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Architecture for Quadruple Precision Floating Point Division with Multi-Precision
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Abstract—This paper proposes a FPGA based hardware
architecture for quadruple precision (QP) division arithmetic
which can also process a single, a double and a double-extended
precision (SP, DP, DPE) computations. The mantissa division
employs a series expansion methodology of division, integrated
with a wide integer multiplier further optimized for FPGA
implementations facilitating the built-in DSP blocks efficiently.
The proposed division architecture is demonstrated using a
Xilinx FPGA based implementation has shown a significant
area saving and much improvement in latency with improved
speed.

Keywords-Quadruple Precision Arithmetic, Division, FPGA,
Multi-Precision Division.

I. INTRODUCTION

A large number of important applications demand for a

higher precision computation [1] that can be supported by

quadruple precision (QP) arithmetic, which provides roughly

30 decimal digits of precision. To effectively accelerate

this class of high-precision, we need a efficient support

in hardware accelerator. In this view, this paper proposes

a multi-precision division architecture that is capable of

performing up to QP operation in hardware. The main

contributions of present work can be summarized as follows:

• Proposed a multi-precision quadruple precision floating

point division architecture which also supports the

processing of SP, DP and DPE precision computation.

It is based on the series expansion methodology of

division.

II. PROPOSED MULTI-PRECISION DIVISION

ARCHITECTURE

For the purpose of multi-precision processing, the in-

put/output operands for the unified floating point formats are

assumed as shown in Fig. 1. The proposed multi-precision

division architecture works in four modes, each for SP, DP,

DPE and QP processing mode. It consists of three stages:

pre-processing, core computations and post-processing.

The first stage of the architecture includes data-extraction,

sub-normal handling and exceptional checks and are imple-

mented using typical methods . Since, the decimal point

position (in input operands) is same for all modes (as

shown in Fig. 1), unified/same signal for sign, exponent and

mantissa works for all mode. This stage also includes the

part of mantissa division unit, as discussed in the later part.
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SP-Exp[119:112]

DP-Exp[122:112]
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Figure 1: Input/Output Register Format

A. The Core Division Processing Architecture

The stage-2 consists of the core operation which computes

sign, exponent and right-shift-amount is processed in trivial

way, by using a unified “BIAS” signal for multi-precision

environment (BIAS[14 : 0] = {{4{QP|DPE}},{3{QP|DPE|DP}},7′b7F}).

1) Mantissa Division Unit: The methodology for this

is based on the [2]. Let m1 be the normalized dividend

mantissa, m2 be the normalized divisor mantissa then q,

the mantissa quotient, can be computed as (1). Here, m2

is partitioned in to two part as a1 (W -bit) and a2 (all

remaining bits) as in (2). Equation(1) can be solve using only

multipliers, adders and subtractors, provided that the value

of a−1
1 is available which can be access from a pre-stored

look-up table. For a bit width of W = 8 for a1, it requires 17

terms (up to a−17
1 a16

2 ) for QP, 9 terms (up to a−9
1 .a8

2) for DPE,

7 terms (up to a−7
1 .a6

2) for DP, and 3 terms (up to a−3
1 .a2

2) for

SP precision requirement. For a multi-precision architectural

implementation, an unified expression is structured in (3)

which supports all the required precision computations. The

size of look-up table (LUT) to store a−1
1 is taken as 28×113,

and a full multiplier of size 114x114-bit is used iteratively

using a FSM (Finite State Machine) to implement (3).

q =
m1

m2

=
m1

a1 +a2

= m1(a1 +a2)
−1 = m1(a

−1
1 −a−2

1 a2 +a−3
1 a2

2−a−4
1 a3

2 . . .) (1)

m2 =

a1
︷ ︸︸ ︷

1.xxxxxxxx
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−1
1 −m1.a

−1
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1 .a2−a−2
1 .a2
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1 .a2
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DPE
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QP
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A = m1a−1
1 , B = a−1

1 a2, C = a−2
1 a2

2, D = a−4
1 a4

2, E = a−6
1 a6

2

F = a−8
1 a8

2, G = B−C, HT = 1+C+D, H = HT +F, I = 1+F

J = GH, K = JI, L = AK, M = A−L (4)



114x114 Bit Multiplier

Mult	

REGISTERSSTATE
Second−Stage

First−Stage

LUT 256x113

in1 in2

M2[111 : 104]

a
−1
1

S1

S2

S3

S4
S5S6

S7

S8

A
B

C

D, G

F
E, H_T

L

K

I, J

S9

M S10
S0

Done=0Done=1

mode=00 (SP)

mode=01 (DP)

mode=01/10 (DP/DPE)

G

H_T

J

Figure 2: Mantissa Division Architecture and FSM

The implementation of eq.(3) (as shown in Fig. 2), incor-

porates a LUT, a 114x114 multiplier and a FSM. Based on

the mode of operation, the FSM decides the effective inputs

for the multiplier in each state and assigned its output to the

designated terms in (4). A single stage, 114x114 multiplier

is designed around DSP48E IPs, using combination of 3-

partition and 2-partition Karatsuba method [3]. Initially, mul-

tiplier operands are partitioned into 3 sets of 38-bit, which

requires 3 38x38 and 3 39x39 multipliers. The 39x39 (also

used as 38x38) multiplier is designed using two partition

method, which needs one 19x19, one 20x20 and one 21x21

multipliers. The 19x19, 20x20 and 21x21 multipliers are

implemented by using a DSP48E and some logic resources.

It requires only 18 DSP48E blocks for 114x114 multiplier.

S0 : in1 = {1′b0,m1}, in2 = {1′b0,m2_a1_i}

S1 : in1 = {10′b0,m2_a2}, in2 = {1′b0,m2_a1_i}, A[127 : 0] = mult[225 : 98]

S2 : in1 = in2 = B = mult[216 : 103]

S3 : in1 = in2 = {18′b0,mult[227 : 132]}, C = mult, G = B−{8′b0,C[227 : 122]}

S4 : in1 = {50′b0,mult[227 : 132]}, in2 = {50′b0,C[227 : 164]}, D = mult[191 : 0]

HT = {1′b1,16′b0,C[227 : 130}+{33′b0,D[191 : 110}

S5 : in1 = in2 = {66′b0,D[191 : 144]}, E = mult[127 : 0]

S6 : in1 = G, in2 = DP ? HT : (H← HT +{49′b0,E[127 : 62])}

F = mult[95 : 0], I = {1′b1,64′b0,F [95 : 47]}

S7 : in1 = J = mult[227 : 114], in2 = I

S8 : in1 = SP ? G : (J or K← mult[227 : 114]), in2 = A[127 : 14]

S9 : L = (QP|DPE) ? {6′b0,mult227,106]} : (DP ? {7′b0,mult[227 : 107]}

: {8′b0,mult[227 : 108]}), in1 = in2 = 0

S10 : in1 = in2 = 0,

(5)

FSM consists of 11 states (S0 to S10). For QP-mode it

passes through all the states (S0 to S10). Whereas, for DPE

mode it skips the state S7. DP-mode does not requires the

processing of state S5 and S7; and the states S4-to-S7 are

not required in SP-mode. Some mode specific assignments

can also be seen in the states S6, S8, and S9 using mode

control signals (QP, DPE, DP, and SP). This FSM requires

11 cycles, 10 cycles, 9 cycles and 7 cycles respectively for

QP-mode, DPE-mode, DP-mode and SP-mode processing.

The post-processing stage performs normalization, rounding

(round-to-nearest) and final-processing, which all are

done using trivial methods, over unified mantissa for multi-

precision processing.

Table I: Comparison of Division Architecture

[4] Proposed Multi-Precision Arch.

Latency 118 (QP) 9/11/12/13 (SP/DP/DPE/QP)
Throughput NA (QP) 8/10/11/12 (SP/DP/DPE/QP)

LUTs 26811 7440

FFs 13809 2584

DSP48 - 18

Freq (MHz) 50 89

III. IMPLEMENTATION RESULTS

The proposed multi-precision QP division architecture

is implemented using Xilinx Virtex-7 FPGA device. The

functional verification of the proposed architecture is carried

out using 5-millions random test cases with various combi-

nations of operands, which produces a faithful rounded result

(max 1-ULP, unit at last place, precision loss). To the best of

author’s knowledge, literature does not contains any multi-

precision quadruple precision division architecture. Diniz et

al. [4] is only work available which has shown the results

for a single-mode quadruple precision division architecture

implementation on a FPGA device. A comparison is shown

against it in Table I, which shows that proposed work

provides better latency, throughput, area and speed metric

along with providing multi-precision support.

IV. CONCLUSIONS

This paper presented an iterative multi-precision quadru-

ple precision division architecture for the hardware accel-

erators, which is based on the series expansion division

methodology of mantissa division. Compared to the avail-

able literature, the proposed architecture out-performs them

in terms of area, speed, latency and throughput.
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