regular 

skyrmion. Thereafter, the new skyrmion moves along the nanotrack’s middle axis and 

melts at the right terminal. The two events, i.e., the conversion from a DW pair to a 

skyrmion and the annihilation of the new skyrmion, manifest themselves as two 

abrupt drops in the Q(t) curve of Fig. 6d, from ~1.5 to 1.0 and 1.0 to 0, respectively. 

In Figs. 5 and 6, the dynamic processes are presented detailedly for β0.3. Now, 

we go into the details for β0.6 (Fig. 7). For (J, β)(3.0×1012 Am-2, 0.6), because of a 

Magnus force, the skyrmion deviates from the nanotrack’s middle axis19,43 towards the 
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upper boundary in approaching the DW pair (Fig. 7a1). The DW pair depins from the 

junction at the upper boundary (Fig. 7a2) in response to the repulsion force from the 

skyrmion. The newly generated fractional skyrmion no longer detaches from the 

lower boundary as in Fig. 6(a,b), where the repulsion force from the annihilating 

skyrmion dominates the DW pair depinning. In this case, the complete skyrmion still 

contributes a repulsion force, which tends to expel the new fractional skyrmion from 

the nanotrack. Since βα, a Magnus force happens to the fractional skyrmion and 

counterbalances the repulsion force from the skyrmion, so that the fractional skyrmion 

is dynamically protected from being ejected and converts into an edge-meron58 (Fig. 

7a4). After passing the junction, the skyrmion and the edge-meron moves steadily in 

the right branch and reach the right terminal [Fig. 7(a5–a8)]. The drops in Q(t) curve in 

Fig. 7c around 1.3 ns, 2.6 ns, and 3.2 ns denote the edge-meron depinning from the 

junction, the edge-meron annihilation, and the skyrmion annihilation at the right 

terminal, respectively. 

For (J, β)(4.0×1012 Am-2, 0.6), there is no interaction between the skyrmion and 

the DW pair because of a large distance between them. Thus, the motions of the two 

objects are fully independent. The motions of the coexisting skyrmion and DW pair 

(Fig. 7b) appear to be a superposition of the individual motions of the single skyrmion 

and the single DW pair (Figs. 3&4). 

The behaviors of the coexisting skyrmion and DW pair can be briefly 

summarized as follows. For (J, β)(1.0×1012 Am-2, 0.3), the skyrmion is blocked in 

front of the junction by the DW pair, although the latter is slightly modified in shape. 
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For (J, β)(2.0×1012 Am-2, 0.3), the skyrmion is stopped ahead of the junction and 

ejected from the lower boundary, and the DW pair is distorted. For (J, β)(3.0×1012 

Am-2, 0.3), the DW pair blocks the skyrmion and pushes it out of the nanotrack, and 

eventually the DW pair is converted into a fractional skyrmion stabilized dynamically. 

For (J, β)(4.0×1012 Am-2, 0.3), the DW pair still blocks the skyrmion by pushing it 

out of the nanotrack, but meanwhile the DW pair is entirely depinned from the 

junction and becomes a skyrmion. For (J, β)(3.0×1012 Am-2, 0.6), the DW pair no 

longer blocks the skyrmion and is forced to depin from the junction becoming an 

edge-meron. For (J, β)(4.0×1012 Am-2, 0.6), both the skyrmion and the DW pair 

overcome the barrier of the junction and enter the right arm, although the skyrmion 

annihilates immediately at the upper boundary and the DW pair converts into an 

edge-meron. 

The rich collision dynamics of the coexisting skyrmion and DW pair embodies 

the complex competition among the current-induced forces19,43 (i.e., viscous force and 

Magnus force), the confining force due to boundaries, and the repulsive force between 

magnetic objects. Approximately, the higher the current density is, the nearer the 

skyrmion can approach the DW pair and in turn the stronger the repulsion between the 

skyrmion and the DW pair. The ejection of the skyrmion from the nanotrack shown in 

Figs. 5d&6 is primarily due to the repulsion force other than the Magnus force, which 

however is in charge of the skyrmion ejection in Fig. 3e. The strength and direction of 

the repulsive force are determined by the shapes, sizes, positions, and spacing of the 

skyrmion and the DW pair, which are rapidly evolving under the simultaneous action 
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of the aforementioned forces. Furthermore, as presented above, the Magnus and 

viscous forces are a function of the drift velocity (vd) of a magnetic object, and the 

confining force relies on the shape, size, and position of a magnetic object.19,43,63 

Therefore, the forces and the motional states are mutually dependent, which makes it 

impossible to analytically address the collision dynamics of the coexisting skyrmion 

and DW pair. 

Logic operations by domain-wall-mediated skyrmion motion 

Now, let us neglect the detailed motion processes of the skyrmion and the DW 

pair and simply concentrate on the blocking effect of the DW pair on the skyrmion by 

comparing Figs. 3a,4a&5a. Clearly, for most combinations of (J, β), if no DW pair is 

contained in the junction, a skyrmion can pass through the junction; if a DW pair is 

present in the junction, a skyrmion cannot pass through the junction, since it is either 

stopped in front of the DW pair or pushed out. This is indeed equivalent to a 

logic-NOT operation,27 for which the presence of the DW pair (skyrmion) in the 

junction (right branch) of the nanotrack is encoded into “1” at the input (output) 

terminal and their absence into “0”. In this logic-NOT gate, the skyrmion behaves as a 

carrier of information and the DW pair as a gatekeeper that controls the information 

flow. 

A logic-NOT gate is a 1-input signal-processing component; nevertheless, before 

any arbitrary logical functions can be implemented, at least one 2-input gate has to be 

constructed  preliminarily.27 By virtue of the structural characters of the logic-NOT 

gate, we propose two types of such components—NAND and NOR gates64–66. The 
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schematic architectures are shown in Fig. 8. The NAND gate is built from two NOT 

gates connected in parallel, and the NOR gate is based on two serially connected NOT 

gates. For each 2-input gate, the two inputs are encoded into the individual magnetic 

states of the two junctions, and the output is encoded into the magnetic state of the 

right arm. 

We numerically test the functionality of the proposed 2-input gates with (J, 

β)(2.0×1012 Am-2, 0.3), and the operation results for the NAND and NOR gates are 

illustrated in Fig. 8(a–c) and Fig. 8(d–f), respectively. The left panels show the initial 

states for each operation. A current is switched on at 0 ns to move the skyrmion carrier, 

and for the NAND (NOR) gate the magnetic state at the output port is measured at 3.5 

ns (5.5 ns). Once one or more skyrmions are detected, the output will be recognized as 

“1”; otherwise, as “0”. The detection can be achieved using GMR effect or by virtue 

of the emergent electrodynamics intrinsic to skyrmions. Using this coding scheme, the 

truth tables for the two gates are derived. Note that the operation details of 1|0→1 for 

NAND and 1|0→0 for NOR are omitted here, since they resemble those of 0|1→1 and 

0|1→0, respectively. 

DISCUSSION 

Scrutinizing the collision processes, one can find that even for β=0.3, the 

skyrmion always deviates from the middle axis once it is close to the near DW. 

However, in this case no transverse force can emerge from a current since βα leads 

to zero Magnus force.19,43 Therefore, the transverse skyrmion motion should be due to 

a transverse component of the repulsion force, which can be ascribed to the 
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asymmetry in the DW profile.40,41 

Geometrically, a closed string must not be in contact with any a boundary, and 

once a string intersects a boundary, it is split apart at the contact point. In other words, 

if two DW-ends merge, the merging point must lie at the boundary. Therefore, from 

the string-geometry point of view29, the DW pair after collision can only exist as one 

of the three configurations, namely, a slightly modified DW pair, a fractional 

skyrmion (edge-meron), or a skyrmion. In simulations, we indeed observe all the 

three states, which are dynamically enabled by applying various collision conditions 

set by the current parameters—J as well as β. Regarding the blocking effect of the 

DW pair, there also exist three outcomes, namely, the skyrmion is stopped and the 

DW pair remains trapped inside the junction, which situation prevails for most (J, β) 

combinations considered, or the skyrmion is obstructed and the DW pair is released, 

or the skyrmion passes the junction and the DW pair detaches. 

There is also repulsion between the two DWs forming the pair, especially when 

the near DW is driven close to the far DW and/or when it is distorted by a force either 

from a current or from the skyrmion. During collision, the skyrmion is always rigid 

and well preserves its shape (i.e., without deformation) with its size being gradually 

reduced in approaching the DW. It can  only be corrupted through intersecting 

geometric boundaries.38,41 On contrary, the DWs are rather ‘soft’; they deform in 

response to the forces the current and/or the skyrmion exert. Owing to the softness of 

the DW pair, there is no restriction on the geometric configuration of the evolving 

DW pair, so that multiple motion modes can be dynamically activated for the 
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coexisting skyrmion and DW pair by varying current densities. Here, the topological 

property of a spin texture manifests itself again. The skyrmion is protected by its 

quantized topological charge from being distorted13,20 regardless the current 

parameters, whereas the DW pair, lacking such protection, is twisted, stretched, and/or 

merged depending strongly on the current parameters. 

We would like to mention that, Kunz67 numerically addressed magnetic 

field-driven collision of transverse DWs in soft magnetic nanowires, which was found 

to be able to annihilate DWs or render a 360 DW depending on the relative 

alignments of the DWs, and furthermore he demonstrated collision-assisted DW 

depinning from a notch under an eightfold smaller field. In a seminal work of 2005, 

Allwood et al.27 experimentally demonstrated a set of DW-based logic gates operated 

using pulsed magnetic fields, which has inspired enormous research activities on both 

fundamental and technological issues of DWs. In the long term, DWs might have to 

eventually give way to skyrmions for magnetic memory and logic applications, since 

the latter promises denser and more energy-efficient devices.18 Recently, our group32 

demonstrated another two kinds of skyrmion-based, 2-input logical gates, that is, 

AND and OR, which are based on a skyrmion-merging architecture and would require 

sophisticated procedures for practical fabrication. In a later work33, we proposed a 

voltage-gated skyrmion transistor, which possesses a simple structure and can indeed 

behave as a logical NOT gate, if the input and output are encoded into the control 

voltage and local magnetization orientation, respectively. Despite the similarity in 

circuit structure to the voltage-gated gate, the NOT and resulting NAND and NOR 
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gates demonstrated here operate under distinct gating mechanism that originates from 

the skyrmion–DW interplay. 

Magnonics68 (i.e., magnon spintronics), as a rapidly growing research field, 

represents another technological route for circumventing the bottleneck of today’s 

CMOS-based electronics. The prominent advantages that magnonic circuitry can offer 

include the substantially enhanced throughput and energy efficiency resulting from 

the inherent high group velocity and low power of spin waves.69,70 In this aspect, it is 

difficult for skyrmion-based devices to outperform spin wave-based ones unless 

ultrahigh skyrmion mobility can be acquired, for example, by improving spin transfer 

efficiency between driving currents  and local magnetic moments. Compared to 

spin-wave logic64–66, skyrmion logic exhibits better compatibility with racetrack 

memory18,26,28 and thus makes hardware reconfiguration easier, since the former uses 

magnons rather than skyrmions as information carriers. 

It is worth noting that in this proof-of-principle demonstration of DW-gated 

skyrmion logic, the Zhang-Li form of spin torques is used to trigger skyrmion 

movement. However, in practical implementation, the device structure and materials 

can be optimized to benefit from the high efficiency of emerging spin-orbit 

torques,71–73 promising energy-efficient operations at far reduced current densities. 

This study helps uncover the difference in the dynamic properties of topological and 

topologically trivial magnetic objects, which are inaccessible by simply using external 

stimuli such as electric currents. 

CONCLUSION 
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In conclusion, we realize current-driven skyrmion–DW collision by introducing 

a planar junction into a magnetic racetrack, which can effectively trap a DW pair 

while allowing a skyrmion to freely pass through. Using this structure, we 

systematically address the collision dynamics of coexisting skyrmion and DW pair, 

and especially, we identify DW-modulated skyrmion motion. Finally, we propose the 

concept of DW-gated skyrmion logic by demonstrating a set of elementary logic 

gates. 
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FIGURE CAPTIONS 

Figure 1. Sketch of device structure. (a) Perspective view of the magnetic racetrack 

with an H-shaped junction. Skyrmions and DWs can be injected into the nanotrack 

using nanocontact spin valves situated at the yellow boxes. (b) A DW pair can be 

trapped in the junction, when a moderate current is applied to the nanotrack, whereas 

a skyrmion can freely flow along the nanotrack and gradually approach the DW, 

resulting in a skyrmion–DW collision. The skyrmion–DW repulsion together with 

current-induced torque can trigger complex collision dynamics. The nanotrack is 60 

nm wide and 1 nm thick. The junction size a, b, and c are 20 nm, 10 nm, and 30 nm, 

respectively. 

Figure 2. Writing a DW pair into the junction. (a) Structure of nanocontact spin 

valve. (b) Initial state of the nanotrack. The yellow box encircles the current action 

area. (c) Injection process for the DW pair. Current action time is specified in each 

panel. (d) Topological charge Q and vertical magnetization mz, averaged over the 

entire volume of the nanotrack, against current action time. (e) Exchange energy Eex 

and total energy Etot against current action time. The vertical dashed lines in panels d, 

e mark the temporal moments specified in panel c. 

Figure 3. Current-driven skyrmion motion. (a) Skyrmion behavior versus current 

parameters. ‘Pass’ (‘Fail’) means that the skyrmion can (cannot) pass through the 

junction region and reach the right terminal of the nanotrack; ‘Fail’ denotes that the 

skyrmion cannot pass the junction. (b) Initial magnetization state at 0 ns when the 

current is switched on. (c–e) Skyrmion configuration at special time after current 
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turnon. (f) Skyrmion position against current action time for individual (J, β) 

combinations. Zero nanometer and 600 nm correspond to the left and right terminals 

of the nanotrack, respectively. 

Figure 4. Current-driven DW-pair dynamics. (a) DW-pair behavior versus current 

parameters. ‘Pass’ (‘Fail’) means that the DW-pair can (cannot) depin from the 

junction and reach the right terminal. (b) Initial magnetization state at 0 ns when the 

current is switched on. (c, d) Spin configuration at special time after current turnon. In 

panel d, the DW-pair actually converts into an edge-meron. (e) Energies Eex, Etot and 

topological charge Q against current action time. The solid lines are for panel d. The 

dashed line for panel c, displaying Q against time, is flat, agreeing with the tiny 

structural change in the DW pair for (J, β)(2.0×1012 Am-2, 0.3). 

Figure 5. Current-driven skyrmion–DW collision dynamics. (a) Blocking effect 

versus current parameters. ‘Pass’ means that one or more magnetic objects resulting 

from the skyrmion–DW collision can pass the junction and reach the right terminal; 

‘Fail’ denotes that no magnetic object can pass through the junction and reach the 

right terminal. (b) Initial magnetization state at 0 ns when the current is switched on. 

(c, d) Spin configuration at special time after current turnon. In panel c, the skyrmion 

is stopped ahead of the DW pair; in panel d, the skyrmion is expelled from the lower 

boundary. (e, f) Energies Eex, Etot and topological charge Q against current action time. 

Panels e, f correspond to panels c, d, respectively. 

Figure 6. Skyrmion–DW collision at increased current densities with β0.3. (a, b) 

Spin configuration at special time after current turnon. In both panels a, b, the original 
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skyrmion is ejected from the lower boundary. In panel a, the DW pair is partially 

depinned from the junction, becoming a dynamically stabilized fractional skyrmion; 

in panel b, the DW pair is converted into a new skyrmion. (c, d) Energies Eex, Etot and 

topological charge Q against current action time. Panels c, d correspond to panels a, b, 

respectively. 

Figure 7. Skyrmion–DW collision with β0.6. (a, b) Spin configuration at special 

time after current turnon. In both panels a, b, the DW pair is converted into an 

edge-meron. In panel a, the skyrmion passes through the junction and reaches the 

right terminal; in panel b, the DW pair goes through the junction area but melts 

immediately at the upper boundary. Note that there is no skyrmion–DW interplay in 

panel b; each individual objects respond independently to the current-induced torque. 

(c, d) Energies Eex, Etot and topological charge Q against current action time. Panels c, 

d correspond to panels a, b, respectively. 

Figure 8. Layout and operation of logic NAND and NOR functions. Two single 

NOT gates connected in parallel or in serial make a NAND or a NOR gate. The purple 

and orange boxes denote the input and output ports, respectively. (a–c) Logic NAND 

gate. (d–f) Logic NOR gate. The left panels show the initial states before operation, 

and the right panels give the results after operation. The truth tables are attached on 

the right. For each operation, a current with (J, β)(2.0×1012 Am-2, 0.3) is used as a 

driving force. The current action time is 3.5 ns for NAND and 5.5 ns for NOR. 
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