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Identifying spatial invasion of pandemics on
metapopulation networks via anatomizing

arrival history*
Jian-Bo Wang,Student Member, IEEE, Lin Wang,Member, IEEE, and Xiang Li,Senior Member, IEEE

Abstract—Spatial spread of infectious diseases among pop-
ulations via the mobility of humans is highly stochastic and
heterogeneous. Accurate forecast/mining of the spread process
is often hard to be achieved by using statistical or mechanical
models. Here we propose a new reverse problem, which aims
to identify the stochastically spatial spread process itself from
observable information regarding the arrival history of in fectious
cases in each subpopulation. We solved the problem by devel-
oping an efficient optimization algorithm based on dynamical
programming, which comprises three procedures: i, anatomizing
the whole spread process among all subpopulations into disjoint
componential patches; ii, inferring the most probable invasion
pathways underlying each patch via maximum likelihood estima-
tion; iii, recovering the whole process by assembling the invasion
pathways in each patch iteratively, without burdens in parameter
calibrations and computer simulations. Based on the entropy
theory, we introduced an identifiability measure to assess the
difficulty level that an invasion pathway can be identified. Results
on both artificial and empirical metapopulation networks show
the robust performance in identifying actual invasion pathways
driving pandemic spread.

Index Terms—Spatial spread, infectious diseases, metapopula-
tion, networks, process identification, identifiability.

I. I NTRODUCTION

T HE frequent outbreaks of emerging infectious diseases in
recent decades lead to great social, economic, and public

health burdens [1]-[3]. This trend is partially due to the urban-
ization process and, in particular, the establishment of long-
distance traffic networks, which facilitate the dissemination of
pathogens accompanied with passengers [4], [5]. Real-world
examples include the trans-national spread of SARS-CoV in
2003 [6], the global outbreak of A (H1N1) pandemic flu in
2009 [7], [8], avian influenza in southeast Asia [9], [10], the
spark of Ebola infections in western countries in 2014 [11],
and recent potential outbreak of MERS [12].
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During almost the same epoch, the theory of complex
networks has been developed as a valuable tool for modeling
the structure and dynamics of/on complex systems [13]-[16].
In the study of network epidemiology, networks are often
used to describe the epidemic spreading from human to
human via contacts, where nodes represent persons and edges
represent interpersonal contacts [17]-[22]. To characterize the
spatial spread between different geo-locations, simple network
models are generalized with metapopulation framework, in
which each node represents a population of individuals that
reside at the same geo-region (e.g. a city), and the edge
describes the traffic route that drives the individual mobility
between populations [18], [19]. The networked metapopulation
models have been applied to study the real-world cases such
as SARS [6], A (H1N1) pandemic flu [23], Ebola [11], which
can capture some key dynamic features including peak times,
basic epidemic curves, and epidemic sizes. Quantitative model
results can be used to evaluate the effectiveness of control
strategies [24]-[28], such as optimizing the vaccine allocation.

The numerical computing of large-scale metapopulation
models is time-consuming, because of the requirement of
high-level computer power. The model calibrations need high-
resolution data for incidence cases, which may not be available
or accurate during the early weeks of initial outbreaks [4].
Hence, continuous model training with data collected in real-
time is essential in achieving a reliable model prediction
[29]. Generally, model results are the ensemble average over
numerous simulation realizations, which aims to predict the
mean and variance of epidemic curves, while in reality there
is no such thing described by the average over different
realizations [30]. To extract more meaningful informationfrom
epidemic data generated by surveillance systems, recent stud-
ies (particularly in engineering fields) start paying attention
to reverse problems, such as source detection and network
reconstruction, which are briefly summarized here.

A. Related Works

The theory of system identification has been established in
engineering fields, usually used to infer system parameters.
The use of system identification in epidemiology mainly
focuses on inferring epidemic parameters, such as the trans-
mission rate and generation time [31], which relies on con-
structing dynamical systems of ordinary differential equations.
The methodology of system identification is not helpful in
solving high-dimensional stochastic many-body systems, such
as metapopulation models.
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Source detection for rumor spreading on complex networks
is becoming a popular topic, attracting extensive discussions
in recent years. The target is to figure out the causality that
can trigger the explosive dissemination across social networks,
such as Facebook, Twitter, and Weibo. For example, using
maximum likelihood estimators, D. Shah and T. Zaman [32]
proposed the concept of rumor centrality that quantifies the
role of nodes in network spreading. W. Luo et al. [33] designed
new estimators to infer infection sources and regions in large
networks. Z. Wang et al. [34]-[36] extended the scope by using
multiple observations, which largely improves the detection
accuracy. Another interesting topic is the network inference,
which engages in revealing the topology structure of a network
from the hint underlying the dynamics on a network [37].
Some useful algorithms (e.g. NetInf) have been proposed in
refs. [38]-[42]. Note that the algorithms for source detection
and network inference are not feasible in identifying the
spreading processes on metapopulation networks.

Using metapopulation networks models, some heuristic
measures have been proposed to understand the spatial spread
of infectious diseases, which are most related to this work.
Gautreau et al. [30] developed an approximation for the mean
first arrival time between populations that have direct connec-
tion, which can be used to construct the shortest path tree
(SPT) that characterizes the average transmission pathways
among populations. Brockmann et al. [4] proposed a measure
called ‘effective distance’, which can also be used to build
the SPT. Using a different method based on the maximum
likelihood, Balcan et al. [43] generated the transmission path-
ways by extracting the minimum spanning tree from extensive
Monte Carlo simulation results. Details about these measures
will be given in Sec. IV, which compares the algorithmic
performance.

B. Motivation

Current algorithms to inferring pandemic spatial spread
generally make use of the topology features of metapopulation
networks or extensive epidemic simulations. The resulting
outcome is an ensemble average over all possible transmission
pathways, which may fail in capturing those indeed transmit-
ting the disease between populations, because of the high-level
stochasticity and heterogeneity in the spreading process.

Good news comes from the development of modern sentinel
and internet-based surveillance systems, which becomes in-
creasingly popular in guiding public health control strategies.
Such systems can or will provide high-resolution, location-
specific data on human and poultry cases [44]. Human mobil-
ity data are also available from mass transportation systems or
GPS-based mobile Apps [3]. Integrating these data often used
in different fields, a natural reverse problem poses itself,which
is the central interest of this work: Is it probable to design
an efficient algorithm to identify or retrospect the stochastic
pandemic spatial spread process among populations by linking
epidemic data and models?

C. Our Contributions

Main contributions of this work are as follows:

i) A novel reverse problem of identifying the stochastic
pandemic spatial spread process on metapopulation networks
is proposed, which cannot be solved by existing techniques.
ii) An efficient algorithm based on dynamical programming is
proposed to solve the problem, which comprises three proce-
dures. Firstly, the whole spread process among all populations
will be decomposed into disjoint componential patches, which
can be categorized into four types of invasion cases. Then,
since two types of invasion cases contain hidden pathways,
an optimization approach based on the maximum likelihood
estimation is developed to infer the most probable invasion
pathways underlying each path. Finally, the whole spread
process will be recovered by assembling the invasion pathways
of each patch chronologically, without burdens in parameter
calibrations and computer simulations.
iii) An entropy-based measure calledidentifiability is intro-
duced to depict the difficulty level an invasion case can
be identified. Comparisons on both artificial and empirical
networks show that our algorithm outperforms the existing
methods in accuracy and robustness.

The remaining sections are organized as follows: Sec. II
provides the preliminary definitions and problem formula-
tion; Sec. III describes the procedures of our identification
algorithm, and introduces the identifiability measure; Sec. IV
performs computer experiments to compare the performance
of algorithms; and Sec. V gives the conclusion and discussion.

II. PRELIMINARY AND PROBLEM FORMULATION

This section first elucidates the structure of networked
metapopulation model, and then provides the preliminary
definitions and problem formulation.

A. Networked Metapopulation Model

In the networked metapopulation model, individuals are
organized into social units such as counties and cities, de-
fined as subpopulations, which are interconnected by traffic
networks of transportation routes. The disease prevails in
each subpopulation due to interpersonal contacts, and spreads
between subpopulations via the mobility of infected persons.
Fig. 1 illustrates the model structure.

Within each subpopulation, individuals mix homogeneously.
This assumption is partially supported by recent empirical
findings on intra-urban human mobility patterns [19], [45]-
[48]. The intra-population epidemic dynamics are character-
ized by compartment models. Considering the wide applica-
tions in describing the spread of pathogens, species, rumors,
emotion, behavior, crisis, etc. [32], [33], [35], [49], we used the
susceptible-infected (SI) model in this work. DefineNi as the
population size of each subpopulationi, Ii(t) the number of
infected cases in subpopulationi at timet, β the transmission
rate that an infected host infects a susceptible individual
shared the same location in unit time. As such, the risk of
infection within subpopulationi at time t is characterized by
λi(t) = βIi(t)/Ni. Per unit time, the number of individuals
newly infected in subpopulationi can be calculated from a
binomial distribution with probabilityλi(t) and trails equalling
the number of susceptible personsSi(t).
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Fig. 1. Illustration of a networked metapopulation model, which comprises
six subpopulations/patches that are coupled by the mobility of individuals.
In each subpopulation, each individual can be in one of two disease statuses
(i.e. susceptible and infectious), shown in different colors. Each individual
can travel between connected subpopulation. (a) Networkedmetapopulation.
(b) two subpopulations.

The mobility of individuals among subpopulations is
conceptually described by diffusion dynamics,∂tXi =
∑

j∈ν(i) pjiXj(t) − pijXi(t), where Xi(t) is a placeholder
for Si(t) or Ii(t), ν(i) is the set of subpopulations directly
connected with subpopulationi, and pij is the per capita
mobility rate from subpopulationi to j, which equals the ratio
between the daily flux of passengers from subpopulationi to
j and the population size of departure subpopulationi. The
ensemble of mobility rates0 ≤ pij < 1 defines a transition
matrix P , determined by the topology structure and traffic
fluxes of the mobility network. The inter-population mobility
of individuals is simulated with binomial or multinomial
process (Appendix A). More details in modeling rules can
refer to our review paper [19].

B. Basic Definitions

The epidemic arrival time(EAT) is the first arrival time of
infectious hosts traveling to a susceptible subpopulation. At a
given EAT, at least an unaffected (susceptible) subpopulation
will be contaminated, characterizing the occurrence ofinva-
sion event(s). Herein,S(I) denotes a(an) susceptible(infected)
subpopulation.

For an invasion event, organizing newly contaminated sub-
populations (remaining unaffected prior to that invasion event)
into setS, and infected subpopulations into setI, we define
the four types ofinvasion case(INC) as follows:
(i) I 7→ S: I andS both are composed of a single subpopula-
tion respectively, which represents that a previously unaffected
subpopulation is infected by the new arrival of infectious
host(s) from its unique neighboring infected subpopulation.
(ii) I 7→ nS(n > 1): In this case,I only consists of a single
subpopulation, whileS containsn(n > 1) subpopulations.
This represents thatn previously unaffected subpopulations
are contaminated due to the new arrival of infectious hosts
from their common infected subpopulation inI.
(iii) mI 7→ S(m > 1): S only consists of a single sub-
population, andI containsm(m > 1) subpopulations. This
means that the newly infected subpopulation inS is infected

by the arrival of infected host(s) fromm potential upstream
subpopulations inI through the invasion edges.
(iv) mI 7→ nS(m,n > 1): In this case,S and I both
are composed of no less than two subpopulations, and they
constitute a connected subgraph. Each previously unaffected
subpopulation inS is contaminated due to the simultaneous ar-
rival of infected hosts fromm potential source subpopulations
in I. Each subpopulation inI may lead to the contamination
of at least one but no more thann neighboring downstream
subpopulations inS through the invasion edges. Multiple edges
between any pair of subpopulations are forbidden.

Figure 2(a)–(b) illustrate the two scenarios ofmI 7→
S(m > 1) and mI 7→ nS(m,n > 1). A decomposition
procedure ofinvasion partition(INP) is used to generate the
components of invasion cases in each invasion event. The
heuristic search algorithm to proceed the invasion partition
is given in Algorithm I if an invasion event occurs.

C. Problem Formulation

Suppose that the spread starts at an infected subpopulation.
It forms the invasion pathways when this source invades many
susceptible subpopulations and the cascading invasion goes
on. We record the infected individuals of each subpopulation
per unit time. From the data, we should know when a
subpopulation is infected and how many infected individuals
in this subpopulation, but we may not know which infected
subpopulations invade this subpopulation if it has (m, m ≥ 2)
infected neighbor subpopulations through the corresponding
edge(s) (see Figure 2(a)) at that time step. The question of
interest is how to identify the instantaneous spatial invasion
process just according to the surveillance data. Herein, we
know the network topology including subpopulation size and
travel flows, such as the city populations of airports and
travelers by an airline of the real network of American airports
network.

Define an invasion pathway which are the directed edges
that infected individuals invade to susceptible subpopulations
at EAT. To identify it, we proceed the following invasion
pathways identification(IPI) algorithm:
i) Decompose the whole pathways as four types of invasion
cases by the invasion partition at each EAT; Suppose the whole
invasion pathwaysT are anatomized intoΛ of four invasion
cases. Let̂ai denote the identified invasion pathways based on
the surveillance dataG of that invasion casei and the given
graphG. According to the (stochastic) dynamic programming,
we have the following equation to optimally solve this problem

Twhole invasion pathways= opt
Λ
∑

i=1

âi. (1)

ii) For each invasion case, we first judge whether it has a
unique set of invasion pathways or more than one potential
invasion pathways. When an invasion case has more than one
possible invasion pathway, each set of which is called potential
invasion pathway. If it has more than one potential invasion
pathway, we estimate the true invasion pathwaysa∗i , denoted
by âi, based on the surveillance dataG of that invasion case
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Fig. 2. (a) An example of themI 7→ S invasion case, in whichm infected subpopulations invade one susceptible subpopulation. The red patches denote the
infected subpopulations, while the plain patch is the subpopulation that remains susceptible before timet but will be contaminated during that time step due
to the arrival of infectious cases from upstream infected subpopulations. (b) An example of themI 7→ nS invasion case, in whichm infected subpopulations
invaden(n ≥ 2) susceptible subpopulations.

and the given graphG. A potential pathway belonged to that
invasion case is denoted by∀ai ∈ GINCi

. To make this
estimation, we shall compute the likelihood of a potential
invasion pathwayai. With respect to this setting, the maximum
likelihood (ML) estimator ofa∗i with respect to the networked
metapopulation model given by that invasion case maximizes
the correct identification probability. Therefore, we define the
ML estimator

âi = argmax
ai∈GINCi

P (ai|GINCi
), (2)

whereP (ai|GINCi
) is the likelihood of observing the poten-

tial pathwayai assuming it’s the true pathwaya∗i . Thus we
would like to evaluateP (ai|GINCi

) for all ai ∈ GINCi
and

then choose the maximal one.

Algorithm 1 Invasion Partition
1: for an invasion event, collect all newly infectedS as
initially S and their previously infected neighbors asI;
2: start with an arbitrary elementSi in setS;
3: find all neighborsI∗ of Si in set I;
4: find the new neighborsS∗ in the S if have;
5: find the new neighbors in theI if have;
6: repeat the above two steps until cannot find any new
neighbors inS and I, we get an invasion case consisting of
I
∗ andS∗, then update theS and I;

7: repeat the 2-6 steps to get new invasion cases until there
are no elements inS.

III. IDENTIFICATION ALGORITHM TO INVASION PATHWAY

According to our above invasion partition decompose al-
gorithm, it is easy to identify the invasion pathways for the
invasion case scenarioI 7→ nS(n ≥ 1) (they have the only
invasion pathway from their neighbor infected subpopulation).
Thus our invasion pathways’ identification algorithm mainly
deals with the other two kinds of invasion casesmI 7→
S(m > 1) andmI 7→ nS(m,n > 1). To make the description
clear, we restate the termIi denotes subpopulationi which is
infected, and its number of infected individuals ofIi at time
t is denoted byIi(t).

As time evolves, infected hosts travel among subpopu-
lations, inducing the spatial pandemic dispersal. For each
invasion case, by analyzing the variance of infected hosts
in each subpopulationi, we define three levels of extent of
subpopulations observability to reflect the information held for
the inference of relevant invasion pathway:
(i) Observable Subpopulation:Subpopulationi is observable
during an invasion case, given the occurrence of the three most
evident (subpopulation’s) status transitions. The first refers
to the transitionSi → Ii, accounting that the previously
unaffected subpopulationi is contaminated during that inva-
sion case due to the arrival of infected hosts. The second
concerns the transitionIi → Si, in which the previously
infected subpopulationi becomes susceptible again during
that invasion case, since the infected hosts do not trigger a
local outbreak and leavei. In the third transitionSi → Si,
despite of having infected subpopulations in the neighborhood,
subpopulationi remains unaffected during that invasion case
due to no arrival of infected hosts. Figure 3(a) illustratessuch
observable transitions.
(ii) Partially Observable Subpopulation:Subpopulationi is
partially observable during an invasion case occurring at time
t, if its number of infected hosts is decreased, i.e.,Ii(t) <
Ii(t− 1) andIi(t) > 0, which implies that at least∆Ii(t) =
|Ii(t) − Ii(t − 1)| infected hosts leavei during that invasion
case. It is impossible to distinguish their mobility destinations
unless the invasion caseI 7→ S or I 7→ nS occurs. Fig. 3(b)
illustrates the partially observable subpopulation.
(iii) Unobservable Subpopulation: Subpopulationi is unob-
servable during an INC occurring at timet, if its number of
infected hosts has not been decreased, i.e.,Ii(t) ≥ Ii(t− 1),
considering the difficulty in judging whether there present
infected hosts leaving subpopulationi during that invasion
case. See Fig. 3(c) for an illustration.

We further categorize the edges emanated from each in-
fected subpopulation in setI into four types, i.e., invasion
edges, observable edges, partially observable edges and unob-
servable edges:
(i) Invasion Edges:In an invasion case, invasion edges rep-
resent each route emanated from subpopulationi in I to
subpopulationj in S. They are considered as a unique cate-
gory, because invasion edges contain all invasion pathway (an
invasion pathway must be an invasion edge, but an invasion
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Fig. 3. Illustration of neighbors classification in terms ofstatus transitions:
i) unobservable subpopulations ii) partial unobservable subpopulations, and
iii) observable subpopulations.

edge may not an invasion pathway). In Figure 2(a)-(b), the
invasion edges are illustrated. The following three types of
edges are not belong to the routes between setsI andS, but
they are the edges emanated fromi to subpopulationj that is
not belong toS.
(ii) Observable Edges:For infected subpopulationi in I, any
edge emanated fromi is observable, if it connectsi with
observable subpopulationj that only experiences the transition
Sj → Sj or Ij → Sj from tEAT−1 to tEAT . Here, it is
intuitive that in subpopulationj there is no arrival of infected
hosts from subpopulationi.
(iii) Partially Observable Edges:For infected subpopulationi
in I, any edge is partially observable, if it connectsi with a
partially observable subpopulation.
(iv) Unobservable Edges:For infected subpopulationi in I,
any edge is unobservable, if it connectsi with an unobservable
subpopulation.

The classification of subpopulations and edges are used
to compute the corresponding subpopulation’s transferring
estimator in the following section III of both invasion cases
of mI 7→ S(m > 1) andmI 7→ S(m,n > 1).

A. The Case ofmI 7→ S(m > 1)

As shown in Figure 2(a), a typical INCmI 7→ S(m > 1)
is composed of two sets of subpopulations, i.e., the previ-
ously infected subpopulationsI = {I1, I2, . . . , Im} and the
previously unaffected subpopulationS = {S1}. Suppose that
subpopulationS1 is contaminated at timet due to the appear-
ance ofH infected hosts (H is a positive integer number) that
come from the potential sources inI. If the actual number of
infected hosts from subpopulationIi is Hi1, i ∈ I, we have

m
∑

i=1

Hi1 = H, (3)

with the conditions0 ≤ Hi1 ≤ H andHi1 ≤ Ii(t− 1).
(i) Accurate Identification of Invasion Pathway

Given a few satisfied prerequisites, Eq. (3) can has a
unique solution, which implies that the invasion pathways of
that invasion case can be identified accurately. Theorem 1
elucidates this scenario.

Theorem 1 (Accurate Identification of Invasion Pathway):With
the following conditions: 1) Amongm possible sources illus-
trated in setI, there are onlym′(m′ ≤ m) partially observable
subpopulationsI′, whose neighboring subpopulations (exclud-
ing the invasion destinationS1) only experience the transition
S to S or I to S at that EAT, 2)

∑

i∈I′

[

Ii(t−1)−Ii(t)
]

= H,
the invasion pathway of an invasion casemI 7→ S(m > 1)
can be identified accurately.

Proof: According to the definition of observability, in an
INC, the number of local infected hosts in an involved partially
observable sourcei will be decreased by

[

Ii(t−1)−Ii(t)
]

due
to their departure. If the subpopulations in the neighborhood
of i only experience the transition ofSi to Si or Ii to Si

from tEAT−1 to tEAT , they are impossible to receive the
infected hosts from subpopulationi. Therefore, the newly
contaminated subpopulationS1 is the only destination for
those infected travelers departing from the partially observable
sources. Sincem′ ≤ m, the second condition guarantees that
Eq. (3) only has a unique solution, which corresponds to the
accurate identification of invasion pathways of this invasion
case.

(ii) Potential Invasion Pathway
If the conditions of Theorem 1 are unsatisfied, Eq. (3) has
multiple solutions, each solution corresponds to a set of po-
tential invasion pathways that can result in the related invasion
case. Due to the heterogeneity in the traffic flow on each edge
and the number of infected hosts within each contaminated
source, each set of potential pathways is associated with a
unique likelihood, which also identifies the occurrence proba-
bility of the corresponding solution of Eq. (3). Therefore,the
identification of invasion pathway that induce an invasion case
can be transformed to searching the most probable solution of
Eq. (3).

We define the solution spaceΦ of Eq. (3) of the invasion
casemI 7→ S(m > 1), which subjects to two conditions:
(i)

∑m
i=1 Hi1 = H; (ii) ∀Hi1, Hi1 ≤ Ii(t − 1). The second

condition is obvious, since the number of infected travelers
departing from the sourceIi cannot exceedIi(t − 1). Let us
assume thatΦ containsM solutions, and a typical solution
is formulated asσj = {H

(j)
i1 , i = [1, ...,m]}. Obviously, each

solutionσj corresponds to a potential invasion pathwayaj .

Through the invasion casemI 7→ S(m > 1), the observed
event E shows that the destinationS1 is contaminated due
to the arrival of totallyH infected hosts from the potential
sourcesIi, i = [1, ...,m]. With this posterior information, we
first measure the likelihood of each possible solutionσj , which
corresponds to the reasoning event that for each sourceIi,
i ∈ [1,m],Hi1 infected hosts are transferred toS1. It is evident
that∀j, P (EmIS |σj) = 1, sinceσj will lead to the occurrence
of eventEmIS, which corresponds toGmIS .

According to Bayes’ theorem, the likelihood of the solution

5



σj is characterized by

P (σj |EmIS) = P (EmIS |σj)P (σj)
/

P (EmIS)

= P (EmIS |σj)P (σj)
/

M
∑

j=1

[

P (EmIS |σj)P (σj)
]

= P (σj)
/

M
∑

j=1

[

P (σj)
]

=

m
∏

k=1

Ω(H
(j)
k1 )

/

M
∑

i=1

m
∏

k=1

Ω(H
(i)
k1 ),

(4)
where M represents the number of potential solutionσj ,
and the last itemΩ(H(i)

k1 ) represents the mobility likelihood
transferring estimator of infected subpopulationIk in I.

One linchpin of our algorithm in handling the scenario
mI 7→ S(m > 1) is to estimate the probability of transferring
Hi1 infected hosts from each infected subpopulationIi, i ∈ I,
to the destination subpopulationS1. Based on the indepen-
dence between the intra-subpopulation epidemic reactionsand
the inter-subpopulation personal diffusion, we introducea
transferring estimatorto analyze the individual mobility of
each sourceIi, which is in particular useful if there are
partially observable and unobservable edges emanated from
the focal infected subpopulation.

The specific formalisms of the transferring estimator are
defined according to the three types of infected subpopulation
Ii consisted of setI which are unobservable subpopulation,
partially unobservable subpopulation and observable subpop-
ulation with transition ofI to S.

Unobservable SubpopulationIi: Due to the occurrence of
mI 7→ S, among allki edges emanated from subpopulation
Ii, there is only one invasion edge in that invasion case,
labeled aski, along which the traveling rate ispki

andHi1

infected hosts are transferred to the destinationS1. Assume
that there areℓi (1 ≤ ℓi < ki) unobservable and partially
unobservable edges, labeled as1, 2, ..., ℓi, respectively. Along
each unobservable or partially unobservable edge, the traveling
rate ispℓ, ℓ ∈ [1, ℓi], andxℓ infected hosts leaveIi. Accord-
ingly, in total ηi =

∑

ℓ xℓ infected hosts leaveIi through the
unobservable and partially unobservable edges. There remain
ki − ℓi − 1 observable edges, labeled asℓi + 1, ..., ki − 1,
respectively. Along each observable edge, the traveling rate is
pℵ, ℵ ∈ [ℓi + 1, ki − 1], andxℵ infected hosts leaveIi. With
probability pi = 1 − pki

−
∑

ℓ pℓ −
∑

ℵ
pℵ, an infected host

keeps staying at sourceIi.

Since the infected hosts transferred by unobservable and
partially unobservable edges are untraceable, it is unableto
reveal the actual invasion pathways resulting in that invasion
case accurately. Fortunately, the message of traveling rates on
each edge is available by collecting and analyzing the hu-
man mobility transportation networks. Therefore, the mobility
multinomial distribution (Appendix A Eq. (31)) can be used to
obtain the conditional probability thatHi1 infected hosts are
transferred from infected sourceIi to destinationS1, which is

measured by the following transferring estimator:

Ωu(Hi1) = P
(

Hi1, pki
; Ii(t− 1);xℓ, pℓ, ℓ = [1, ..., ℓi];

xℵ, pℵ,ℵ = [ℓi + 1, ..., ki − 1];xi, pi
)

, (5)

wherexi accounts for the number of infected hosts that do
not leave sourceIi after the invasion case. Here, the observed
number of infected persons in sourceIi before the invasion
case, i.e.,Ii(t − 1), is used for the estimation, since the
probability that a newly infected host also experiencing the
mobility process is very low. Considering the conservationof
infected hosts, and the implication of observable edges (i.e.,
xℵ = 0, ∀ℵ), we haveIi(t − 1) = Hi1 +

∑

ℓ xℓ + xi =
Hi1 + ηi + xi. Taking into account all scenarios that fulfill
the conditionη′i = ηi + xi = Ii(t− 1)−Hi1, the transferring
estimator is simplified by the marginal distribution of Eq.(4),
i.e.,

∑

η′

i=Ii(t−1)−Hi1

P
(

xi, xℓ, ℓ = [1, ..., ℓi]
)

=

∑

η′

i=Ii(t−1)−Hi1

Ii(t− 1)!

Hi1!
∏

ℓ xℓ!xi!
pHi1

ki

∏

ℓ

pxℓ

ℓ pi
xi .

(6)

With independence, the transferring estimator becomes

Ωu =
Ii(t− 1)!

Hi1!η′i!
pHi1

ki

[

∑

ℓ

pℓ + pi

]η′

i

. (7)

Observable SubpopulationIi (Ii to Si): If the infected hosts
of sourceIi all leave to travel fromtEAT−1 to tEAT , the
subpopulationIi is observable at that invasion case. In this
case, we have additional posterior messages, i.e.,I(t) = 0,
∆Ii(t) = I(t − 1). Here, the number of infected hosts
transferred toS1 cannot exceed the total number of infected
travelers departing from sourceIi, i.e., Hi1 ≤ ∆Ii(t). In
this regard, the probability thatHi1 infected hosts arrive
in destinationS1 is measured by the following transferring
estimator

(

∆Ii(t)

Hi1

)

[ pki
∑

ℓ pℓ + pki

]Hi1
[

1−
pki

∑

ℓ pℓ + pki

]

[

∆Ii(t)−Hi1

]

.

(8)
Partially Observable SubpopulationIi: If sourceIi is partially
observable, we can develop the inference algorithm with
an additional posterior message, which reveals that at least
∆Ii(t) = Ii(t) − Ii(t − 1) ≥ 1 infected hosts leave the focal
sourceIi after the occurrence of that invasion case. In order
to measure the conditional probability thatHi1 infected hosts
are transferred from sourceIi to destinationS1, we inspect
all possible scenarios in detail, as follows:
Type 1: ∆Ii(t) ≤ Hi1, i.e., the observed reduction in the
number of infected hosts∆Ii(t) is less than those transferred
from Ii to S1. Here, we consider all cases that are in
accordance with this condition.

If all ∆Ii(t) confirmed infected travelers are transferred
from Ii to S1, the transferring estimator can be used to quan-
tify the conditional probability that the remainingHi1−∆Ii(t)
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infected hosts concerned also visitS1, i.e.,

Ωp

(

Hi1 −∆Ii(t)|Ii(t− 1)−∆Ii(t)
)

=

[

Ii(t−1)−∆Ii(t)
]

!
[

Hi1−∆Ii(t)
]

!η′

i!
p
[Hi1−∆Ii(t)]
ki

[

∑

ℓ pℓ + pi

]η′

i

·

[

pki∑
ℓ pℓ+pki

]∆Ii(t)

, (9)

wherepki

/[
∑

ℓ pℓ+pki

]

represents the relative traveling rate
that any person from sourceIi is transferred toS1, thus the last
item on the right-hand side (rhs) accounts for the probability
that∆Ii(t) confirmed infected travelers all visitS1.

If only a fraction of∆Ii(t) confirmed infected travelers are
transferred fromIi to S1, the situation is more complicated.
Assume that∆Ii(t) − φ (1 ≤ φ < ∆Ii(t)) confirmed trav-
elers successfully come toS1, the corresponding transferring
estimator becomes

Ωp(Hi1 −∆Ii(t) + φ|Ii(t− 1)−∆Ii(t))

=

(

∆Ii(t)

φ

)

[

pki∑
ℓ pℓ+pki

]

[

∆Ii(t)−φ

]

[

1−
pki∑

ℓ pℓ+pki

]φ

[

Ii(t−1)−∆Ii(t)
]

!
[

Hi1−∆Ii(t)+φ
]

!η′

i!
p
[Hi1−∆Ii(t)+φ]
ki

[

∑

ℓ pℓ + pi

]η′

i

, (10)

where the first item on the r.h.s. accounts for the probability
that∆Ii(t)− φ confirmed visitors visitS1.

If all ∆Ii(t) confirmed infected travelers fromIi are not
transferred toS1, the conditional probability that among the
remaining Ii(t − 1) − ∆Ii(t) infected hosts,Hi1 infected
travelers are transferred toS1, which is measured by the
following transferring estimator

Ωp(Hi1|Ii(t− 1)−∆Ii(t)) =
[Ii(t−1)−∆Ii(t)]!

Hi1!η′

i!
·

pHi1

ki
[
∑

ℓ pℓ + pi]
η′

i [1−
pki∑

ℓ pℓ+pki

]∆Ii(t), (11)

where the last item on the r.h.s. accounts for the probability
that∆Ii(t) confirmed infected travelers all do not visitS1.

Taking into account all the above cases, the probability that
Hi1 infected hosts arrive at destinationS1 is measured by the
following transferring estimator

Ωp(Hi1) =
∑∆Ii(t)

φ=0

(

∆Ii(t)

φ

)

[

pki∑
ℓ pℓ+pki

]

[

∆Ii(t)−φ
]

·

[

1−
pki∑

ℓ pℓ+pki

]φ
[

Ii(t−1)−∆Ii(t)
]

!
[

Hi1−∆Ii(t)+φ
]

!η′

i!
·

p
[Hi1−∆Ii(t)+φ]
ki

[

∑

ℓ pℓ + pi

]η′

i

. (12)

Type 2: ∆Ii(t) > Hi1, i.e., the observed reduction in the
number of infected hosts∆Ii(t) exceeds the number of in-
fected hosts transferred toS1. Similar to the above analysis, we
develop the transferring estimator by considering all possible
cases that are in accordance with this condition.

If Hi1 infected hosts transferred toS1 are all from the

observable travelers∆Ii(t), the transferring estimator becomes

(

∆Ii(t)

Hi1

)

[ pki
∑

ℓ pℓ + pki

]Hi1
[

1−
pki

∑

ℓ pℓ + pki

]

[

∆Ii(t)−Hi1

]

·

[

∑

ℓ

pℓ + pi

]

[

Ii(t)−∆Ii(t)
]

,

(13)
where the last item accounts for the constraint that the re-
mainingIi(t) −∆Ii(t) infected hosts will not be transferred
to S1.

Similar to Type 1, the other two cases are: only a fraction of
Hi1 infected hosts transferred toS1 are from the observable
travelers∆Ii(t), andHi1 infected hosts transferred toS1 are
all not from the observable travelers∆Ii(t), we can also derive
the transferring estimators.

Taking into account all these cases, the probability thatHi1

infected hosts move to the destination subpopulationS1 is
measured by the following transferring estimator

Hi1
∑

△Hi1=0

(

∆Ii(t)

∆Hi1

)

[ pki
∑

ℓ pℓ + pki

]∆Hi1

·

[

1−
pki

∑

ℓ pℓ + pki

]

[

∆Ii(t)−∆Hi1

]

·

[

Ii(t− 1)−∆Ii(t)]!

(Hi1 −∆Hi1)!η′!
pHi1−∆Hi1

ki

[

∑

ℓ

pℓ + pi]
η′

. (14)

Generally, set I consists of the three classes of
subpopulationsIi(1 ≤ i ≤ m) discussed above: unobservable
subpopulation, partially unobservable subpopulation,
observable subpopulation ofI → S. According to Eq.(4),
generally each potential pathwayai corresponds to a potential
solutionσi, the most-likely invasion pathway for amI 7→ S
can be identified as

âmIS = argmax
σi

P (σi|EmIS)

= argmax
ai

P (ai|GmIS).
(15)

B. The Case ofmI 7→ nS(m > 1, n > 1)

Finally, we consider the case ofmI 7→ nS(m > 1, n > 1),
which is more complicated thanmI 7→ S, because some in-
fectious populations in setI may have more than one invasion
edge to the corresponding susceptible subpopulations in set S,
and the number of elements in setS are more than one, which
obey a joint probability distribution of transferring likelihood.
As shown in Fig. 2, an invasion casemI 7→ nS includes
set I = {Ii|i = 1, 2, . . . ,m} and S = {Si|i = 1, 2, . . . , n}.
The first arrival infected individuals invaded each susceptible
subpopulation in setS are{Hi|i = 1, 2, . . . , n}, respectively.
Here, denoteUi(i = 1, 2, . . . ,m) the subset of susceptible
neighbor subpopulations in setS of infected subpopulation
Ii , andYj(j = 1, 2, . . . , n) the subset of infected neighbor
subpopulations in setI of susceptible subpopulationSj .

We defineσ = {{Hi1|i ∈ Y1}, . . . , {Hin|i ∈ Yn}} a
potential solution for themI 7→ nS, if subjects to two
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conditions: (i)
∑

i∈Yk

Hik = Hk, (16)

Hik ≥ 0; (ii) For any Hik which denotes the number of
infected hosts travel to subpopulationSk from Ii at tEAT , we
have

∑

k∈Ui
Hik ≤ Ii(t− 1), where1 ≤ i ≤ m, 1 ≤ k ≤ n.

If a mI 7→ nS hasM potential solutions, letσj = {{H
(j)
i1 |i ∈

Y1}, . . . , {H
(j)
in |i ∈ Yn}}, 1 ≤ j ≤ M .

Similarly, we first discuss the directly identifiable pathway
for a givenmI 7→ nS, then estimate the most-likely numbers
of eachHik as accurate as possible by designing our identi-
fication algorithm, since one solution of Eq. (16) corresponds
to one invasion pathway of an invasion casemI 7→ nS.
(i) Accurate Identification of Invasion Pathway

Given a few satisfied prerequisites, for allk ∈ Ui, i ∈ Yk of
the equations constituted by Eq.(16) can has a unique solution,
which implies that the invasion pathway of that invasion
case can be identified accurately. Theorem 2 elucidates this
scenario.
Theorem 2 (Accurate Identification of Invasion Pathway):With
the following conditions: 1) the number of invasion edges
Ein ≤ n + m, 2) the neighbor subpopulations of each
subpopulation in setI are with the transitionS to S or I to S
except their neighbor subpopulations in setS during tEAT−1

to tEAT , 3)
∑m

i=1 △Ii(t) =
∑n

k=1 Hk, the invasion pathway
of an invasion casemI 7→ nS(m,n > 1) can be identified
accurately.

Proof: Since the number of infected individuals in the
partially observable subpopulationi reduces at timet, i.e.,
Ii(t) < Ii(t − 1), Ii(t) > 0, it is inevitable that a few
infected carries diffuse away from subpopulationi. Occurring
the state transitions ofS → I, I → S at timet, subpopulations
in the neighborhood ofi (excluding the new contaminated
subpopulationj) cannot receive infected travelers. Therefore,
the only possible destination for those infected travelersis
subpopulationSj.

The conditionsEin ≤ n + m and
∑m

i=1 △Ii(t) =
∑n

k=1 Hk make the equations
∑

i∈Yk
Hik = Hk and

∑

k∈Ui
Hik = △Ii(t) only has the unique solutionσ =

{{Hi1|i ∈ Y1}, . . . , {Hin|i ∈ Yn}}. The reason is that
rank(Acoef )=Ein, where Acoef is the coefficient matrix of
equations

∑

i∈Yk
Hik = Hk and

∑

k∈Ui
Hik = △Ii(t). Thus

the invasion pathway of thismI 7→ nS(m,n > 1) can be
identified accurately.

(ii) Potential Invasion Pathway
If the conditions of Theorem 2 are unsatisfied, the equations

constituted by Eq. (16) has multiple solutions, each solution
corresponds to a set of potential invasion pathways that can
result in the relatedmI 7→ nS(m,n > 1). We derive the
transferring likelihood of each potential solution similar to
case ofmI 7→ S. Therefore, the likelihood of solutionσj

is characterized by

P (σj |EmInS) =

m
∏

k=1

Ω(H
(j)
kk~

)
/

M
∑

i=1

m
∏

k=1

Ω(H
(i)
kk~

), (17)

whereM represents the number of solutionσj , and the last
item Ω(H

(i)
kk~

) represents the transfer estimator of infected
subpopulationIk in I, k~ ∈ Yk. Note thatσj and EmInS

correspond to a potential invasion pathwayaj of mI 7→ nS
andGmInS , respectively.

Now we discuss the transferring estimator of subpopulation
Ii according to its extent of subpopulation observability.
(a) SubpopulationIi has only one neighbor (invasion edge) in
setS.

In this case, the transferring estimator is the same as the
depicted one inmI 7→ S.
(b) SubpopulationIi hasρ (ρ ≥ 2) neighbors (invasion edges)
in setS.

Suppose there are totallyki edges emanate fromIi which
consist of the following three kinds as: (1) There areρi
invasion edges (2 ≤ ρi ≤ n), labeled 1, 2, . . . , ρi, along
which the traveling rates arep~, ~ ∈ [1, ρi], andHii~ invade
the subpopulations in the subset{Yi = i~}, respectively;
(2) There areℓi unobservable and partially observable edges,
labeled1+ρi, . . . , ℓi+ρi, respectively. Along each unobserv-
able or partially unobservable edge, the traveling rate ispℓ,
ℓ ∈ [1, ℓi], and xℓ infected hosts leaveIi. Accordingly, in
total ηi =

∑

ℓ xℓ infected hosts leaveIi through the unob-
servable and partially unobservable edges. (3) There remain
ki − ℓi − ρi observable edges, labeled asℓi + ρi + 1, ..., ki,
respectively. Along each observable edge, the traveling rate
is pℵ, ℵ ∈ [ℓi + ρi + 1, ki], andxℵ infected hosts leaveIi.
With probabilitypi = 1−

∑

~
p~−

∑

ℓ pℓ−
∑

ℵ
pℵ, an infected

host keeps staying at the sourceIi. There arexi infected hosts
staying in subpopulationIi with the probabilitypi. Because
Ii connects the unobservable and partially observable infected
subpopulations, we only know the sum

∑

ℓ xℓ + xi = η′.
Now we employ the following estimators to evaluate the

transferring likelihood of the three categories ofIi.
Unobservable SubpopulationIi: Because△Ii(t) = Ii(t −
1)−Ii(t) ≤ 0, we don’t know whether and how many infected
individuals travel to which destinations. Similar to the invasion
casemI 7→ S, the transferring likelihood estimator ofIi is

Ωu(Hii~) = P (Hii~ , p~, ~ = [1, . . . , ρ];xℓ, pℓ, ℓ = [1 + ρ,

. . . , l + ρ];xℵ, pℵ,ℵ = [l + ρ+ 1, . . . , k];xi, pi).
(18)

By means of the observable edges, the transferring estimator
can be simplified as

∑

η′

i=Ii(t−1)−
∑

Hii~

P (Hii~ , p~, ~ = [1, . . . , ρ];xℓ, pℓ,

ℓ = [1 + ρ, . . . , l + ρ];xi, pi
)

=
∑

η′

i=Ii(t−1)−
∑

Hii~

Ii(t− 1)!
∏

~
Hii~ !η!

∏

ℓ xℓ!xi!

∏

~

p
Hiij

~
(
∑

ℓ

pℓ)
ηpi

xi . (19)

Then the transferring estimator becomes by the marginal
distribution as:

Ωu =
Ii(t− 1)!
∏

~
Hii~ !η

′
i!

∏

~

p
Hii~

~

[

∑

ℓ

pℓ + pi

]η′

i

. (20)
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Observable SubpopulationIi (Ii to Si): For this situation,
Hi = {Hii~ |~ = 1, . . . , ρ} all come from △Ii(t). The
transferring likelihood estimator of aI → S observable
subpopulationIi is

Ωob =
△Ii(t)!∏

~
Hii~

!(△Ii(t)−
∑

~
Hii~

)!

∏

~
( p~∑l+ρ

k=1
pk

)H
′′

ii~ ·

(
∑

ℓ pℓ
∑l+ρ

j=1
pj

)△Ii(t)−
∑

~
Hii~ , (21)

where△Ii(t) = Ii(t− 1)− Ii(t) = Ii(t− 1).
Partially Unobservable SubpopulationIi: Due to △Ii(t) =
Ii(t − 1) − Ii(t) > 0, at least△Ii(t) infected hosts leave
sourceIi from tEAT−1 to tEAT .

We first decomposeHi = {Hii~ |~ = 1, . . . , ρ} as two
subsets:H ′

i = {H′
ii~

|~ = 1, . . . , ρ} and H ′′
i = {H′′

ii~
|~ =

1, . . . , ρ}, H′
ii~

+ H′′
ii~

= Hii~ , whereH′
ii~

≥ 0,H′′
ii~

≥ 0.
DenoteH ′

i = {H′
ii~

|~ = 1, . . . , ρ} the infected hosts coming
from Ii(t − 1) − △Ii(t), and H ′′

i = {H′′
ii~

|~ = 1, . . . , ρ}
the infected hosts coming from△Ii(t). Then we analyze the
transferring estimator on the following two types.
Type1:

∑

~
Hii~ ≥ △Ii(t)

Supposeφ =
∑

~
H′′

ii~(0 ≤ φ ≤ △Ii(t)), which rep-
resents the number of infected hosts coming from△Ii(t).
Given a fixedφ, there may be more than one permutation
H ′′

i = {H′′
iij
|j = 1, . . . , ρ} for H ′′

i . The transferring likelihood
estimator is

Ωpu =

△Ii(t)
∑

φ=0

∑

∑
H′′

ii~
=φ

P1P2, (22)

where

P1 =
△Ii(t)!

∏

~
H′′

ii~
!(△Ii(t)− φ)!

·

∏

~

(
p~

∑l+ρ
k=1 pk

)H
′′

ii~ (

∑

ℓ pℓ
∑l+ρ

j=1 pj
)△Ii(t)−φ,

P2 = (Ii(t−1)−△Ii(t))!∏
~
H′

ii~
!(Ii(t−1)−△Ii(t)−

∑
~
Hii~

+φ)!

∏

~
p
H

′

ii~

~
·

(
∑

ℓ pℓ + pi)
Ii(t−1)−△Ii(t)−

∑
~
Hii~

+φ.

Type2:
∑

~
Hii~ < △Ii(t)

Supposeφ =
∑

~
H′′

ii~(0 ≤ φ ≤
∑

~
Hii~), which

represents the number of infectious hosts coming from△Ii(t).
Given a fixedφ, there may be more than one solution forH ′′

i .
The transferring likelihood estimator is

Ωpu =

∑
~
Hii~

∑

φ=0

∑

∑
H′′

ii~
=φ

P1P2, (23)

whereP1 andP2 are the same as those in Eq. (22).
According to Eq. (17), the most-likely invasion pathways

for an INCmI 7→ nS can be identified as

âmInS = argmax
σi

P (σi|EmInS)

= argmax
ai

P (ai|GmInS).
(24)

Note that if the first arrival infectious individualsH ≥ 3,
there may be multiple potential solutions corresponding toone

S1

I1

I2

I1

I2

S
ℋ21  

ℋ11  

Fig. 4. An example of2I 7→ S invasion case. Suppose that three infected
cases reach subpopulationS1 simultaneously, which meansH = 3. The three
possible permutations are:1©H = 3,H11 = 1,H21 = 2; 2©H = 3,H11 =
2,H21 = 1; 3©H = 3,H11 = 3,H21 = 0. The permutations1© and 2©
indicate the same pathways, but3© is different.

potential pathway. For example, amI 7→ S is illustrated in
Fig. 4. In this situation, we merge the transferring likelihood
of potential solutions ofmI 7→ S or mI 7→ nS if they belong
to the same invasion pathways, then find out the most-likely
invasion pathways, which are corresponding to the maximum
transferring likelihood.

According to Eq. (1) and (2), the whole invasion path-
way T can be reconstructed chronologically by assembling
all identified invasion pathway of each invasion case after
identification of four classes of invasion cases. To depict the
IPI algorithm explicitly, the pseudocode for our algorithmis
given in Algorithm II.

C. Analysis of IPI Algorithm

Science IPI algorithm is based on hierarchical-iteration-
like decomposition technique, which reduce the temporal-
spatial complexity of spreading, it can handle large-scale
spatial pandemic. Note that the invasion infected hostsHi at
EAT always are very small (generally≤ 3). Therefore, the
computation cost of our IPI algorithm is small, and we employ
the enumeration algorithm to compute each ofM potential
permutations. In this section, we only discuss the simplest
situation that one pathway only corresponds to one permitted
solution in an invasion case. The situation of one pathway
corresponds to multiplex potential solutions can be extended.

Denoteπ the probability corresponding to the most likely
pathways for a given invasion case. Thus we have

π(σ) = sup
σi

{P (σi|E)}. (25)

Property 1: Given an invasion case ‘mI 7→ S’ or ‘mI 7→

nS’, P (σj |E) =
∏m

k=1
Ω

∑
M
i=1

∏
m
k=1

Ω
, there must existPmin and

Pmax satisfying

Pmin ≤ π(σ) ≤ Pmax. (26)

Proof: Suppose that
∏m

k=1 P (Ik(t), σ1) ≤
. . . ≤

∏m
k=1 P (Ik(t), σM ). Thus Pmax =∏m

k=1
P (Ik(t),σM )∏

m
k=1

P (Ik(t),σM−1)+
∏

m
k=1

P (Ik(t),σM ) ; Be-
cause π(σ) > 1/M , let Pmin =

max{1/M,
∏m

k=1
P (Ik(t),σj)∏

m
k=1

P (Ik(t),σ1)+
∑

M
i=1

∏
m
k=1

P (Ik(t),σj)
}. We

havePmin ≤ π(σ) ≤ Pmax.
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Algorithm 2 Invasion Pathways Identification (IPI)

1: Inputs: the time series of infection dataFi(t) and topology
of networkG(V,E) (including diffusion ratesp)
2: Find all invasion events via EAT data
3: for each invasion event
4: Invasion partition to find out theI 7→ S , I 7→ nS,
mI 7→ S andmI 7→ nS.
5: for eachmI 7→ S or mI 7→ nS
6: if it satisfy conditions of Th 1 or Th 2
7: compute the unique invasion pathway
8: end if
9: if don’t satisfy conditions of Th 1 or Th 2
compute the allM potential solutionsσi

10: compute theP (σi|EmIS) or P (σi|EmInS)
11: merge theP (σi|EmIS) or P (σi|EmInS) of
potential solutionσi if they belong to same pathway
12: end if
13: end for
14: find the maximalamIS

j andamInS
j invasion pathway

15: end for
16: reconstruct the whole invasion pathways (T) by assembling
each invasion cases chronologically

D. Identifiability of Invasion Pathway

Accordingly, our IPI algorithm first decomposes the whole
invasion pathways into four classes of invasion cases. Some
invasion cases are easy to identify, but some are difficult.
Therefore, it is important to describe how possible an invasion
case can be wrongly identified. The identification extent of an
invasion case relates with the absolute value ofπ(σ) and infor-
mation given by the probability vector of all potential invasion
pathways. We employ the entropy to describe the information
of likelihood vector, which contains the all likelihood ofM
potential solutions/pathways of an invasion case.

Definition 1 (Entropy of Transferring Likelihoods ofM
Potential Solutions):According to Shannon entropy, we
define the normalized entropy of transferring likelihood
P (σ1|E), . . . , P (σM |E) as

S = −
1

logM

M
∑

i=1

P (σi|E) logP (σi|E). (27)

This likelihood entropyS tells the information embedded in
the likelihood vector of the potential solutions of a given
invasion case.

The bigger ofπ(σ) and the smaller of entropyS, the
easier to identify the epidemic pathways for an invasion case.
Define identifiability of invasion pathways to characterizethe
feasibility an invasion case can be identified

Π = π(σ)(1 − S). (28)

Although the likelihood entropies of some invasion cases are
small (less than 0.5), they are still difficult to identify, because
their π(σ) are much less than 0.5. Therefore, identifiabilityΠ
describes the practicability of a givenmI 7→ S or mI 7→ nS
better than only usingπ(σ) or likelihoods entropyS. The

identifiability statistically tells us why some invasion cases are
easy to identify, whoseΠ are more than 0.5, and why some
invasion cases are difficult to identify, whoseΠ are much less
than 0.5.

Next we show that there exist the upper and lower bound-
aries of identifiabilityΠ for a given invasion case.

Theorem 3:Given an invasion case ‘mI 7→ S’ or ‘mI 7→
nS’, Π = π(σ)(1−S) is the identifiability computed by the IPI
algorithm. There exist a lower boundaryΠmin = 1

M
(1 − S ′)

and an upper boundaryΠmax = π − S(π(σ)) that

Πmin ≤ Π ≤ Πmax, (29)

whereS′ = − 1
logM

(π log(π) +
∑ 1−π

M−1 log(
1−π
M−1 )).

Proof: Π = π(1 − S) ≥ 1
M
(1 − S) ≥ 1

M
(1 −

S ′), whereS′ = − 1
logM

(π log(π) +
∑ 1−π

M−1 log(
1−π
M−1 )) =

− 1
logM

(π log(π) + (1 − π) log( 1−π
M−1 )) = − 1

logM
(π log(π) +

(1−π) log(1−π)− (1−π) log(M −1)). According to Fano’s
inequality, the entropyS ≤ S ′.

On the other hand, we note that function
f(y) = y log(y) is strictly convex. According to
Jensen’s inequality,πS(σ) = π × (−π(σ) log(π(σ)) −
∑M−1

i=1 P (σi|E) logP (σi|E)) ≥ −(π(σ))2 log((π(σ))2) −
∑M−1

i=1 π(σ)P (σi|E) log π(σ)P (σi|E). Π = π(1 − S) =
π − πS ≤ π − S(πσ). Therefore,Πmin ≤ Π ≤ Πmax,
whereΠmin = 1

M
(1 − S ′) andΠmax = π − S(π(σ)). That

completes the proof of Theorem 3.

IV. COMPUTATIONAL EXPERIMENTS

To verify the performance of our algorithm, we proceed net-
worked metapopulation-based Monte Carlo simulation method
to simulate stochastic epidemic process on the American air-
ports network(AAN) and the Barabasi-Albert (BA) networked
metapopulation.

The AAN is a highly heterogeneous network. Each node of
the AAN represents an airport, the population size of which is
the serving area’s population of this airport. The directedtraffic
flow is the number of passengers through this edge/airline. The
data of the AAN we are used to simulate is based on the true
demography and traffic statistics [50]. We take the maximal
component consisted of404 nodes (airports/subpopulations)
of all American airports as the network size of the ANN. The
average degree of the AAN is nearly〈k〉 = 16. The total
population of the AAN is theNtotal ≈ 0.243 × 109, which
covers most of the population of the USA.

The BA network obeys heterogeneous degree distribu-
tion [51], which holds two properties of growth and preference
attachment. For a BA networked metpopulation, each node is a
subpopulation containing many individuals. The details ofhow
to generate a BA networked metapopulation including travel
rates setting is presented in Appendix B. To test the perfor-
mance of our algorithm to handle large-scale network, the sub-
populations number of the BA networked metapopulation is
fixed as 3000. This is nearly equal to the number of the world
airports network [52]. We fix〈k〉 = 16 as the average degree of
the BA networked metapopulation. The initial population size
of each subpopulation isN1 = N2 = · · · = NN = 6 × 105,
and the total population isNtotal = 6×105×3000 = 1.8×109,
which covers most of the active travelers of the world.
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Fig. 5. The top and middle figures show the identified accuracyfor the whole
and early stage (before appearance of the first 50 infected subpopulations)
invasion pathways for twenty independent spreading realizations on the AAN.
The bottom shows accumulative identified accuracy of invasion cases (mI 7→
S andmI 7→ nS) for the early stage and the whole invasion pathways on
the AAN.

A. Networked Metapopulation-based Monte Carlo Simulation
Method to Simulate Stochastic Epidemic Process

At the beginning, we assume only one subpopulation is
seeded as infected and others are susceptible. ThusI1(0) =
5, Ii(0) = 0(i = 2, · · · , N). We record and update each
individual’s state(i.e., susceptible or infected) at eachtime step.
At each∆t (∆t is defined as the unit time fromt−1 to t), the
transmission rateβ and diffusion ratepij are converted into
probabilities. The rules of individuals reaction and diffusion
process in∆t are as follows:
(1) Reaction Process: Individuals which are in the same
subpopulation are homogeneously mixing. Each susceptible
individual (in subpopulationi) becomes infected with proba-
bility β Ii(t)

Ni
. Therefore, the average number of newly added

infected individuals isβ (Ni(t)−Ii(t))Ii
Ni

, but the simulation
results fluctuate from one realization to another. The reaction
process is simulated by binomial distribution.
(2) Diffusion Process: After reaction, the diffusion process of
individuals between different subpopulation posterior tothe
reaction process is taken into account. Each individual from
subpopulationi migrates to the neighboring subpopulationj
with probability pij . The average number of new infectious
travelers from subpopulationi to j is pijIi(t). The diffusion
process is simulated by binomial distribution or multinomial
distribution.

B. Numerical Results

We compared our IPI algorithm with three heuristic al-
gorithms that generate the shortest path tree or minimum
spanning tree of the metapopulation networks. i) The ARR
(average-arrival-time-based shortest path tree) [30]: The min-
imum distance path from subpopulationi to subpopulation
j over all possible paths is generated in terms of mean first
arrival time. Thus the average-arrival-time-based shortest path
tree is constructed by assembling all shortest paths from
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Fig. 6. The top and middle figures show the identified accuracyfor the
whole and early stage invasion pathways for twenty independent spreading
realizations on 3000 subpopulations of the BA networked metapopulation.
The bottom shows accumulative identified accuracy ofmI 7→ S and
mI 7→ nS for the early stage (the first 300 infected subpopulations) and
the whole invasion pathways on 3000 subpopulations of the BAnetworked
metapopulation.

the seed subpopulation to other subpopulations of the whole
network. ii) The EFF (effective-distance-based most probable
paths tree)[4] methods: From subpopulationi to subpopulation
j, the effective distanceDij is defined as the minimum
of the sum of effective lengths along the arbitrary legs of
the path. The set of shortest paths to all subpopulations
from seed subpopulationi constitutes a shortest path tree.
ii) The MCML (the Monte-Carlo-Maximum-Likelihood-based
most likely epidemic invasion tree)[43]: To produce a most
likely infection tree, they constructed the minimum spanning
tree from the seed subpopulation to minimize the distance.
Some recent works [53]-[55] uses machine learning or genetic
algorithms to infer transmission networks from surveillance
data. Because of the distinction in model assumptions and
conditions, we do not perform comparison with them.

We consider to access the identification accuracy for the
inferred invasion pathways. This accuracy is defined by the
ratio between the number of corrected identified invasion
pathways by each method and the number of true invasion
pathways, respectively. We also compute the accuracy of
accumulative invasion cases ofmI 7→ S and mI 7→ nS.
This accuracy is defined by the ratio between the number
of corrected identified invasion pathways by each method in
this class of invasion case and the number of true invasion
pathways in this classes of invasion case. Additionally, we
investigate the identification accuracy of early stage of a global
pandemic spreading, which is important to help understand
how to predict and control the prevalence of epidemics.

In the top and middle of Figure 5, we observe the whole
identification accuracy and the early-stage identificationac-
curacy. The bottom of Figure 5 shows the early and whole
accumulative identification accuracy ofmI 7→ S andmI 7→
nS through twenty independent realizations on the AAN for
each algorithm, respectively. The simulation results showour
algorithm is outperformance, which indicates heterogeneity of
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Fig. 7. Illustration of the actual invasion pathways and themost likely iden-
tified invasion pathways, in a given realization, during theearly stage (before
the appearance of 50 infected subpopulations) on the AAN. Subpopulation 1
is the seed.

structure of the AAN plays an important role.

Figure 6 shows the results of the BA networked metapop-
ulation with 3000 subpopulations, the top of which presents
the identification accuracy of whole invasion pathway for each
realization of the four algorithms. while the middle of Figure
6 shows the identification accuracy of early stage invasion
pathway for each realization. The bottom shows accumulative
identified accuracy ofmI 7→ S and mI 7→ nS of twenty
realizations for four alorithms respectively. The simulation
results indicate that our algorithm can handle a large scale
networked metapopulation with robust performance. Note that
the performance of the ARR for the BA networked metapop-
ulation is the same as that of the EFF, because our parameter
C is a constant in the diffusion model (see Appendix B).

The numerical results suggest that networks with different
topologies yield different identification performances, which
indicate an identification algorithm should embed in both
the effects of spreading and topology. Our algorithm takes
into account both the heterogeneity of epidemics (the number
of infected individuals) and the network topology (diffusion
flows).

We finally test the identifiability of an invasion case. Figure
8 shows the entropy and identifiability of wrongly identified
mI 7→ S of twenty realizations on the AAN. The smaller
the identifiability of an invasion case is, the easier it is
prone to be wrongly identified. The identifiability depicts
the wrongly identifiedmI 7→ S more reasonable than the
likelihoods entropy. It indicates that identifiabilityΠ has a
better performance to distinguish whether an invasion caseis
difficult to identify or not than using the likelihoods entropy.
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wrongly identifiedmI 7→ S of 20 realizations of epidemic spreading on the
AAN.

V. CONCLUSION AND DISCUSSION

To conclude, we have proposed an identification framework
as the so called IPI algorithm to explore the problem of
inferring invasion pathway for a pandemic outbreak. We
first anatomize the whole invasion pathway into four classes
of invasion cases at each epidemic arrival time. Then we
identify four classes of invasion cases, and reconstruct the
whole invasion pathway from the source subpopulation of a
spreading process. We introduce the concept ofidentifiability
to quantitatively analyze the difficulty level that an invasion
case can be identified. The simulation results on the
American Airports Network (AAN) and large-scale BA
networked metapopulation have demonstrated our algorithm
held a robust performance to identify the spatial invasion
pathway, especially for the early stage of an epidemic.
We conjecture the proposed IPI algorithm framework can
extend to the problems of virus diffusion in computer
network, human to human’s epidemic contact network, and
the reaction dynamics may extend to the SIR or SIS dynamics.

APPENDIX A
MOBILITY OPERATOR

We discuss the individualmobility operator. Due to the pres-
ence of stochasticity and independence of individual mobility,
the number of successful transform of individuals between or
among adjacent subpopulations is quantified by a binomial or
a multinomial process, respectively. If the focal subpopulation
i only has one neighboring subpopulationj, the number of
individuals in a given compartmentX (X ∈ {S, I} and
∑

X
Xi = Ni) transferred fromi to j per unit time,Tij(Ui),

is generated from a binomial distribution with probabilityp
representing the diffusion rate and the number of trialsUi,
i.e.,

Binomial(Tij,Ui, p) =
Ui!

Tij !(Ui − Tij)!
pTij (1− p)

(Ui−Tij).

(30)
If the focal subpopulationi has multiple neighboring subpop-
ulationsj1, j2, ..., jk, with k representingi’s degree, the num-
bers of individuals in a given compartmentU transferred from
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i to j1, j2, ..., jk are generated from a multinomial distribution
with probabilitiespij1 , pij2 , ..., pijk (pij1+pij2+...+pijk = p)
representing the diffusion rates on the edges emanated from
subpopulationi and the number of trailsUi, i.e.,

Multinominal({Tijℓ},Ui, {pijℓ}) =

Ui!
∏

ℓ Tijℓ !(Ui −
∑

ℓ Tijℓ)!
(
∏

ℓ

p
Tijℓ

ijℓ
)(1 −

∑

ℓ

pijℓ)
(Ui−

∑
ℓ Tijℓ

),

(31)
whereℓ ∈ [1, k].

APPENDIX B

A GENERIC DIFFUSION MODEL TO GENERATE
A BARABASI-ALBERT METAPOPULATION NETWORK

We develop a general diffusion model to generate a BA metapopu-
lation network in Section V, which characterizes the human mobility
pattern on the empirical statistical rules of air transportation networks.

The diffusion rate from subpopulationi to j is pij =
wij

Ni
,

where wij denotes the traffic flow from subpopulationi to j.
These empirical statistical rules are verified in the air transportation
network [52]: 〈pij〉 ∼ (kikj)

θ′ , θ′ = 0.5 ± 0.1; T ∼ kβ′

, β′ ≃

1.5± 0.1;N ∼ T λ′

(T =
∑

l
wjl), λ

′ ≃ 0.5.
All the above empirical formulas relate to node’s degreek. To

generate an artificial transportation network, we introduce a generic
diffusion model to determine the diffusion rate

pij =
bijk

θ
j∑

l
bilk

θ
l

C, (32)

wherebij stands for the elements of the adjacency matrix (bij = 1
if i connects toj, and bij = 0 otherwise),C is a constant, and
θ is a variable parameter. We assume that parameterθ follows the
Gaussian distributionθ ∼ N(θ̂, δ2) = 1√

2πδ
exp(− (θ̂−θ)2

2δ2
). Based

on the empirical rule ofT ∼ kβ′

, β′ ≃ 1.5 ± 0.1, where β is
approximately linear withθ, the least squares estimation is employed
to evaluate parameterŝθ and δ2 if we set the initial population of
each node and constantC. Then, for a given BA network, we get a
BA networked metapopulation in which real statistic information is
embedded by using the above method.
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