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The existence of incompatible measurements, epitomized by Heisenberg’s uncertainty principle, is one of the
distinctive features of quantum theory. So far, quantum incompatibility has been studied for measurements that
test the preparation of physical systems. Here we extend the notion to measurements that test dynamical processes,
possibly consisting of multiple time steps. Such measurements are known as testers and are implemented by
interacting with the tested process through a sequence of state preparations, interactions, and measurements.
Our first result is a characterization of the incompatibility of quantum testers, for which we provide necessary
and sufficient conditions. Then we propose a quantitative measure of incompatibility. We call this measure the
robustness of incompatibility and define it as the minimum amount of noise that has to be added to a set of testers
in order to make them compatible. We show that (i) the robustness is lower bounded by the distinguishability of
the sequence of interactions used by the tester and (ii) maximum robustness is attained when the interactions are
perfectly distinguishable. The general results are illustrated in the concrete example of binary testers probing the
time evolution of a single-photon polarization.
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I. INTRODUCTION

Quantum theory challenges our intuition in many ways,
a prominent example being the existence of incompatible
measurements [1]. Observable quantities, such as the position
and the velocity of a particle, can be incompatible in the sense
that it is impossible to measure them in a single experiment
unless some amount of noise is added [2]. The existence of
incompatible measurements is at the root of the wave-particle
duality [3,4] and, more generally, of many striking distinctions
between quantum and classical physics.

For example, the existence of incompatible measurements
implies the no-cloning theorem [5,6]: By contradiction, if
we could make two perfect copies of an arbitrary quantum
state, we could perform one measurement on one copy
and another measurement on the other, so that no pair of
measurements would be incompatible. This argument applies
also to approximate universal cloning [7–9], whose optimal
performance is limited by the incompatibility of quantum
measurements [10]. Moreover, if all quantum measurements
were compatible, then quantum states could be represented as
probability distributions over a classical phase space, whose
points would be labeled by outcomes of all possible quantum
measurements. For composite systems, such a classical de-
scription would prevent the violation of Bell inequalities [11],
inhibiting important applications such as device-independent
cryptography [12,13].

More recently, the existence of incompatible measurements
has been recognized as equivalent to the existence of Einstein-
Podolski-Rosen (EPR) steering, a weaker form of nonlocality
whereby the choice of measurement on one system determines
the ensemble decomposition of the state on another system.
In short, the argument [14,15] is as follows: If all quantum
measurements were compatible, then one could explain the
phenomenon of steering in terms of a hidden-state model [16],
wherein the state of the steered system is defined before

the measurement. Vice versa, if every instance of EPR
steering could be explained by a hidden-state model, then all
quantum measurements should be compatible. Based on this
argument, one can establish a quantitative connection between
incompatibility and EPR steering, which has been explored
extensively in Refs. [17–20].

Due to its fundamental implications, quantum incompat-
ibility has been the object of intense research [21–30] (see
Ref. [31] for a recent review). So far, all investigations
have focused on the standard scenario where the goal of
measurements is to test properties of the system’s prepara-
tion [21]. However, one can consider more general scenarios,
where the goal of the measurement is to test a property of
a dynamical process [32–35]. For example, imagine that we
are given an optical device that transforms the polarization
of photons in some unknown way. To gain some knowledge
of the device, we can ask how well it preserves the vertical
polarization. This property can be tested by preparing a
vertically polarized photon, sending it through the device,
and finally performing a polarization measurement with a
vertically aligned polarizer. Similarly, we may ask how well
the device preserves the horizontal or the diagonal polarization
(defined as the polarization aligned by +45◦ with respect to
the vertical polarization) or whether the device transforms the
vertical polarization into the diagonal one. All these questions
correspond to different experimental setups that one can use
to test different properties of the unknown process. These
properties are often complementary [36] in the sense that they
cannot be tested in a single experiment; i.e., they correspond
to incompatible measurement setups.

The aim of this paper is to provide a precise characterization
of which setups are incompatible when we test quantum
processes. Our prime motivation is fundamental: We want to
explore the new forms of complementarity arising from the
study of quantum dynamics. On a more practical side, we
expect that our generalized notion of quantum incompatibility
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FIG. 1. Pictorial representation of a setup testing a property of a
quantum process E . The input and output of the process are labeled
as 0 and 1, respectively. The setup consists of the preparation of the
input (and possibly an ancilla) into state � and in the execution of
a measurement (POVM) P on the output. Any such setup can be
described by a quantum tester, a suitable generalization of the notion
of positive operator-valued measure.

will have new applications in quantum information, in the
same way as the early studies of quantum complementarity and
incompatibility led to the discovery of new quantum protocols.
In our investigation we start from the simplest case of processes
that consist of a single time step. To test such processes, we
consider setups that consist of (i) preparing the input of the
process in a known state (possibly a joint state of the input
with an ancillary system), (ii) letting the state evolve through
the process, and (iii) performing a measurement on the output,
as in Fig. 1.

A measurement setup as in Fig. 1 can be represented in a
compact way using the notion of a quantum tester [32,33,37],
a generalization of the notion of a positive operator-valued
measure (POVM) [38,39]. More specifically, a tester is a
collection of operators that can be used to compute the outcome
probabilities for the setup under consideration. It is important
to stress that, like the notion of POVM, the notion of tester
involves a certain level of abstraction: Since the tester describes
only the probabilities of the outcomes, different experimental
implementations giving rise to the same statistics are identified.
For example, suppose that we want to know whether a process
is unital, i.e., whether it preserves the maximally mixed state.
A natural way to test unitality is to prepare the maximally
mixed state and to perform a state tomography on the output.
However, the maximally mixed state can be prepared in many
different ways: For example, one could set up a stochastic
mechanism that, with equal probabilities, prepares a photon
with vertical or horizontal polarization. Alternatively, the
mechanism could prepare a photon with diagonal (+45◦) and
antidiagonal (−45◦) polarizations. Or one could prepare two
photons in a maximally entangled state, so that the reduced
state of each photon is maximally mixed. Despite being

physically different, all these procedures will eventually lead
to the same statistics, and, therefore, to the same tester.

The statistical point of view will be crucial for our notion
of incompatibility. We regard two testers as compatible if
their outcomes can be generated in a single experiment
and the corresponding probability distribution has marginals
coinciding with the probability distributions predicted by the
original testers. This is a purely information-theoretic notion
of compatibility: It states that the statistics of two testers can be
merged into the statistic of a third tester. It is worth stressing,
however, that the physical implementation of the third tester
may be very different from the physical implementations of
the original testers.

A key point of our work will be to identify the sources of
incompatibility that affect the tests of dynamical processes.
A well-known source of incompatibility is the incompatibility
of the measurements performed at the output: A tester that
prepares a vertically polarized photon and measures the output
with a vertically oriented polarizer is incompatible with a tester
that prepares a vertically polarized photon and measures the
output with a diagonally oriented polarizer. However, in the
case of processes there is another source of incompatibility,
namely the incompatibility of the inputs: For example, one
can test the action of a process on vertically polarized photons,
or one can test it on horizontally polarized photons, but there
is no joint setup that performs both tests at the same time.
Note that taking a superposition of horizontal and vertical
polarizations would not work because the action of the process
on the superposition does not give enough information about
the action of the process on the individual states that are being
superposed.

One of the first results in our paper is a necessary and
sufficient condition for the statistical compatibility of two
(or more) testers. Afterwards, we provide a quantitative
measure of incompatibility based on the amount of noise
needed to make two (or more) testers compatible. This notion,
called robustness of incompatibility, will allow us to give an
interesting lower bound, where the amount of incompatibility
of two setups is lower bounded by the distinguishability of the
input states used to probe the unknown process. As a result
of this bound, we find that only setups with the same local
input states can be compatible. A complete analysis of the
compatibility conditions is presented in the case of two-qubit,
two-outcome testers. All our results can be generalized to the
case of processes consisting of multiple time steps [32,37],
each step transforming an input into an output. Such multitime
processes can be tested by preparing an input for the first step
and applying a sequence of operations, as in Fig. 2.

The paper is structured as follows. In Sec. II we introduce
the mathematical framework of process POVMs suited for
the analysis of tester incompatibility questions. In Sec. III

FIG. 2. Pictorial representation of a measurement setup testing a property of multitime quantum processes.
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we define incompatibility of testers. Section IV introduces
a measure of incompatibility of testers that is evaluated in
Secs. V and VI in cases where the incompatibility is rooted
in the incompatibility of the input states and final measure-
ments, respectively. In Sec. VII we investigate in detail the
incompatibility of two-outcome testers; we focus especially
on factorized qubit case. In Sec. VIII we generalize the
incompatibility consideration for general quantum networks
and we point out that the introduced incompatibility measure
is bounded from below by success probability characterizing
the minimum-error discrimination of corresponding quantum
devices. In Sec. IX we summarize our findings. Technical
results are gathered in the Appendixes.

II. BACKGROUND ON QUANTUM TESTERS

A. Testing quantum processes

Quantum testers [32,33,37] provide a compact way of
representing experimental setups designed to test unknown
quantum processes. Let us start from the simplest case, where
the tested process consists of a single time step. A setup testing
such processes consists of

(1) the joint preparation of an input system and an ancilla,
(2) the application of the tested process on the input, and
(3) the execution of a joint measurement on the output and

the ancilla, as in Fig. 1.
In the following we label the input, output, and ancilla

systems as 0, 1, and anc, respectively. We denote by H0, H1,
and Hanc the corresponding Hilbert spaces and by d0, d1, and
danc, the corresponding dimensions, respectively. Moreover,
we denote by S the set of possible outcomes of the final
measurement.

Mathematically, the above setup is specified by a triple
T = (Hanc,�,P), where

(1) Hanc is the Hilbert space of the ancilla used in the
experiment;

(2) � is a density operator, acting on the tensor product
Hilbert space H0 ⊗ Hanc and representing a joint preparation
of the input system and the ancilla; and

(3) P = {Pj ,j ∈ S} is a POVM on H1 ⊗ Hanc, represent-
ing a joint measurement on the output system and the ancilla.

The tested process is described by a completely positive
trace-nonincreasing linear map E , transforming operators on
the input Hilbert space H0 into operators on the output Hilbert
spaceH1. For deterministic processes (also known as quantum
channels) the map E is trace preserving; see, e.g., [39].

When the process E is tested with the setup T , the
probability that the measurement produces the outcome j is
given by

pj (T ,E) = tr[Pj (E ⊗ Ianc)(�)], (1)

where Ianc is the identity mapping on the ancilla. The
probabilities defined in this way are non-negative and sum up to
1 if the tested process is deterministic. A remarkable property
of quantum theory is that, under minimal requirements, every
admissible map sending quantum processes to probability
distributions can be physically implemented via some setup
T , meaning that one can always find an ancillary system, an
input state, and a measurement that give rise to the desired
mapping E �→ pj (E) [33,35,40].

The probabilities in Eq. (1) can be written in a compact way
using the Choi isomorphism [41], whereby the processE is rep-
resented by the positive (semidefinite) operator E defined by

E := (E ⊗ I)(|�〉〈�|), (2)

where |�〉 ∈ H0 ⊗ H0 is the unnormalized maximally
entangled state

|�〉 :=
d0∑

m=1

|m〉|m〉, (3)

{|m〉}d0
m=1 being an orthonormal basis for H0.

In terms of the Choi operator, the outcome probabilities can
be rewritten as [32,33,37]

pj (T ,E) = tr[Tj E], (4)

where Tj is the operator on H1 ⊗ H0 defined by [32]

Tj := tranc[(Pj ⊗ I0)(I1 ⊗ SWAP�T0 SWAP)]. (5)

Here �T0 denotes the partial transpose of � on the Hilbert
space H0, and SWAP is the unitary operator that swaps the
Hilbert spaces H0 and Hanc in order to have them consistently
ordered.

It is easy to see that the operators {Tj ,j ∈ S} satisfy the
conditions

positivity : Tj � 0 , ∀ j ∈ S, (6a)

normalization :
∑
j∈S

Tj = I1 ⊗ ρ, (6b)

where ρ is a density operator on H0. Physically, Eqs. (6a)
and (6b) guarantee the positivity and normalization of the
outcome probabilities.

The above observations lead to the definition of a quantum
tester.

Definition 1 [32]. Let T = {Tj ,j ∈ S} be a collection of
operators on H1 ⊗ H0. We say that T is a quantum tester if
it satisfies conditions (6a) and (6b), for some suitable density
operator ρ on H0. We call the operator ρ the normalization
state of the tester T .

Quantum testers have also been called process POVMs in
Ref. [33] and measuring costrategies in Ref. [37].

When there is no ambiguity, we omit the explicit specifi-
cation of the outcome set. For example, we write T = {Tj }
instead of T = {Tj ,j ∈ S} and∑

j

Tj instead of
∑
j∈S

Tj .

B. Physical implementation of quantum testers

We have seen that every experimental setup testing quantum
processes can be described by a tester. The converse is also
true: For every tester, one can find a setup that generates the
corresponding statistics.

Definition 2. We say that a setup T = (Hanc,�,P) is a
physical implementation of the tester T if it satisfies the
condition

pj (T ,E) = tr[Tj E] (7)
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for every outcome j and for every process E .
A canonical way to construct physical implementations is

provided by the following.
Proposition 1 [32,33]. For a given tester T = {Tj }, Let
(1) ρ be the normalization state in Eq. (6b),
(2) Hρ be the support of ρ,
(3) |�ρ〉 ∈ H0 ⊗ Hρ be the unit vector defined by

|�ρ〉 := (
I0 ⊗ ρ

1
2
) |�〉, (8a)

(4) �ρ be the density operator �ρ := |�ρ〉〈�ρ |, and
(5) P = {Pj } be the POVM defined by

Pj := (
I0 ⊗ ρ− 1

2
)
Tj

(
I0 ⊗ ρ− 1

2
)
, (8b)

where ρ− 1
2 is the inverse of ρ

1
2 on its support.

Then the triple T = (Hρ,�ρ ,P) is a physical implemen-
tation of the tester T .

Definition 3. We call the POVM P defined in Eq. (8b)
the canonical POVM associated with the tester T . The
implementation defined in Proposition 1 is called the canonical
implementation of the tester T .

Proposition 1 tells us that every tester can be implemented
with an ancilla of the size of the support of ρ, the normalization
state associated with the tester. In general, one can construct
other implementations where the size of the ancilla is larger,
or even smaller, as we see later in an example. Nevertheless,
all the physical implementations of a given tester must satisfy
a common property, highlighted by the following proposition.

Proposition 2. Let T be a quantum tester and let T =
(Hanc,�,P) be a physical implementation of T . Then the input
state � must satisfy the condition

tranc[�] = ρT , (9)

where ρ is the normalization state defined in Eq. (6b) and
the transposition is defined with respect to the basis used in
Eq. (3).

A simple proof can be found in Appendix A. In words,
Proposition 2 identifies the normalization state with (the
transpose of) the local state on the input system. Moreover, it
implies that all the physical implementations of the same tester
must have the same marginal state on the input system. This
property will play a crucial role in deciding the compatibility
of testers.

C. Ancilla-free testers

The simplest example of testers are those that can be
implemented without ancillas, as in Fig. 3.

Precisely, we adopt the following definition.

FIG. 3. Diagrammatic representation of an ancilla-free quantum
tester.

Definition 4. A tester T is ancilla-free if it admits an
implementation T = (Hanc,�,P) where the ancilla Hilbert
space is trivial, namely Hanc = C. When this is the case, we
say that the implementation T is ancilla-free.

Ancilla-free testers have a very simple characterization.
Proposition 3. A tester T = {Tj ,j ∈ S} is ancilla-free if

and only if there exists a POVM P = {Pj ,j ∈ S} and a density
operator ρ such that one has

Tj = Pj ⊗ ρ, ∀ j ∈ S. (10)

Every ancilla-free implementation T = (C,�,P) has
� = ρT .

A proof can be found in Appendix B. An example of ancilla-
free tester is a tester designed to probe how an optical device
preserves the vertical polarization of a single photon. In this
case, implementation consists in preparing a photon in the ver-
tical polarization state � = |V 〉〈V |, feeding it in the input port
of the device, and performing the projective measurement P =
{|V 〉〈V | ,|H 〉〈H |} on the output. The corresponding tester is

TV = {|V 〉〈V | ⊗ |V 〉〈V | ,|H 〉〈H | ⊗ |V 〉〈V |}. (11)

Another example is a tester designed to probe how the device
preserves the horizontal polarization. In this case the tester is

TH = {|H 〉〈H | ⊗ |H 〉〈H | ,|V 〉〈V | ⊗ |H 〉〈H |}. (12)

Yet another example is a tester designed to probe the
unitality of a process. For a process acting on the polarization
of a photon, the test of unitality can be performed by preparing
the input in the maximally mixed state � = I/2 and by
checking whether the output state E(I/2) is still maximally
mixed. To check that, one can perform a tomographically
complete POVM P on the output and establish whether the
statistics of the outcomes is compatible with the maximally
mixed state. For example, one can choose at random from
among three polarization measurements, performing the six-
outcome POVM P = {P1,P2, . . . ,P6} with

P1 = 1
3 |V 〉〈V |, P2 = 1

3 |H 〉〈H |,
P3 = 1

3 |D〉〈D|, P4 = 1
3 |A〉〈A|, (13)

P5 = 1
3 |R〉〈R|, P6 = 1

3 |L〉〈L|,
where |D〉, |A〉, |R〉, and |L〉 denote the states of diagonal,
antidiagonal, right-handed, and left-handed polarizations,
respectively. If the process E is unital, the six possible
outcomes should occur with equal probabilities. The above
setup corresponds to the tester T = {T1,T2, . . . ,T6}, with

Tj := Pj ⊗ I

2
, ∀ j ∈ {1,2, . . . ,6}. (14)

Note that an alternative way to implement the same tester
is to prepare a two-photon maximally entangled state,

|�+〉 := |H 〉|H 〉 + |V 〉|V 〉√
2

,

and to perform POVM P ′ = {P ′
1,P

′
2, . . . ,P

′
6} with

P ′
j := Pj ⊗ I.

This implementation is canonical (according to Definition 3
), but not ancilla-free: It uses the second photon as ancilla.
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Besides the ancilla-free testers, other examples of testers are
provided in Appendix C.

III. CHARACTERIZING COMPATIBILITY

Before analyzing the case of testers, we briefly define the
notion of compatibility for POVMs. We refer the reader to
Ref. [31] for a more in-depth presentation.

A. Compatibility of POVMs

POVMs provide statistical descriptions of experiments
designed to probe the preparation of quantum systems. Each
POVM represents, so to speak, a different “experimental
question” that we can ask the system. Given two such
questions, it is important to know whether the system can
answer both questions at the same time. More precisely, it is
important to know whether there exists a third experiment that
produces the same outcomes as the two original experiments,
with the same probability distributions.

Concretely, suppose that the system is prepared in the state ρ

and measured with either the POVM P = {Pj } or the POVM
Q = {Qk}. In one case, the measurement will produce the
outcome j with probability

pj = tr[Pjρ], (15)

while in the other case the measurement will produce the
outcome k with probability

qk = tr[Qkρ]. (16)

Now we would like to find an experiment that provides both
outcomes j and k with a joint probability distribution rjk that
reproduces the statistics of the original measurements, when
one takes the marginals∑

k

rjk = pj and
∑

j

rjk = qk (17)

for every j and every k. The statistics of the third experiment
will be determined by a (joint) POVM R = {Rjk}, so that one
has

rjk = tr[Rjkρ] (18)

for every j and k.
If the state ρ is known, the condition (17) can be trivially

satisfied by choosing Rjk = pjqkI , meaning that one can
draw j and k at random according to the (known) probability
distributions in Eqs. (15) and (16). The interesting scenario is
when the state ρ is not known to the experimenter. Here we
require the condition (17) to hold for every quantum state ρ.
Under this requirement, Eq. (17) becomes equivalent to the
condition∑

k

Rjk = Pj and
∑

j

Rjk = Qk (19)

for every j and every k. The above discussion motivates the
following definition.

Definition 5. Two POVMs P = {Pj } and Q = {Qk} are
compatible if there exists a third POVM R = {Rjk} such that
Eq. (19) is satisfied for every j and k. If no such POVM exists,
we say that P and Q are incompatible.

An example of compatible POVMs is given by commuting
POVMs, i.e., POVMs P and Q satisfying the condition
[Pj ,Qk] = 0 for every j and k. In this case, one can define the
joint POVM R = {Rjk} with operators

Rjk := PjQk, (20)

whose positivity is guaranteed by the commutation of Pj and
Qk .

On the other hand, there are examples of compatible
POVMs that are not commuting. A nice counterexample was
introduced by Busch [22], who considered two unsharp mea-
surements of horizontal-vertical and diagonal-antidiagonal
polarizations, P = {P1,I − P1} and Q = {Q1,I − Q1}, with

P1 = 1 + p

2
|V 〉〈V | + 1 − p

2
|H 〉〈H |, (21)

Q1 = 1 + q

2
|D〉〈D| + 1 − q

2
|A〉〈A|, (22)

and showed that these are compatible whenever p2 + q2 � 1.
Clearly, the operators P1 and Q1 do not commute, except in
the trivial case when p or q is zero. In summary, we obtained
the following observation.

Proposition 4. For POVMs, commutativity implies com-
patibility, but not vice versa.

B. Compatibility of quantum testers

In analogy with the POVM case, we can regard quantum
testers as different “experimental questions” that we can ask
about physical processes. The only difference is that now
the questions we can ask are of a more dynamical nature;
essentially, they are questions about how processes transform
different inputs.

Now we want to know whether two experimental questions
can be answered at the same time. Let us represent the two
questions with two corresponding testers A = {Aj } and B =
{Bk}, respectively, and let us represent the tested process E by
its Choi operator E. When the first (second) question is asked,
the probability to obtain the outcome j (k) is given by

pj = tr[Aj E] (qk = tr[Bk E]); (23)

cf. Eq. (4). Now we are looking for an experimental setup that
can answer both questions, by providing the outcomes j and
k with the right probabilities. In other words, we want to find
a tester C = {Cjk}, such that the probability distribution {rjk}
defined by

rjk := tr[Cjk E] (24)

reproduces the statistics of the original testers, namely,∑
k

rjk = pj and
∑

j

rjk = qk. (25)

Requiring this condition to hold for every possible process
(including both deterministic and nondeterministic processes)
leads to the following definition.

Definition 6. Two quantum testers A = {Aj } and B = {Bk}
are compatible if there exists a (joint) tester C = {Cjk} such
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that ∑
k

Cjk = Aj and
∑

j

Cjk = Bk (26)

for every j and k. If no such tester exists, we say that A and
B are incompatible.

C. Necessary and sufficient conditions for compatibility

In this part we analyze the immediate implications of our
definition of compatibility. First of all, it is easy to see that
compatible testers must have the same normalization.

Proposition 5. Let A and B be two testers and let ρ and σ

be the corresponding normalization states, as in Eq. (6b). If A
and B are compatible, then one must have

ρ = σ. (27)

Proof. Let C be the joint tester that reproduces the statistics
of A and B. Then one has

I1 ⊗ ρ =
∑

j

Aj =
∑

j

(∑
k

Cjk

)

=
∑

k

⎛⎝∑
j

Cjk

⎞⎠ =
∑

k

Bk = I1 ⊗ σ. (28)

Hence, one must have ρ = σ . �
As an application, Proposition 5 shows that the tester

TV = {|V 〉〈V | ⊗ |V 〉〈V | ,|H 〉〈H | ⊗ |V 〉〈V |}, (29)

designed to probe the preservation of the vertical polarization,
is incompatible with the tester

TH = {|H 〉〈H | ⊗ |H 〉〈H | ,|V 〉〈V | ⊗ |H 〉〈H |}, (30)

designed to probe the preservation of the horizontal polar-
ization. Indeed, TV has the normalization state ρ = |V 〉〈V |,
while TH has the normalization state σ = |H 〉〈H |. Interest-
ingly, all the operators in the testers TV and TH commute.
Summarizing, we have the following observation.

Proposition 6. For testers, commutativity does not imply
compatibility.

As the above counterexample shows, the reason why two
commuting testers may fail to be compatible is that their
normalization states do not coincide. Interestingly, once this
obstacle is removed, commuting testers become compatible.

Proposition 7. Two commuting testers A and B are
compatible if and only if they have the same normalization
states.

Proof. The “only if” part follows immediately from Propo-
sition 5. Let us show the “if” part. Denote by ρ the normaliza-
tion state. Since the testers commute, the normalization state
commutes with all the operators: Indeed, one has

[I1 ⊗ ρ ,Bk] =
∑

j

[Aj,Bk] = 0, (31)

[Aj,I1 ⊗ ρ] =
∑

k

[Aj ,Bk] = 0, (32)

for every j and k. As a consequence, also the inverse (I1 ⊗ ρ)−1

(on the support of ρ) commutes with Aj and Bk for every j

and k. Using this fact, we define the tester C = {Cjk} with
operators

Cjk = AjBk(I1 ⊗ ρ)−1, (33)

whose positivity follows from the commutation of Aj , Bk

and (I1 ⊗ ρ)−1. It is immediate to verify the normalization
condition (6b) and the compatibility conditions (26). �

More generally, we now provide a necessary and sufficient
condition for the compatibility of two arbitrary (possibly
noncommuting) testers. The condition is expressed in terms
of the canonical implementation of the testers introduced in
Proposition 1.

Theorem 1. Two quantum testers A and B are compatible
if and only if

(1) the normalization states associated with A and B in
Eq. (6b) coincide, and

(2) the canonical POVMs associated with A and B are
compatible.

The proof can be found in Appendix D. The physical
meaning of Theorem 1 is that two testers A and B are
compatible if and only if they can be implemented with two
experimental setups A = (Hanc,�,P) and B = (Hanc ,� , Q)
using the same ancilla, preparing the same input state, and
measuring compatible POVMs P and Q.

Note that, thanks to Theorem 1, we do not need to search
over all possible physical implementations of the two testers.
All the information regarding the compatibility of the testers
can be read out from their canonical implementation.

IV. QUANTIFYING INCOMPATIBILITY

The incompatibility of POVMs is a resource for various
quantum information tasks, such as steering [14,15] or device-
independent cryptography [12,13]. It plays a strong role also
in approximate cloning [10]. It is then natural to expect that
also the incompatibility of testers will serve as a resource for
information processing, at a higher level where the information
is encoded into processes, rather than states. From this point
of view, it is natural to look for suitable measures that quantify
the amount of incompatibility of two or more testers. In the
following we provide one such measure, which we call the
robustness of incompatibility. Our constriction is inspired by
a convex method previously used for POVMs [30,42,43].

A. Convexity of the set of testers

Testers with the same set of outcomes form a convex set.
Precisely, we have the following.

Definition 7. Let A = {Aj ,j ∈ S} and B = {Bj ,j ∈ S}
be two sets of operators acting on the same Hilbert space and
indexed by the same index set S. The convex combination of
A and B with weight λ ∈ [0,1] is the set of operators C =
{Cj ,j ∈ S} defined by

Cj := (1 − λ) Aj + λ Bj . (34)

We denote the convex combination as

C := (1 − λ) A + λ B. (35)
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Denoting by T(H0,H1,S) the set of all testers with input
space H0, output space H1, and outcome space S, we have the
following.

Proposition 8. The set T(H0,H1,S) is convex.
Proof. Given testers A and B, it is easy to see that the set of

operators C defined in Eq. (35) is indeed a tester: The operators
Cj are obviously positive and one has the normalization
condition

∑
j Cj = I1 ⊗ τ with τ = (1 − λ)ρ + λ σ , where

ρ and σ are the normalization states of A and B, respectively.
Finally, convexity of the set of density matrices implies that
the operator τ is a density matrix. Hence, the set of operators
C is properly normalized.

B. The robustness of incompatibility

Operationally, convex combinations of testers correspond
to the randomization of different experimental setups. In
particular, we can consider the case where an ideal setup,
designed to measure a quantity of interest, is randomly mixed
with another setup, regarded as noise.

Now suppose that the ideal tester A is mixed with the noise
N (A) and that the ideal tester B is mixed with the noise N (B).
By adding enough noise, we can make the resulting testers
compatible. This idea motivates the following.

Definition 8. Two testers A and B are λ-compatible if there
exist two testers N (A) and N (B) such that the randomized testers
(1 − λ)A + λN (A) and (1 − λ)B + λN (B) are compatible.

In this setting the probability λ can be interpreted as a
measure of the level of added noise. Intuitively, the amount of
noise needed to break the incompatibility of two testers can
be regarded a measure of the degree of incompatibility: The
higher the noise, the higher is the incompatibility. Based on
this idea we define a quantitative measure of incompatibility
in terms of the minimum amount of added noise required to
make two testers compatible.

Definition 9. The robustness of incompatibility Rt(A,B) is
the minimum λ such that the testers A and B are λ-compatible.

In the rest of the paper we analyze the properties of the
robustness of incompatibility.

C. Why different noises?

Our definition of the robustness of incompatibility is
similar to the definition of robustness used in the literature
on POVMs [30,43,44] except in one detail: For POVMs,
one usually assumes that the added noises coincide; i.e.,
N (A) = N (B). We do not make this assumption here, because
assuming equal noises in the case of testers would result in a
notion of robustness with undesired physical properties.

This point is clarified by the following proposition, proven
in Appendix E.

Proposition 9. Let A and B be two testers with dis-
tinct normalization states and let N be an arbitrary tester,
representing the noise. Then the testers (1 − λ)A + λN and
(1 − λ)B + λN are compatible only if λ = 1.

In other words, if two testers have different normalization
states, then adding the same noise on both will not make
them compatible, except in the trivial case when the noise
completely replaces the original testers. As a result, even
two testers that are arbitrarily close to each other would

be maximally incompatible, just because they have slightly
different normalization states. A tester could be maximally
incompatible with a noisy version of itself, even if the noise
is arbitrarily small. For these reasons, we regard the definition
of robustness with equal added noises as not physically
interesting in the case of testers.

D. Bounds on the robustness of incompatibility

The robustness of incompatibility satisfies some obvious
bounds: The first one is the lower bound Rt(A,B) � 0. An
upper bound is given by the following.

Proposition 10. Every pair of testers A and B is λ-
compatible with λ = 1/2.

Proof. It is enough to set N (A) := B and N (B) := A.
With this choice, the randomized testers 1/2 A + 1/2 N (A)

and 1/2 B + 1/2 N (B) coincide and therefore are trivially
compatible. �

In summary, the robustness of incompatibility for a pair of
testers has values in the interval

0 � Rt(A,B) � 1
2 . (36)

The lower bound is attained if and only if the testers A and B
are compatible. In the following we see that the upper bound
is also attainable.

V. INCOMPATIBILITY DUE TO THE INPUT STATES

The incompatibility between two testers can have two
different origins: It can come from the incompatibility of the
input states or from the incompatibility of the measurements
on the output. In this section we quantify the contribution of
the input states.

A. The robustness of state incompatibility

We know that, in order to be compatible, two testers must
have the same normalization state. When this is not the case,
it is possible to give a lower bound on the incompatibility of
the testers in terms of the normalization states.

Proposition 11. Let A and B be two testers and let ρ and
σ be their normalization states, respectively. If A and B are
λ-compatible, then there must exist two states ρ̃ and σ̃ such
that

(1 − λ)ρ + λρ̃ = (1 − λ)σ + λσ̃ . (37)

Hence, defining the robustness of state incompatibility,

Rs(ρ,σ ) := min{λ|∃ρ̃ ,̃σ : Eq. (37) holds}, (38)

we have the lower bound

Rt(A,B) � Rs(ρ,σ ). (39)

Proof. Suppose that the testers (1 − λ)A + λN (A) and (1 −
λ)B + λN (B) are compatible. Then they must have the same
normalization states (see Proposition 5). On the other hand, the
normalization states are (1 − λ)ρ + λρ̃ and (1 − λ)σ + λσ̃ ,
where ρ̃ and σ̃ are the normalization states of N (A) and N (B),
respectively. Hence, Eq. (37) should hold. Minimizing over λ

one finally gets the lower bound (39). �

052323-7
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B. Maximally incompatible testers

Using the lower bound (39), it is easy to construct quantum
testers that achieve the maximum value of the robustness of
incompatibility. We call these testers maximally incompatible.

Definition 10. We say that two testers A and B are
maximally incompatible if Rt(A,B) = 1/2.

An example of maximally incompatible testers is as
follows. Consider two testers A and B that probe qubit
processes and suppose that A and B have normalization states
ρ = |0〉〈0| and σ = |1〉〈1|, respectively. Then, Eq. (37) implies
the inequality

λ � λ 〈1|ρ̃|1〉
= 〈1| [(1 − λ) |0〉〈0| + λ ρ̃ ] |1〉
= 〈1| [(1 − λ) |1〉〈1| + λ σ̃ ] |1〉
� 1 − λ, (40)

which, in turn, implies λ � 1/2. Since the inequality must hold
for every λ, the robustness of state incompatibility should also
satisfy the inequality Rs(ρ,σ ) � 1

2 . Hence, Eq. (39) yields the
lower bound

Rt(A,B) � Rs(ρ,σ ) � 1
2 . (41)

Combining it with the upper bound (36) we obtain the equality

Rt(A,B) = 1
2 . (42)

Concrete examples of maximally incompatible qubit testers are
the optical testers TV and TH designed to test the preservation
of the vertical polarization and horizontal polarization; cf.
Eqs. (29) and (30) for the explicit expression. Note that the
testers TV and TH are commuting and are still maximally
incompatible. For testers, not only does commutativity not
imply compatibility, but also there exist commuting testers
that are maximally incompatible.

Remark (testers vs POVMs). The attainability of the upper
bound Rt(A,B) = 1/2 highlights an important difference
between the incompatibility of testers and the incompatibility
of POVMs. For POVMs, it is known that the upper bound is not
achievable for finite-dimensional systems [30,42] (see Sec. VI
for qualitative details). In contrast, the robustness of tester
incompatibility can reach the maximum value Rt(A,B) =
1/2 even for two-dimensional systems. For POVMs, this
maximum value can be attained only for infinite-dimensional
systems [31,44].

C. Orthogonal testers are maximally incompatible

Adapting the inequalities used in Eq. (40), one can see that
the robustness of incompatibility attains its maximum value
Rt(A,B) = 1/2 whenever the testers A and B are orthogonal
in the following sense.

Definition 11. Two testers A and B are orthogonal if one
has AjBk = 0 for every pair of outcomes j and k.

It is easy to see that the orthogonality of two testers is
equivalent to the orthogonality of their normalization states.

Proposition 12. Let A and B be two testers and let ρ and
σ their normalization states, respectively. Then, the following
are equivalent:

(1) A and B are orthogonal;

(2) ρ and σ are orthogonal, namely ρ σ = 0.
Proof. By definition, one has I1 ⊗ ρ σ = ∑

j,k AjBk .
Hence, condition (1) implies condition (2). On the other hand,
taking the trace on both sides, one has

d1tr[ρσ ] =
∑
j,k

tr[AjBk] � tr[AjBk] � 0, (43)

having used the fact that Aj and Bk are positive. Hence,
condition (2) implies tr[AjBk] = 0, and, since Aj and Bk are
positive, AjBk = 0. �

Note that orthogonal testers are commuting, because the
condition AjBk = 0 trivially implies [Aj,Bk] = 0.

In summary, we have seen that orthogonal testers are
always maximally incompatible. It is an open problem whether
maximally incompatible testers must be orthogonal.

D. The case of jointly diagonal testers

In some cases, the robustness of tester incompatibility
coincides with the robustness of state incompatibility, meaning
that the lower bound (39) is attained. One such case involves
pairs of jointly diagonal testers, defined as follows.

Definition 12. Two testers A = {Aj } and B = {Bk} are
jointly diagonal if all the operators Aj and Bk are diagonal
in the same basis.

Note that jointly diagonal testers are a strict subset of the
set of commuting testers: While commuting testers satisfy the
relation [Aj,Bk] = 0 for every j and k, jointly diagonal testers
have also to satisfy the relations [Aj,Ak] = 0 and [Bj ,Bk] = 0
for every j and k. For jointly diagonal testers we have the
following.

Proposition 13. Let A and B be two jointly diagonal testers
and let ρ and σ be the corresponding normalization states.
Then one has

Rt(A,B) = Rs(ρ,σ ). (44)

The proof can be found in Appendix F.
An obvious example of jointly diagonal testers is the exam-

ple of the testers TV and TH , designed to test the preservation
of the vertical and horizontal polarizations, respectively. This
kind of incompatibility originates in the mutually exclusive
choices of inputs needed to test the properties represented by
TV and TH . Again, we stress that the incompatibility of inputs
is sufficient to make two testers maximally incompatible.

E. Computing the robustness of state incompatibility

The robustness of state incompatibility has a direct inter-
pretation in terms of distinguishability. Specifically, we have
the following.

Proposition 14. For every pair of density operators ρ and
σ , the robustness of state incompatibility is given by

Rs(ρ,σ ) = ‖ρ − σ‖
‖ρ − σ‖ + 2

, (45)

where ‖ · ‖ = tr| · | denotes the trace norm.
The above result can be concisely derived from the

semidefinite programming approach to minimum-error state
discrimination, due to Yuen, Kennedy, and Lax [45], combined
with the operational interpretation of the trace distance,

052323-8



INCOMPATIBLE MEASUREMENTS ON QUANTUM CAUSAL . . . PHYSICAL REVIEW A 93, 052323 (2016)

following from Helstrom’s theorem [46]. A more explicit
derivation with a nice geometric interpretation can be found in
Appendix G.

In the special case of two-dimensional systems (qubits),
the robustness of state incompatibility has a simple expression
in terms of the Bloch vectors of the states ρ and σ , i.e., the
vectors r = (rx,ry,rz) and s = (sx,sy,sz) in the expressions

ρ = 1
2 (I + r · σ ) and σ = 1

2 (I + s · σ ), (46)

where σ = (σx,σy,σz) is the vector of the Pauli matrices.
Indeed, using the expression

‖ρ − σ‖ = ‖r − s‖ :=
√ ∑

i=x,y,z

(ri − si)2, (47)

one obtains the following corollary.
Corollary 1. For every pair of qubit density operators ρ and

σ , the robustness of state incompatibility is given by

Rs(ρ,σ ) = ‖r − s‖
‖r − s‖ + 2

. (48)

VI. INCOMPATIBILITY DUE TO THE
OUTPUT MEASUREMENTS

In the previous section we quantified how the normalization
states affect the incompatibility of two testers. In this section
we carry out a similar analysis for the measurements. We focus
our attention on testers that have the same normalization states,
the rationale being that in such scenario the incompatibility
arises purely from the measurements.

A. Upper bound on the measurement-induced incompatibility

Two POVMs, P and Q, representing two measurements on
the same quantum system, are said to be λ-compatible [43] if
there exist two POVMs J (P) and J ( Q) such that the POVMs

(1 − λ) P + λ J (P) and (1 − λ) Q + λ J ( Q) (49)

are compatible. In this context, J (P) and J ( Q) are regarded as
introducing “noise” (or “junk”) in the statistics of the desired
measurements P and Q. The robustness of incompatibility is
then defined in the natural way.

Definition 13. The robustness of incompatibility of two
POVMs P and Q, denoted by Rm(P, Q), is the minimum
λ such that P and Q are λ-compatible.

Now when two testers have the same normalization state,
one can upper bound their incompatibility in terms of the
incompatibility of the canonical POVMs introduced in Defini-
tion 3. The upper bound is as follows.

Proposition 15. Let A and B be two testers with the same
normalization state ρ and let P and Q be the canonical POVMs
associated with A and B, respectively. Then, one has

Rt(A,B) � Rm(P, Q). (50)

Proof. The proof is straightforward. One way to make A and
B compatible is to take their canonical implementations and
add enough noise to the canonical POVMs in order to make
them compatible. In other words, if P and Q are λ-compatible,
then also A and B are λ-compatible. Taking the minimum over
λ, one obtains the desired upper bound. �

B. Reachability of maximal incompatibility

As we mentioned earlier, the robustness of incompatibility
of two POVMs P and Q in finite dimensions is always smaller
than 1/2 [31,44]. Physically, this can be seen by considering
the process of optimal universal cloning [7–9], which outputs
approximate copies of the original state, mixed with a suitable
amount of white noise. By using the optimal cloner, one can
make every two POVMs compatible by measuring different
copies at the price of a noisy statistics [10]. For a quantum
system of dimension d, the above procedure gives the bound

Rm(P, Q) � 1

2

(
1 − 1

1 + d

)
. (51)

Consequently, two testers with the same normalization states
cannot reach the maximum value of the robustness Rt(A,B) =
1/2 unless the dimension of the input or the output system
is infinite. For systems of finite dimensions, it is natural
to ask what the maximum amount of measurement-induced
incompatibility is. We conjecture that the maximum amount is
achieved by setups that measure two mutually unbiased bases
on the output; further discussion on this point can be found in
Appendix H.

C. The case of testers with pure normalization state

The upper bound Rt(A,B) � Rm(P, Q) comes from using
the canonical implementation of the testers A and B. In
principle, however, the bound may not be saturated, be-
cause some noncanonical implementation may have “more
compatible” POVMs than the canonical implementation. The
bound is saturated, however, in the case of testers with pure
normalization state.

Proposition 16. Let A and B be two testers and let P and
Q be their canonical POVMs. If the testers A and B have the
same pure normalization state, then the equality

Rt(A,B) = Rm(P, Q) (52)

holds.
The proof can be found in Appendix I. Note that all

testers with pure normalization state are ancilla-free, that
is, they can be implemented by preparing the (transpose
of) the normalization state, applying the tested process,
and measuring the output. It is an open question whether
the equality Rt(A,B) = Rm(P, Q) holds for all ancilla-free
testers.

VII. INCOMPATIBILITY OF TWO-OUTCOME TESTERS

Here we consider the case of two-outcome testers A =
{A1,A2} and B = {B1,B2}. Even in this simple case, we see
that the incompatibility of testers is a subtler issue than the
incompatibility of POVMs. We first provide general results,
later moving to a concrete example in the qubit case.

A. Characterization of compatibility

In the case of two-outcome testers, compatibility has a
simple algebraic characterization.

Proposition 17. A pair of two-outcome quantum testers
A = {A1,A2} and B = {B1,B2} is compatible if and only if
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(1) A and B have the same normalization state, denoted
by ρ;

(2) there exists a positive operator C such that

C � A1,

C � B1, (53)

I1 ⊗ ρ + C � A1 + B1.

Proof. By definition, A and B are compatible if and only if
there exists a tester C such that

A1 = C11 + C12,

B1 = C11 + C21,
(54)

A2 = C21 + C22,

B2 = C12 + C22.

Setting C := C11, the above equations imply

C12 = A1 − C,

C21 = B1 − C,
(55)

C22 = I1 ⊗ ρ − C11 − C12 − C21

= I1 ⊗ ρ − A1 − B1 + C.

The positivity of the above operators is equivalent to the
conditions in Eq. (53). �

We stress that the equality of the normalization states is
essential for compatibility. Even in the extreme case A1 = B1

the testers A and B may not be compatible, due to the fact that
they have different normalization states. In the following we
see that, when A1 = B1, the incompatibility of the testers A
and B is equal to the robustness of normalization.

B. The case of comparable testers

Here we consider the case of comparable two-outcome
testers, defined as testers satisfying one of the relations

Aj � Bk or Bk � Aj (56)

for at least one pair of outcomes (j,k) ∈ {1,2} × {1,2}. As a
special case, testers with A1 = B1 are comparable.

Unlike in the case of POVMs, where comparability implies
compatibility [47], comparable testers may not be compatible.
However, they have a remarkable property, expressed by the
following proposition.

Proposition 18. For comparable two-outcome testers A =
{A1,A2} and B = {B1,B2} with normalizations ρ and σ the
robustness of incompatibility is equal to the robustness of
normalizations,

Rt(A,B) = Rs(ρ,σ ). (57)

The proof can be found in Appendix J.

C. Example: Testing linear polarizations

In this paragraph we analyze the incompatibility of setups
consisting of the preparation of a pure qubit state and in
the measurement of a sharp observable on the output. For
concreteness, we refer to the case of polarization qubits and
we analyze setups that probe the action of an unknown process
on photons with a given linear polarization.

FIG. 4. This figure illustrates the splitting of the parameter space
of two-outcome factorized rank 1-testers into two regions M and
D investigated separately. The robustness for testers is given by
robustness of normalization states in the (shaded blue) region M
(Proposition 19). In the remaining region D this is no longer the case
as it is illustrated in Fig. 6.

We consider two setups. In one setup, the input photon
has linear polarization at θ/4 angle relative to the vertical
axis and the output photon is measured with a polarizing
filter at ϕ/4 angle. In the other setup, the input photon has
linear polarization at −θ/4 angle and the output photon is
measured with a filter at −ϕ/4 angle. The factor 4 is just for
later convenience. The two setups are described by the testers
A = {A1,A2}, B = {B1,B2}, defined by

A1 = P−ϕ/2 ⊗ P−θ/2, B1 = Pϕ/2 ⊗ Pθ/2,
(58)

A2 = Pπ−ϕ/2 ⊗ P−θ/2, B2 = Pϕ/2−π ⊗ Pθ/2,

where we used the notation

Pα := 1
2 (I + sin α σx + cos α σz).

Physically, θ/2 and ϕ/2 represent the angles between the
polarization filters preparing the input photon and measuring
the output photon, respectively. By varying the angles θ and ϕ

we obtain different pairs of testers, which can be represented
in a square, as in Fig. 4. Note that, unless θ = 0, the two
testers A and B are incompatible, because they have different
normalization states. Moreover, even testers with θ = 0 may
be incompatible, due to the incompatibility of the output
measurements: For θ = 0, we have the equality

Rt(A,B) = Rm(P, Q),

showing that the incompatibility of the testers is quantified by
the incompatibility of the canonical POVMs associated with
them. Note that the canonical POVMs are compatible only if
ϕ is equal to 0 or to π .

To start our analysis, we evaluate the lower bound arising
from the incompatibility of the input states. Combining
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FIG. 5. Illustration of the optimal choice of the normalizations ρ̃

and σ̃ of the admixed testers N (A) and N (B) for the incompatibility
of testers defined in Eq. (58).

Proposition 11 with Eq. (48) we obtain

Rt(A,B) � Rs(ρ,σ ) = sin θ
2

1 + sin θ
2

, (59)

where ρ and σ are the normalization states of A and B,
respectively and the optimal choice of normalization states
for the admixed testers is illustrated in Fig. 5. It is interesting
to characterize the cases where the bound is saturated. To this
purpose, we define a suitable parameter region, which we call
“region M”:

M ≡
{

(θ,ϕ) | θ,ϕ ∈ [0,π ] , sin
θ

2
� sin ϕ

2 + sin ϕ

}
. (60)

Note that the region M contains all the testers testing how well
a given polarization is preserved, that is, all testers with ϕ = θ .
More generally, the points in region M are illustrated in Fig. 4.

With a slight abuse of terminology, we say that two testers
A and B belong to region M if the corresponding parameters
belong to region M. We then have the following proposition.

Proposition 19. If a pair of testers A,B belongs to region M,
then their incompatibility is quantified by the incompatibility
of the input states. In formula,

Rt(A,B) = Rs(ρ,σ ) = sin θ
2

1 + sin θ
2

. (61)

The proof of this proposition is in Appendix K. A plot of
the robustness of incompatibility is provided in Fig. 6.

Outside region M the situation is much trickier. Here we do
not have closed formulas for the robustness of incompatibility
and we had to resort to numerical evaluation via semidefinite
programming (SDP), as outlined in Appendix N. The result
of the evaluation is plotted in Fig. 6. Conceptually, our main
findings are as follows:

(1) Outside region M, the robustness of tester incompatibil-
ity is strictly larger than the robustness of state incompatibility;

(2) for every fixed value of θ , the maximum of the
robustness is attained when the angle ϕ is equal to π/2,
corresponding to mutually unbiased measurements on the
output or, equivalently, to polarizing filters with a relative angle
of 45◦.

Before concluding, we note that our results can be extended
from testers involving sharp measurements to testers involv-

FIG. 6. Robustness of incompatibility of two qubit testers as
defined in Eq. (58). (Top) Dependence on θ and situations for various
choices of ϕ. The solid line depicts the bound of Eq. (59). (Bottom)
Dependence on ϕ for various choices of θ . Dotted lines represent
Eq. (59), which coincides with Rt(A,B) for θ � 0.6797.

ing arbitrary two-outcome POVM, provided that a suitable
technical condition is satisfied.

Proposition 20. Consider a pair of two-outcome testers A
and B with operators

A1 = E1 ⊗ P−θ/2, B1 = F1 ⊗ Pθ/2,
(62)

A2 = E2 ⊗ P−θ/2, B2 = F2 ⊗ Pθ/2,

where {E1,E2} and {F1,F2} are arbitrary qubit POVMs. Then
one has the equality

Rt(A,B) = Rs(ρ,σ ) = sin θ
2

1 + sin θ
2

, (63)

whenever the angle θ satisfies the condition θ � 2 arcsin(1/3).
The proof is presented in Appendix M.

VIII. EXTENSION TO MEASUREMENT SETUPS WITH
MULTIPLE TIME STEPS

So far we have discussed the compatibility of pairs of
experiments designed to test quantum channels; however, the
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definitions and most of the results hold in a more general
setting: We can consider

(1) the compatibility of more than two quantum testers and
(2) the case of testers that probe quantum processes with

multiple time steps.
A quantum process with multiple time steps can be viewed

as the quantum version of a causal network, consisting of an
ordered sequence of processes correlated by the presence of a
quantum memory [see Fig. 7 (bottom)].

We call a quantum causal network of such form a quantum
comb [32,35] (also known as quantum strategy in the context
of quantum games [37]). More specifically, we call quantum
N -comb a causal network consisting of N steps.

Two N -combs are of the same type if they have the
same sequence of input-output Hilbert spaces. Like quantum
channels, quantum N -combs can be represented by Choi
operators. An operator R(N) is a quantum N -comb [illustrated
in Fig. 7 (bottom)] if and only if it is positive and satisfies the
equations

tr2N−1[R(N)] = I2N−2 ⊗ R(N−1),

tr2N−3[R(N−1)] = I2N−4 ⊗ R(N−2),

...

tr1[R(1)] = I0, (64)

where trn denotes the partial trace over the Hilbert space Hn,
In denotes the identity operator on Hn, and R(n) is a positive
operator on

⊗2n−1
i=0 Hi .

In order to extract information about the quantum network,
we need to perform an experiment that provides inputs to
the network and processes the outputs received at all time
steps. The most general way to interact with a quantum causal
network is by connecting it with another causal network, as
illustrated in Fig. 7.

Again, we call the testing network a tester [32,35];
more specifically, we call N -tester a network designed to
test processes of N time steps. Quantum testers have been
recently considered in the tomographic characterization of
non-Markovian evolutions [48], a scenario where probing
multitime quantum processes becomes highly relevant.

Two N -testers are of the same type if they have the same
sequence of input-output Hilbert spaces. An N -tester illus-
trated in Fig. 7 (top) is described by a set of positive operators
T = {Tj }j∈S, where S is the set of possible outcomes and each
operator Tj acts on the tensor product Hilbert space Hnetwork =⊗2N−1

i=0 Hi . The normalization condition for a tester is given
by the following set of equations∑

j∈S

Tj = I2N−1 ⊗ 
(N),

tr2N−2[
(N)] = I2N−3 ⊗ 
(N−1),

...

tr2[
(2)] = I1 ⊗ 
(1),

tr[
(1)] = 1, (65)

where 
(n) is a positive operator on
⊗2n−2

i=0 Hi . We call such
positive operator 
(N) ≡ 
 the normalization of the tester T .

When quantum N -comb and quantum N -tester are com-
bined, the probability of the outcome j ∈ S is given by the
generalized Born rule,

pj = tr[Tj R(N)]. (66)

Different N -testers represent different (and possibly comple-
mentary) ways to extract information about a quantum N -
comb. In the following we formulate the elementary properties
of compatibility for two or more N -testers. Let us stress
that previous sections treat the case of 1-testers, which we
for simplicity denoted until now as testers and 1-combs
traditionally called channels.

Definition 14. Let {T (x) , x ∈ X} be a set of testers of the
same type, the xth tester with outcomes in the set Sx and the
normalization 
x . The testers are compatible if there exists a
joint tester C = {Ck}k∈S1×···×S|X| such that for all x ∈ X and
for every jx ∈ Sx

T
(x)
jx

=
∑

k:kx=jx

Ck, (67)

where kx is the xth component of vector k.
As in the case of compatibility of pairs of 1-testers, one

can show that a set of testers {T (x)}x∈X are compatible only
if they have the same normalizations. Moreover, Theorem 1
generalizes to the following.

Proposition 21. For each N -tester T (x) with normalization

x , define the canonical POVM P (x) = {P (x)

jx
},

P
(x)
jx

=
(
I2N−1 ⊗ 


− 1
2

x

)
T

(x)
jx

(
I2N−1 ⊗ 


− 1
2

x

)
. (68)

The testers {T (x), x ∈ X} are compatible if and only if
(1) their normalizations coincide (
x ≡ 
 for all x),
(2) the canonical POVMs {P (x), x ∈ X} are compatible.
Proof. The proof is a direct generalization of the proof of

Theorem 1. �
The incompatibility of multitime testers can be quantified

in the same way as we did in the N = 1 case. Again, the idea
is to measure the incompatibility of a set of testers based on
the amount of “noise” that one has to add in order to make
them compatible.

Definition 15. The testers {T (x), x ∈ X} are λ-compatible if
for any x there exists a tester T̃

(x)
with the outcome set Sx such

that the testers {(1 − λ)T (x) + λT̃
(x)

, x ∈ X} are compatible.
Definition 16. The robustness of incompatibility of a set

of testers T := {T (x)}x∈X, denoted by Rt(T), is the minimal λ

such that the testers in the set T are λ-compatible.
Note that every set of testers is λ-compatible with λ = 1 −

|X|−1, as one can see from a simple adaptation of Proposition
10 : Essentially, one can always make the testers compatible
by uniformly mixing them. In other words, we have the bounds

0 � Rt(T) � 1 − |X|−1,

valid for every set T of testers containing |X| elements. We
now show that the upper bound can be saturated. To this
purpose, we formulate a lower bound in terms of normalization
operators 
x . The crucial observation is that the normalization
operator 
x is an N -comb; that is, it satisfies the conditions in
Eq. (64). Physically, this means that 
x represents a quantum
causal network, consisting of a sequence of N time steps.
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FIG. 7. Illustration of quantum causal network, or N -comb (lower orange blocks), that can be “measured” by a quantum N -tester (upper
blue blocks). Here Hi , i ∈ {0,1, . . . ,2N − 1} are the Hilbert spaces describing the inputs and outputs of the network (and outputs and inputs
of the N -tester), Kj ,j ∈ {0,1, . . . ,N − 1} are the Hilbert spaces of the internal memories of the network, and Ll ,l ∈ {0,1, . . . ,N − 1} are
the Hilbert spaces of the internal memories of the N -tester. � is an input state to the N -tester (which can be chosen to be pure without
loss of generality); U (l), l ∈ {1,2, . . . ,N − 1} are its quantum channels (which can be chosen to be unitary without loss of generality); and
P := {Pj }j∈S is a POVM, representing a measurement on the final output systems of the network of tested processes E (j ),j ∈ {1,2, . . . ,N}.

The distinguishability of the causal networks associated with
the original testers gives a lower bound to the robustness of
incompatibility.

Proposition 22. Let T = {T (x), x ∈ X} be a set of testers of
the same type with normalizations 
x , respectively. Then the
robustness of incompatibility of this set is lower bounded by

Rt(T) � 1 − 1

|X| psucc
, (69)

where psucc is the maximum probability of success in distin-
guishing among the quantum causal networks associated with
operators {
x, x ∈ X}. In particular, the bound is saturated
whenever the networks are perfectly distinguishable.

Proof. Assume the testers are λ-compatible for a certain
λ and let C = {Cj} be the joint tester that guarantees the
compatibility. Let us denote by 
 the normalization of the
joint tester. Then, necessarily, for all x ∈ X


 � (1 − λ) 
x. (70)

In order to compute the robustness, we have to minimize λ over
all operators 
 subject to the constraint that 
 is the normal-
ization of a joint tester satisfying the compatibility condition.
We now relax this constraint and assume only that 
 satisfies
the normalization conditions in Eq. (65). Defining μ := (1 −
λ)−1|X|−1, we have that minimizing λ under the condition (70)
is equivalent to minimizing μ under the condition

μ
 � 1

|X| 
x, ∀ x ∈ X. (71)

Now the minimization of μ under the condition that 


is a comb is a semidefinite program. This semidefinite
program was recognized in Ref. [49] as the dual to the
maximization of the success probability in the discrimination
of the networks {
x ,x ∈ X}. More precisely, Theorem 1 of
Ref. [49] guarantees that the minimum of μ is equal to the
maximum probability of success psucc. Hence, we must have
μ � psucc or, equivalently,

λ � 1 − 1

|X|psucc
.

Since the inequality holds for every λ, it must hold also for the
minimum λ, leading to the bound Rt(T) � 1 − 1/(|X|psucc).

If the quantum networks {
x ,x ∈ X} are perfectly
distinguishable, one has psucc = 1 and; therefore,
Rt(T) � 1 − 1/|X|. On the other hand, we already mentioned
that every set of testers is λ-compatible with λ = 1 − 1/|X|,
which concludes the proof. �

In the case of two testers (|X| = 2), the above bound has a
nice expression in terms of the operational distance between
two quantum causal networks [32,35,50]. Specifically, one has

psucc = 1
2

(
1 + 1

2‖
1 − 
2‖op

)
, (72)

where ‖ · ‖op is the operational norm [32,35,50]. Inserting this
expression in the lower bound we then obtain

Rt(T) �
‖
1 − 
2‖op

2 + ‖
1 − 
2‖op
. (73)

Let us note that in the N = 1 case the operational norm
coincides with the trace norm, which implies that Eqs. (45)
and (73) match.

IX. CONCLUSIONS

In this paper we have introduced the notion of compatibility
for measurement setups designed to probe quantum dynamical
processes. We highlighted how the time structure, with
its division into inputs and outputs, affects the notion of
compatibility. In particular, we highlighted the differences
between the compatibility of ordinary quantum measurements,
described by POVMs, and more general setups with multiple
time steps, described by quantum testers.

When testing processes consisting of a single time step, the
key differences between POVMs and testers are the following.

(1) For POVMs, commutativity implies compatibility. For
testers, the implication is false whenever the testers entail
preparations of distinct input states. In this way, even testers
consisting of mutually commuting projectors can turn out to
be incompatible.

(2) For POVMs, the maximum amount of incompatibility
that can be found in a finite-dimensional system increases
with the dimension, reaching the largest value only for
infinite-dimensional systems [31,44]. For testers, the maxi-
mum amount of incompatibility is the same for all testers
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SEDLÁK, REITZNER, CHIRIBELLA, AND ZIMAN PHYSICAL REVIEW A 93, 052323 (2016)

with nontrivial input: Two testers are maximally incompatible
whenever they entail the preparation of orthogonal input states.

(3) For two-outcome POVMs, the ability to compare one
element of a POVM with one element of the other POVM
implies compatibility. For testers, the implication is false:
Two comparable testers may not be compatible. Also in this
case, the incompatibility originates in the incompatibility of
input states.

Physically, the differences arise from the fact that the
incompatibility of testers can arise from a different source
than the incompatibility of POVMs. Such a different source is
the incompatibility of the input states: Essentially, probing
a process on a certain input precludes the possibility of
probing the process on another input. As a result, the
incompatibility of two testers can arise from two contributions:
the incompatibility of the input states sent to the process and
the incompatibility of the measurements performed on the
output. To quantify these contributions, we provide lower and
upper bounds on the tester incompatibility in terms of the state
and measurement incompatibilities, respectively.

For simplicity, we illustrated most of our results in the
case of testers probing processes consisting of a single time
step. However, all the results can be generalized to testers
that probe quantum processes consisting of multiple time
steps. In particular, we showed that two general testers can
be incompatible because they use two distinct sequences of
interactions in order to probe an unknown multiple time step
process. The distinguishability of the sequences of interactions
provides a lower bound to the incompatibility of the resulting
testers and, again, maximum incompatibility is obtained when
the sequences are perfectly distinguishable.

Since the incompatibility of ordinary measurements is a
resource in several applications (steering, device-independent
cryptography, etc.), we believe that the research program on
the incompatibility of testers, initiated in this paper, will
have an impact on the design of new quantum protocols.
At a more fundamental level, the study of the dynamical
properties of quantum causal networks is expected to shed
light on foundational questions about time and causal structure
in quantum theory.
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APPENDIX A: PROOF OF PROPOSITION 2

Given a physical implementation T = (Hanc,�,P), the
corresponding tester T is given by Eq. (5). Using this
expression, we obtain∑

j

Tj =
∑

j

tranc[(Pj ⊗ I0) (I1 ⊗ SWAP�T0 SWAP)]

= tranc[I1 ⊗ �T0 ] = I1 ⊗ ρ, (A1)

where ρ := tranc[�T0 ]. �

APPENDIX B: PROOF OF PROPOSITION 3

Let T = (C,�,P) be an ancilla-free implementation. Then
Eq. (5) gives

Tj = (Pj ⊗ I0)
(
I1 ⊗ �T

) = Pj ⊗ �T , ∀ j. (B1)

The normalization of the tester reads∑
j

Tj =
⎛⎝∑

j

Pj

⎞⎠ ⊗ �T = I1 ⊗ �T , (B2)

which, compared with the normalization condition (6b),
implies ρ = �T .

Conversely, suppose that the tester operators are of the form
Tj = Pj ⊗ ρ. Setting � := ρT , it is immediate to check that
T = (C,�,P) is an ancilla-free implementation. �

APPENDIX C: FURTHER EXAMPLES OF TESTERS

1. Testers with classical ancilla

In the case of ancilla-free testers, there are no correlations
between the state sent as input to the unknown process and the
measurement performed on its output. For some applications,
like quantum process tomography [51], it is important to test
the action of the process on multiple input states, keeping
track of which state has been used as a probe. This task can be
accomplished by using a classical system as an ancilla.

Schematically, we can consider a setup as in Fig. 8,
where the input state is prepared in a state ρk , correlated
with a classical random variable, which assumes the value
k with probability qk . Then the output is measured with a
POVM P (k) = {P (k)

jk
,jk ∈ Sk}, whose outcome set Sk possibly

depends on the index k. This dependence makes it possible
to keep track of the value of k, as different values of k can
correspond to disjoint sets of outcomes.

Note that the joint state of the input system and the classical
random variable k can be represented as the quantum-classical

FIG. 8. Diagrammatic representation of a tester with classical
ancilla.
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state

� =
∑

k

qk ρk ⊗ |k〉〈k|, (C1)

where {|k〉} is an orthonormal set of states of a suitable ancilla.
In this picture, a measurement that depends on k is just a joint
measurement on the system and the ancilla. This observation
motivates the following

Definition 17. We say that a tester T can be implemented
with a classical ancilla if there exists an implementation T =
(Hanc ,�,P) such that the state � is quantum classical.

Testers that can be implemented with a classical ancilla
have the form T = {Tjk

}, with

Tjk
=

∑
k

qk P
(k)
jk

⊗ ρk. (C2)

Mathematically, the set of testers with classical ancilla is
nothing but the convex hull of the set of ancilla-free testers.
This fact can be easily seen by comparing Eq. (C2) with
Eq. (10).

2. Testers with genuinely quantum ancilla

Some testers cannot be implemented with a classical
ancilla. This is the case, for example, of testers containing
nonseparable operators; i.e., operators that cannot be written
in the form

Tj =
∑

k

Ajk ⊗ Bjk,

with positive Ajk and Bjk . A concrete example arises when
testing how well a process preserves the maximally entangled
state |�+〉. To this purpose, we can prepare the input and the
ancilla in the state � = |�+〉〈�+|, apply the process E on the
first system, and then measure the output and the ancilla with
two-outcome POVM P = {P1,P2} with

P1 = |�+〉〈�+|, P2 = I ⊗ I − |�+〉〈�+|. (C3)

This setup corresponds to the two-outcome tester T = {T1,T2},
with

T1 = 1

d
|�+〉〈�+|, T2 = 1

d
(I ⊗ I − |�+〉〈�+|). (C4)

This tester cannot be realized with a classical ancilla, because
the operator T1 does not have the separable form of Eq. (C2).

APPENDIX D: PROOF OF THEOREM 1

Suppose that A = {Aj } and B = {Bk} are compatible. Then
there exists a tester C = {Cjk} such that the compatibility
condition (26) holds. Note that Eq. (26) implies that A, B, and
C have the same normalization state; call it ρ. Now define the
canonical POVMs associated with A, B, and C , namely the
POVMs P = {Pj }, Q = {Qk}, and R = {Rjk}, with operators

Pj = (
I ⊗ ρ− 1

2
)
Aj

(
I ⊗ ρ− 1

2
)
,

Qk = (
I ⊗ ρ− 1

2
)
Bk

(
I ⊗ ρ− 1

2
)
, (D1)

Rjk = (
I ⊗ ρ− 1

2
)
Cjk

(
I ⊗ ρ− 1

2
)
.

Then it is immediate to obtain the compatibility conditions for
the canonical POVMs P and Q. Indeed, one has∑

k

Rjk = (
I ⊗ ρ− 1

2
)(∑

k

Cjk

)(
I ⊗ ρ− 1

2
)

= (
I ⊗ ρ− 1

2
)
Aj

(
I ⊗ ρ− 1

2
)

≡ Pj , (D2)

and, similarly,

∑
j

Rjk = (
I ⊗ ρ− 1

2
)⎛⎝∑

j

Cjk

⎞⎠(
I ⊗ ρ− 1

2
)

= (
I ⊗ ρ− 1

2
)
Bk

(
I ⊗ ρ− 1

2
)

≡ Qk. (D3)

Conversely, if the normalization states are the same and the
canonical POVMs P and Q are compatible, then one can use
the joint POVM R to define the tester C with operators

Cjk := (
I ⊗ ρ

1
2
)
Rjk

(
I ⊗ ρ

1
2
)
. (D4)

By construction, C is a joint tester for A and B: Indeed, one
has ∑

k

Cjk = (
I ⊗ ρ

1
2
)(∑

k

Rjk

)(
I ⊗ ρ

1
2
)

= (
I ⊗ ρ

1
2
)
Pj

(
I ⊗ ρ

1
2
)

= Aj, (D5)

having used the fact that ρ
1
2 is invertible on its support.

Similarly, one has

∑
j

Cjk = (
I ⊗ ρ

1
2
)⎛⎝∑

j

Rjk

⎞⎠(
I ⊗ ρ

1
2
)

= (
I ⊗ ρ

1
2
)
Qk

(
I ⊗ ρ

1
2
)

= Bk. (D6)

This concludes the proof. �

APPENDIX E: PROOF OF PROPOSITION 9

Let ρ, σ , and τ be the normalization states of A, B, and
N , respectively. Then the compatibility condition implies the
relation

(1 − λ)ρ + λτ = (1 − λ)σ + λτ

(cf. Proposition 5 ). This relation can be satisfied only if λ = 1.

APPENDIX F: PROOF OF PROPOSITION 13

Since A and B are diagonal in the same basis, also the
operators I1 ⊗ ρ and I1 ⊗ σ are diagonal in the same basis.
As a result, also the canonical POVMs P and Q, defined by

Pj = (
I1 ⊗ ρ− 1

2
)
Aj

(
I1 ⊗ ρ− 1

2
)
,

(F1)
Qk = (

I1 ⊗ σ− 1
2 ) Bk

(
I1 ⊗ σ− 1

2
)
,

052323-15



SEDLÁK, REITZNER, CHIRIBELLA, AND ZIMAN PHYSICAL REVIEW A 93, 052323 (2016)

are diagonal in the same basis. Now let (λ ,ρ̃ ,̃σ ) be a triple
satisfying Eq. (37) and let ω be the state

ω = (1 − λ) ρ + λ ρ̃,

≡ (1 − λ) σ + λ σ̃ . (F2)

Without loss of generality, we can choose the operators I1 ⊗ ρ̃,
I1 ⊗ σ̃ , and I1 ⊗ ω to be diagonal in the same basis, since ρ̃

and σ̃ can be made diagonal by taking only their diagonal
elements, which preserves the validity of Eq. (F2) and does
not change λ. Using this fact, we define the testers N (A) and
N (B) as

N
(A)
j := (

I1 ⊗ ρ̃
1
2
)
P̃j

(
I1 ⊗ ρ̃

1
2
)
,

(F3)
N

(B)
k := (

I1 ⊗ σ̃
1
2
)
Q̃k

(
I1 ⊗ σ̃

1
2
)
,

where {P̃j }, {Q̃k} are arbitrary POVMs diagonal in the
common basis. Note that also N (A) and N (B) are diagonal
in the same basis as A and B. Now, by construction, the
testers (1 − λ)A + λN (A) and (1 − λ)B + λN (B) have the
same normalization state, namely ω. Moreover, their canonical
POVMs P and Q, defined by

P j := (
I1 ⊗ ω− 1

2
)[

(1 − λ)Aj + λN
(A)
j

](
I1 ⊗ ω− 1

2
)
,

(F4)
Qk := (

I1 ⊗ ω− 1
2
)[

(1 − λ)Bk + λN
(B)
k

](
I1 ⊗ ω− 1

2
)
,

are also diagonal in the same basis. Hence, they can be jointly
measured. Using Theorem 1, we conclude that the testers A
and B are λ-compatible whenever their normalization states
ρ and σ are λ-compatible. Taking the minimum over λ, we
finally obtain the desired result. �

APPENDIX G: PROOF OF PROPOSITION 14

Equation (37) can be rewritten as

ρ̃ − σ̃ =
(

1

λ
− 1

)
(σ − ρ), (G1)

which implies that the operators ρ̃ − σ̃ and σ − ρ must be
proportional to one another, with the proportionality constant

1

λ
− 1 = ‖σ̃ − ρ̃‖

‖σ − ρ‖ . (G2)

Clearly, the minimum value of λ is attained when the norm
‖ρ̃ − σ̃‖ is maximal, compatible with the requirement that
ρ̃ − σ̃ and ρ − σ be proportional. We now show that one can
always choose ρ̃ and σ̃ so that the norm has the maximum
possible value, namely ‖ρ̃ − σ̃‖ = 2.

To this purpose, we define the operator

� := σ − ρ

‖σ − ρ‖ . (G3)

Since � is self-adjoint, it can be decomposed as

� = �+ − �−, (G4)

with �+ � 0, �− � 0, and �+�− = 0. Moreover, � satisfies
tr[�] = 0 and ‖�‖ = 1, which imply

tr[�+ − �−] = 0 and tr[�+ + �−] = 1, (G5)

FIG. 9. To obtain common normalization I ⊗ ω for the same λ,
lines connecting ρ with σ and ρ̃ with σ̃ must be parallel.

or, equivalently, tr[�+] = tr[�−] = 1/2. Hence, we can define
the density operators

ρ̃ := 2�+ and σ̃ := 2�−, (G6)

which satisfy

ρ̃ − σ̃ = 2� = 2(σ − ρ)

‖σ − ρ‖ . (G7)

In other words, ρ̃ − σ̃ and σ − ρ are proportional and the
proportionality constant is

2

‖ρ − σ‖ = 1

Rs(ρ,σ )
− 1. (G8)

In conclusion, we obtained

Rs(ρ,σ ) = ‖ρ − σ‖
‖ρ − σ‖ + 2

. (G9)

�
The above proof has a nice geometric interpretation,

highlighted in Fig. 9. Geometrically, the convex combination
ω = (1 − λ)ρ + λρ̃ represents a point in the segment joining
ρ and ρ̃. Measuring the length of segments with the trace
distance

d(ρ,σ ) = ‖ρ − σ‖, (G10)

one has

λ = d(ρ,ω)

d(ρ,ρ̃)
= d(ρ,ω)

d(ρ,ω) + d(ω,ρ̃)
= 1

1 + d(ω,ρ̃)
d(ω,ρ)

. (G11)

Now the relation

(1 − λ)ρ + λρ̃ = (1 − λ)σ + λσ̃ (G12)

implies that
(1) the points ρ, σ, ρ̃, and σ̃ belong to the same plane,
(2) the point ω is the intersection of the segment joining ρ

and ρ̃ with the segment joining σ and σ̃ , and
(3) the triangles with vertices (ρ,σ,ω) and (ρ̃,̃σ ,ω) are

similar.
Using the similarity of the triangles, Eq. (G11) becomes

λ = 1

1 + d(ρ̃,̃σ )
d(ρ,σ )

. (G13)
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FIG. 10. In qubit case the common normalization given by Bloch
vector x points at the intersection of lines connecting Bloch vectors
r with r̃ and s with s̃, while the vectors r − s and r̃ − s̃ must be
parallel.

Now the distance d(ρ̃,̃σ ) is maximized by choosing ρ̃ and σ̃

to be as far as possible, but compatible with the condition that
ρ̃ and σ̃ must be states. Hence, we have the bound

Rs(ρ,σ ) � 1

1 + 2
d(ρ,σ )

� ‖ρ − σ‖
‖ρ − σ‖ + 2

, (G14)

with the equality if and only if there exist states ρ̃ and σ̃ at
distance d(ρ̃,̃σ ) = 2.

In the qubit case, these states can be easily found by
exploiting the geometry of the Bloch sphere. Indeed, the
similarity of the triangles with vertices (ρ,σ,ω) and (ρ̃,̃σ ,ω)
implies that the segment joining ρ̃ with σ̃ should be parallel
to the segment joining ρ with σ . Hence, we can maximize the
length d(ρ̃,̃σ ) by choosing ρ̃ and σ̃ to be the extreme points
of the diameter parallel to the segment joining ρ with σ , as in
Fig. 10. In terms of the Bloch vectors r,s,r̃,s̃ associated with
the states ρ,σ,ρ̃,̃σ , the condition that the segments are parallel
reads

r̃ − s̃
‖r̃ − s̃‖ = s − r

‖r − s‖ . (G15)

Choosing r̃ and s̃ on the diameter, the above condition yields

r̃ = s − r
‖r − s‖ and s̃ = r − s

‖r − s‖ . (G16)

For quantum systems of higher dimensions, the existence
of orthogonal states ρ̃ and σ̃ does not follow directly from
the geometric picture, but can be shown from the spectral
properties of the density matrices, as we did in the proof at the
beginning of this Appendix.

APPENDIX H: CONJECTURE ON THE MAXIMUM
AMOUNT OF MEASUREMENT-INDUCED

INCOMPATIBILITY

Currently, it is not known which pair of POVMs are the
most incompatible, although a natural conjecture is that the
maximum amount of incompatibility is attained by projective
measurements on two mutually unbiased bases [52]. For
example, one can pick the computational basis

BC = {|j 〉 ,j = 0, . . . ,d − 1} (H1)

and the Fourier basis

BF = {|ek〉 ,k = 0, . . . ,d − 1}, (H2)

defined by

|ek〉 = 1√
d

d−1∑
j=0

e
2πijk

d |j 〉. (H3)

For the corresponding pair of projective POVMs, Haa-
pasalo [43] has shown that

Rm(P, Q) = 1

2

(
1 − 1√

d

)
. (H4)

In the case of testers, we conjecture that the maximum
of the measurement-induced incompatibility is reached when
the canonical POVMs are measurements on two mutually
unbiased bases for the input-output Hilbert space H = H1 ⊗
H0. For example, we can choose the computational and Fourier
bases in Eqs. (H1) and (H2), with d := d1d0, and define the
testers A and B with

Aj = 1

d0
|j 〉〈j | and Bk = 1

d0
|ek〉〈ek|, (H5)

and j,k ranging from 0 to d − 1. Both testers A and B have
the normalization state ρ = I0/d0. Their canonical POVMs P
and Q are given by

Pj = |j 〉〈j | and Qk = |ek〉〈ek|, (H6)

respectively. Combining Eqs. (50) and (H4), we obtain the
bound

Rt(A,B) � Rm(P, Q) = 1

2

(
1 − 1√

d0d1

)
. (H7)

We conjecture that the right-hand side is the maximum
amount of measurement-induced incompatibility that can be
observed for a process with d0-dimensional input space and
d1-dimensional output space.

APPENDIX I: PROOF OF PROPOSITION 16

The proof consists of three steps.
Step 1. We show that, for pure normalization states, the

testers A and B coincide with their canonical POVMs P
and Q, respectively. Denote the normalization state by ρ =
|ψ〉〈ψ |. By definition, one has∑

j

Aj =
∑

k

Bk = I1 ⊗ |ψ〉〈ψ |. (I1)

This condition implies that Aj and Bk have the product form
Aj = aj ⊗ |ψ〉〈ψ | and Bk = bk ⊗ |ψ〉〈ψ |, where a = {aj }
and b = {bk} are POVMs. Note that the canonical POVMs act
on the Hilbert space H0 ⊗ Supp(|ψ〉〈ψ |) � H0 and satisfy
P = A � a and Q = B � b.

Step 2. We show that, for the evaluation of the robustness
of incompatibility, it is enough to restrict the attention to noise
testers N (A) and N (B) with the same normalization state ρ =
|ψ〉〈ψ |. Indeed, assume that the mixed testers

(1 − λ) A + λ N (A) and (1 − λ) B + λ N (B) (I2)
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are compatible. Compatibility means that there exists a tester
C such that ∑

k

Cjk = (1 − λ) Aj + λ N
(A)
j ,

(I3)∑
j

Cjk = (1 − λ) Bk + λ N
(B)
k ,

for all j and k. Denoting by ρ̃, σ̃ , and ω the normalization states
of N (A), N (B), and C, respectively, the above compatibility
relations imply

ω = (1 − λ) |ψ〉〈ψ | + λ ρ̃

= (1 − λ) |ψ〉〈ψ | + λ σ̃ , (I4)

and, of course,

ρ̃ = σ̃ . (I5)

Now define the testers Ñ
(A)

, Ñ
(B)

, and C̃ with operators

Ñ
(A)
j := (I1 ⊗ |ψ〉〈ψ |) N

(A)
j (I1 ⊗ |ψ〉〈ψ |)

〈ψ |ρ̃|ψ〉 ,

Ñ
(B)
k := (I1 ⊗ |ψ〉〈ψ |) N

(B)
k (I1 ⊗ |ψ〉〈ψ |)

〈ψ |ρ̃|ψ〉 , (I6)

C̃jk := (I1 ⊗ |ψ〉〈ψ |) Cjk (I1 ⊗ |ψ〉〈ψ |)
〈ψ |ω|ψ〉 .

By definition, all these testers have the same normalization
state, equal to ρ = |ψ〉〈ψ |. Moreover, pinching both sides of
Eq. (I3) with the projector (I1 ⊗ |ψ〉〈ψ |) we obtain the relation∑

k

C̃jk = (1 − λ̃) Aj + λ̃ Ñ
(A)
j ,

(I7)∑
j

C̃jk = (1 − λ̃) Bk + λ̃ Ñ
(B)
k ,

valid for every j and k with

λ̃ = 〈ψ |ρ̃|ψ〉
〈ψ |ω|ψ〉 λ. (I8)

Using the relation

〈ψ |ρ̃|ψ〉
〈ψ |ω|ψ〉 = 〈ψ |ρ̃|ψ〉

(1 − λ) + λ 〈ψ |ρ̃|ψ〉 � 1,

we then obtain

λ̃ � λ. (I9)

In conclusion, the search for the minimum λ can be restricted
without loss of generality to noise testers N (A) and N (B) of the
form

N
(A)
j = n

(A)
j ⊗ |ψ〉〈ψ |,

(I10)
N

(B)
j = n

(B)
j ⊗ |ψ〉〈ψ |,

where n(A) = {n(A)
j } and n(B) = {n(B)

j } are suitable POVMs.

Step 3. Note that the λ-compatibility conditions (I7) are
equivalent to the λ-compatibility of the canonical POVMs.
Minimizing over λ, we then obtain the lower bound Rt(A,B) �
Rm(P, Q). Combining this lower bound with the upper bound
of Eq. (50), we obtain the equality Rt(A,B) = Rm(P, Q). �

APPENDIX J: PROOF OF PROPOSITION 18

Proof. Without loss of generality, let us assume A1 � B1.
Let ρ and σ be the normalization states of the testers A and
B, respectively, and suppose that the relation

(1 − λ) ρ + λ ρ̃ = (1 − λ) σ + λ σ̃ (J1)

holds for suitable density operators ρ̃ and σ̃ . Then define the
testers N (A), N (B), and C with operators

N
(A)
1 = 0, N

(A)
2 = I1 ⊗ ρ̃,

(J2)
N

(B)
1 = 0, N

(B)
2 = I1 ⊗ σ̃ ,

and

C11 = (1 − λ)A1,

C12 = 0,
(J3)

C21 = (1 − λ)(B1 − A1),

C22 = (1 − λ)(I ⊗ σ − B1) + λI ⊗ σ̃ .

With the above definitions, one has∑
k

Cjk = (1 − λ) Aj + λ N
(A)
j ,

(J4)∑
j

Cjk = (1 − λ) Bk + λ N
(B)
k .

Hence, A and B are λ-compatible. Minimizing over λ, we
obtain the upper bound Rt(A,B) � Rs(ρ,σ ). Combining this
bound with the lower bound of Eq. (39), we then have the
equality Rt(A,B) = Rs(ρ,σ ). �

APPENDIX K: PROOF OF PROPOSITION 19

We prove Proposition 19 by demonstrating a particular
choice of testers N (A),N (B) and a joint tester C satisfying
all the requirements of the robustness of incompatibility for
λ = Rt(A,B) = Rs(P−θ/2,Pθ/2) as specified in Eq. (59). We
further set

N
(A)
1 =

[
1 − δ

2
P(ϕ+π)/2 + 1 + δ

2
P(ϕ−π)/2

]
⊗ Pπ/2,

N
(A)
2 = I ⊗ ρ̃ − N

(A)
1 ,

(K1)

N
(B)
1 =

[
1 − δ

2
P−(ϕ+π)/2 + 1 + δ

2
P−(ϕ−π)/2

]
⊗ P−π/2,

N
(B)
2 = I ⊗ σ̃ − N

(B)
1 ,

where

δ = − sin ϕ

2

1 − sin θ
2

sin θ
2

. (K2)

Let us stress that the associated states ρ̃ = Pπ/2 and σ̃ = P−π/2

are orthogonal as it is required in order to saturate the
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bound (59). By definition, we can express the mixed state
ω as

ω = 1

2
[(1 − λ)(ρ + σ ) + λ(ρ̃ + σ̃ )]

= 1 − λ

2
(P−θ/2 + Pθ/2) + λ

2
I, (K3)

which will be convenient in subsequent calculations. Using Ā
and B̄ for the mixed testers, we define the joint tester C =
{C11,C12,C21,C22} as

C11 = C, C12 = Ā1 − C,
(K4)

C21 = B̄1 − C, C22 = I ⊗ ω + C − Ā1 − B̄1,

where

C =1 − λ

2

(
cos2 ϕ

2
+ sin2 ϕ

2
sin

θ

2

)
[|v1〉〈v1| + |v2〉〈v2|]

+ 1 − λ

2
cos

ϕ

2
cos

θ

2
[|v1〉〈v2| + |v2〉〈v1|] (K5)

and

|v1〉 =
∣∣∣ϕ

2

〉∣∣∣π
2

〉
, |v2〉 =

∣∣∣−ϕ

2

〉∣∣∣−π

2

〉
,

(K6)

|β〉 = cos
β

2
|0〉 + sin

β

2
|1〉.

To demonstrate λ-compatibility of A, B it suffices to show
(see Proposition 17 ) that

0 � C � Ā1,B̄1, (K7)

Ā1 + B̄1 � C + I ⊗ ω, (K8)

holds. Since 〈v1|v2〉 = 0, the nonzero eigenvalues of C are the
same as for the matrix

1 − λ

2

(
a b

b a

)
, (K9)

where a = cos2 ϕ

2 + sin2 ϕ

2 sin θ
2 and b = cos ϕ

2 cos θ
2 . After

some algebra the requirement of non-negativity of the eigen-
values leads to the definition of the region M. Thus, in region
M we proved C � 0.

Let us define

D ≡ Ā1 + B̄1 − I ⊗ ω,

Q ≡ Pϕ/2 ⊗ Pπ/2 + P−ϕ/2 ⊗ P−π/2,
(K10)

Q⊥ = I − Q,

S ≡ σX ⊗ σZ,

where σX,σZ are the Pauli matrices. Then Eq. (K8) can be
rewritten as D � C. In the Appendix L we prove

D = QDQ + Q⊥DQ⊥ = C − SCS, (K11)

which implies D � C, because C − D = SCS � 0 due to
preservation of eigenvalues of C � 0 by unitary rotation S.
Thus, we proved Eq. (K8).

Next we show that due to the symmetry of the problem,

C � Ā1 ⇔ C � B̄1. (K12)

For this purpose we define Hermitian and unitary operator
T ≡ σZ ⊗ σZ , for which T 2 = I . It is easy to verify by direct
calculation from Eqs. (58), (K1), and (K5) that

T CT = C T Ā1T = B̄1. (K13)

Since conjugation with T is reversible and preserves eigenval-
ues, we get

C � Ā1 ⇔ T CT � T Ā1T ⇔ C � B̄1, (K14)

where we used Eq. (K13).
In the following we prove C � Ā1 by demonstrating posi-

tivity of the matrix of Ā1 − C in the basis {|v1〉,|v2〉,|v3〉,|v4〉},
where

|v3〉 = S|v2〉 =
∣∣∣ϕ

2
− π

〉∣∣∣π
2

〉
,

(K15)
|v4〉 = S|v1〉 =

∣∣∣π − ϕ

2

〉∣∣∣−π

2

〉
.

Direct calculation of the matrix elements yields

Ā1 − C =

⎛⎜⎝0 0 0 0
0 x y 0
0 y z 0
0 0 0 0

⎞⎟⎠, (K16)

where

x = 1

2

(
1 − cos2 ϕ

2 + sin2 ϕ

2 sin θ
2

1 + sin θ
2

)
,

y = sin ϕ

2 cos θ
2

2
(
1 + sin θ

2

) , (K17)

z = 1

2

(
1 − sin2 ϕ

2 sin θ
2

1 + sin θ
2

)
.

Thus, it suffices to examine eigenvalues of matrix

W =
(

x y

y z

)
, (K18)

which can be analytically shown to be non-negative for
all θ,ϕ ∈ [0,π ]. In conclusion, we proved the validity of
Eqs. (K7) and (K8) for all (θ,ϕ) ∈ M and thus demonstrated the
existence of the joint tester C needed for proving Rt(A,B) =
Rs(P−θ/2,Pθ/2) claimed in the proposition.

APPENDIX L: DIAGONAL FORM OF THE OPERATOR D

Let us first explicitly write operator D,

D = 1 − λ

2
[(P−ϕ/2 − Pπ−ϕ/2) ⊗ P−θ/2

+ (Pϕ/2 − Pϕ/2−π ) ⊗ Pθ/2]

+ λδ

2
[(P(π−ϕ)/2 − P−(π+ϕ)/2) ⊗ P−π/2

+ (P(ϕ−π)/2 − P(π+ϕ)/2) ⊗ Pπ/2], (L1)

where we used (K3) and (K10). It can be written more
compactly as

D = 1 − λ

2
(H + T HT ) + λδ

2
(K + T KT ), (L2)
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where

H = (P−ϕ/2 − Pπ−ϕ/2) ⊗ P−θ/2,
(L3)

K = (P(π−ϕ)/2 − P−(π+ϕ)/2) ⊗ P−π/2,

and T ≡ σZ ⊗ σZ is a tensor product of Pauli matrices.
Our aim is to show that operator D does not mix subspaces

defined by projectors Q,Q⊥; i.e.,

QDQ⊥ = Q⊥DQ = 0. (L4)

Thanks to the Hermicity of operator D, it suffices to show
QDQ⊥ = 0. We observe that T QT = Q and consequently
[Q,T ] = 0. Similarly, T Q⊥T = Q⊥ implies [Q⊥,T ] = 0.
This means it is crucial to calculate operators QHQ⊥ and
QKQ⊥ and the remaining terms of QDQ⊥ can be obtained
by conjugation with T . For such calculation the following
formula is useful:

PαPβPγ = |α〉〈γ | cos
α − β

2
cos

β − γ

2
. (L5)

After a longer, but straightforward calculation one obtains

QHQ⊥ = sin ϕ

2 cos θ
2

2

[∣∣∣−ϕ

2

〉〈ϕ
2

− π

∣∣∣ ⊗
∣∣∣−π

2

〉〈π
2

∣∣∣
−
∣∣∣ϕ

2

〉〈
π − ϕ

2

∣∣∣ ⊗
∣∣∣π

2

〉〈
−π

2

∣∣∣]
+ sin ϕ

1 − sin θ
2

2

∣∣∣ϕ
2

〉〈ϕ
2

− π

∣∣∣ ⊗ Pπ/2,

QKQ⊥ =
∣∣∣−ϕ

2

〉〈
π − ϕ

2

∣∣∣ ⊗ P−π/2. (L6)

Thanks to Eq. (L6), it is easy to evaluate

QHQ⊥ + T QHQ⊥T

= sin ϕ
1 − sin θ

2

2

×
[∣∣∣ϕ

2

〉〈ϕ
2

− π

∣∣∣ ⊗ Pπ/2 +
∣∣∣−ϕ

2

〉〈
π − ϕ

2

∣∣∣ ⊗ P−π/2

]
,

QKQ⊥ + T QKQ⊥T

=
[∣∣∣ϕ

2

〉〈ϕ
2

− π

∣∣∣ ⊗ Pπ/2 +
∣∣∣−ϕ

2

〉〈
π − ϕ

2

∣∣∣ ⊗ P−π/2

]
,

(L7)

where the terms with cos θ
2 effectively disappeared due to con-

jugation. Finally, using Eqs. (L2) and (L7) and definitions (59)
and (K2) we get QDQ⊥ = 0, because

1 − λ

2
sin ϕ

1 − sin θ
2

2
+ λδ

2
= 0. (L8)

This allows us to write

D = (Q + Q⊥)D(Q + Q⊥) = QDQ + Q⊥DQ⊥. (L9)

Let us calculate QDQ. Direct calculation using (L5) shows
that

QKQ = [P−ϕ/2
(
P(π−ϕ)/2 − P−(π+ϕ)/2

)
P−ϕ/2] ⊗ P−π/2

= [
1
2P−ϕ/2 − 1

2P−ϕ/2
] ⊗ P−π/2 = 0 (L10)

and

QHQ =1 − sin θ
2

2
cos ϕ|v1〉〈v1| + 1 + sin θ

2

2
|v2〉〈v2|

+ 1

2
cos

θ

2
cos

ϕ

2
(|v1〉〈v2| + |v2〉〈v1|). (L11)

Thanks to Eqs. (L2), (L10), and (L11) and the fact that T |v1〉 =
|v2〉, we obtain

QDQ = 1 − λ

2
(QHQ + T QHQT ) = C. (L12)

The last thing we have to show is Q⊥DQ⊥ = −SCS. Let us
note the identities

SHS = −T HT, ST = −T S,
(L13)

SKS = −T KT, SQS = Q⊥,

which from Eqs. (L2) and (L12) imply SDS = −D and

Q⊥DQ⊥ = SQSDSQS = −SQDQS = −SCS. (L14)

Combining equations (L9), (L12), and (L14), we obtain
Eq. (K11), which we wanted to prove. �

APPENDIX M: PROOF OF PROPOSITION 20

Since E2 = I − E1 and F2 = I − F1, we can parametrize
both POVMs by spectral decompositions of the effects E1 and
F1,

E1 = e1|u1〉〈u1| + e2|u2〉〈u2|,
(M1)

F1 = f1|w1〉〈w1| + f2|w2〉〈w2|,
where ei,fj ∈ [0,1] and {|u1〉,|u2〉}, {|w1〉,|w2〉} are two
orthonormal qubit bases. Effects E1 and F1 as well as the
corresponding POVMs can be convexly decomposed into four
projective measurements (extremal POVMs),

E1 =
4∑

a=1

caE
a
1 , F1 =

4∑
b=1

dbF
b
1 , (M2)

where

E1
1 = 0, F 1

1 = 0,

E2
1 = |u1〉〈u1|, F 2

1 = |w1〉〈w1|,
(M3)

E3
1 = |u2〉〈u2|, F 3

1 = |w2〉〈w2|,
E4

1 = I, F 4
1 = I.

The decomposition in Eq. (M2) is unique and such that

4∑
a=1

ca = 1,

4∑
b=1

db = 1. (M4)

The two outcome POVMs defined by effects E1
1 , E4

1 , F 1
1 , and

F 4
1 are trivial; i.e., their outcomes can be generated without

actually measuring the quantum state. The first pair and the
second pair of POVMs defined by effects E2

1 , E3
1 , F 2

1 , and
F 3

1 are related by relabeling of outcomes (e.g., E2
1 = E3

2 and
E2

2 = E3
1).
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We define 1-testers,

Aa = {
Aa

1,A
a
2

}
, Bb = {

Bb
1 ,Bb

2

}
,

(M5)
Aa

k = Ea
k ⊗ P−θ/2, Bb

k = Fb
k ⊗ Pθ/2,

where k = 1,2 and a,b = 1,2,3,4. Showing that all pairs of
testers Aa and Bb (for all a, b) are λ-compatible will be later
used to show compatibility of 1-testers A and B.

First, the outcomes of trivial POVMs can be generated
without measuring the state, and so it is clear that those
1-testers defined above that contain trivial POVM will be
λ-compatible with λ obeying Proposition 11 with any other
product 1-tester B = {F1 ⊗ σ,F2 ⊗ σ }. For example, for A4

1 =
I ⊗ ρ it would suffice to choose the joint and the admixed
testers as Ã4

1 = I ⊗ ρ̃, B̃1 = F1 ⊗ σ̃ , and

C11 = (1 − λ)B1 + λB̃1, C12 = (1 − λ)B2 + λB̃2,

C21 = 0, C22 = 0. (M6)

Clearly, C11 + C21 = B̄1, C12 + C22 = B̄2, and

C21 + C22 = 0 = Ā4
2,

C11 + C12 = (1 − λ)I ⊗ σ + λI ⊗ σ̃

= (1 − λ)I ⊗ ρ + λI ⊗ ρ̃ = Ā4
1. (M7)

Thus, for θ � 2 arcsin(1/3) ≈ 0.6797 1-testers Aa and Bb

are λ-compatible, because either one of them contains trivial
POVM or the pair is unitarily equivalent to 1-testers in
Proposition 19.

Now it suffices to show that the λ-compatibility of 1-testers
Aa and Bb for all a,b implies λ-compatibility of 1-testers A
and B from the Proposition 20. This can be done as follows.
The fact that for θ � 2 arcsin(1/3) 1-testers Aa , Bb are λ-
compatible can be expressed using Proposition 17 by existence
of operators Cab satisfying

0 � Cab � Āa
1,B̄

b
1 , (M8)

Āa
1 + B̄b

1 � Cab + I ⊗ ω. (M9)

Let us note that ∀ a,b Aa
1 + Aa

2 = I ⊗ P−θ/2 and Bb
1 + Bb

2 =
I ⊗ Pθ/2 and since λ is given by the lower bound (59) also
∀ a,b Ãa

1 + Ãa
2 = I ⊗ Pπ/2 and Bb

1 + Bb
2 = I ⊗ P−π/2 and,

as a consequence, the normalization of the joint tester ω is the
same ∀ a,b.

To prove λ-compatibility of A and B we define the admixed
1-testers ˜A and ˜B and the joint 1-tester C ,

Ã1=
4∑

a=1

caÃ
a
1, B̃1=

4∑
b=1

dbB̃
b
1 , C=

4∑
a,b=1

cadbC
ab. (M10)

Let us remind the reader that A1 = ∑4
a=1 caA

a
1 and B1 =∑4

b=1 dbB
b
1 , which implies

Ā1 =
4∑

a=1

caĀ
a
1, B̄1 =

4∑
b=1

dbB̄
b
1 . (M11)

Due to Cab � 0, ca,db � 0 we conclude C � 0, because C

is a non-negative sum of positive-semidefinite operators. We

also easily get

C =
4∑

a,b=1

cadbC
ab �

4∑
a,b=1

cadbĀ
a
1 = Ā1,

(M12)

C =
4∑

a,b=1

cadbC
ab �

4∑
a,b=1

cadbB̄
b
1 = B̄1,

where we used (M8) and (M4).
Finally, we use Eq. (M8) to write

Ā1 + B̄1 =
4∑

a,b=1

cadb

(
Āa

1 + B̄b
1

)
� I ⊗ ω + C, (M13)

which concludes the proof. �

APPENDIX N: SDP FOR λ-COMPATIBILITY

Proposition 17 can be used to construct SDP for solving
λ-compatibility of two two-outcome testers A = {A1,A2}
and B = {B1,B2} such that A1 + A2 = I ⊗ ρ and B1 + B2 =
I ⊗ σ . According to Definition 8 in λ-compatibility, we search
for the smallest λ such that the testers (1 − λ)A + λ ˜A and
(1 − λ)B + λ ˜B are compatible for some ˜A and ˜B. First of all,
the necessary condition I ⊗ ρ̄ = I ⊗ σ̄ from Eq. (37) for the
normalizations ρ̄ = (1 − λ)ρ + λρ̃ and σ̄ = (1 − λ)σ + λσ̃

needs to be satisfied. Thus, in addition to search over operators
C, we have to expand the search also over the mixed-in
elements Ã1 and B̃1 and their normalizations ρ̃ and σ̃ . Defining

Āi = (1 − λ)Ai + λÃi,

B̄j = (1 − λ)Aj + λB̃j ,
(N1)

ω = (1 − λ)ρ + λρ̃,

= (1 − λ)σ + λσ̃ ,

the problem can be recast as the following bilinear SDP

Find λ0 := inf λ

subject to 0 � Ã1,B̃1,ρ̃,̃σ ,C,

C � Ā1,B̄1,

Ā1 + B̄1 � C + I ⊗ ω,

(1 − λ)(ρ − σ ) = λ(̃σ − ρ̃),
Ã1 � I ⊗ ρ̃,B̃1 � I ⊗ σ̃ ,

tr[ρ̃] = tr[̃σ ] = 1,

(N2)

where the last condition comes from the common
normalization to ω. We can linearize the program by
rescaling relevant operators by 1/λ. Using the definition of
ω and setting μ = (1 − λ)/λ and H = 1

λ
C, the SDP program

can be equivalently stated as

Find μ0 := sup μ

subject to 0 � Ã1,B̃1,ρ̃,̃σ ,H,

H � μA1 + Ã1,

H � μB1 + B̃1,

μ(A1 + B1 − I ⊗ σ ) + Ã1 + B̃1 � H + I ⊗ σ̃ ,

μ(ρ − σ ) = σ̃ − ρ̃,

Ã1 � I ⊗ ρ̃,B̃1 � I ⊗ σ̃ ,

tr[ρ̃] = tr[̃σ ] = 1, (N3)

052323-21
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where the unknown objects are μ, H, Ã1 ,B̃1, ρ̃, and σ̃ .
Then the minimal λ is determined as

λ0 = 1

1 + μ0
. (N4)
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