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Abstract
Mesenchymal stem cells (MSCs) possess immunomo-
dulatory properties, which confer enormous potential 
for clinical application. Considerable evidence revealed 
their efficacy on various animal models of autoimmune 
diseases, such as multiple sclerosis, systemic lupus 
erythematosus and uveitis. MSCs elicit their immunomo-
dulatory effects by inhibiting lymphocyte activation and 
proliferation, forbidding the secretion of proinflammatory 
cytokines, limiting the function of antigen presenting 
cells, and inducing regulatory T (Treg) and B (Breg) 
cells. The induction of Treg and Breg cells is of particular 
interest since Treg and Breg cells have significant roles in 
maintaining immune tolerance. Several mechanisms 
have been proposed regarding to the MSCs-mediated 
induction of Treg and Breg cells. Accordingly, MSCs induce 
regulatory lymphocytes through secretion of multiple 
pleiotropic cytokines, cell-to-cell contact with target 
cells and modulation of antigen-presenting cells. Here, 
we summarized how MSCs induce Treg and Breg cells to 
provoke immunosuppression.
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Core tip: In this review, we summarized the mechanisms 
involved in regulatory T (Treg) and B (Breg) cell induction 
by mesenchymal stem cells (MSCs). In an inflammatory 
environment, MSCs secrete various anti-inflammatory 
cytokines, actively interact with immune cells and 
modulate them to acquire regulatory properties, thus, 
generate a tolerogenic environment. Particularly, by 
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inducing Treg and Breg cells, the immunomodulation of 
MSCs is amplified. Therefore, genetic engineered MSCs 
to enhance their ability to induce Treg and Breg cells may 
increase their therapeutic efficacy.
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INTRODUCTION
Mesenchymal stem cells (MSCs) are mesodermal pro
genitor cells that have a wide range of differentiation 
capacity. They can differentiate into adipocytes, osteo
cytes, chondrocytes, myocytes, fibroblasts and stromal 
cells[1]. In addition, some research studies have shown 
that MSCs, under certain conditions, can transdifferentiate 
to cells from ectodermal and endodermal lineage[2,3]. 
Among them, the ability of MSCs to develop into neurons 
is of particular interest. Considering that neural stem 
cells are limited in number and extremely difficult to be 
isolated while, comparatively, massive numbers of MSCs 
can be derived from numerous adult tissues, including, 
liver, kidney, adipose tissue, bone marrow, dental pulp, 
peripheral blood and umbilical cord blood. MSCs may 
serve as a reliable source of neural cells for potential cell 
replacement therapy or regenerative medicine. 

Aside from its diverse differentiation capacity, their 
immunomodulatory properties also prompt researchers 
to study profoundly. MSCs are capable of regulating 
both innate and adaptive immunity. They secrete a 
large variety of soluble factors, including interleukin 
(IL)6, IL8, transforming growth factorβ1 (TGFβ1), 
indoleamine 2,3dioxygenase (IDO), human leukocyte 
antigenG (HLAG) and prostaglandin E2 (PGE2)[4]. These 
factors allow MSCs to interact with components of the 
innate and adaptive immunity, subsequently modulate 
inflammation and immune tolerance. Monocytes, for 
instance, under the influence of MSCssecreted IL6, 
IDO and PGE2, tend to develop into anti-inflammatory 
M2 macrophages instead of proinflammatory M1 
macrophages[59]. In addition, recent reports showed 
that human gingiva derived MSCs have converted M1 
macrophages to M2[5]. Natural killer (NK) cells, on the 
other hands, express CD73 and acquires regulatory 
phenotype when exposed to MSCs[10,11]. Similarly, 
regulatory dendritic cells (DC) induced by MSCs were 
capable of secreting IL-10, a powerful anti-inflammatory 
cytokine[1214]. Thus, MSCs are able to suppress innate 
immunity by skewing their differentiation into regulatory 
subtype (Figure 1).

MSCs can regulate adaptive immune system by 
suppressing the proliferation, differentiation and activ
ation of T cell and B cell. A number of studies have 
demonstrated that MSCs can inhibit the proliferation of 

Th1 and Th17 cell, decrease the production of interferon 
(IFN)γ, IL2, IL6 and IL17, and downregulate the T 
cell activation markers, CD38 and HLADR[1519]. When 
MSCs were cocultured with B cell and in the presence 
of different B cell trophic stimuli, B cell proliferation was 
inhibited and they were arrested in G0/G1 phase. Moreover, 
B cell differentiation was prohibited as indicated by 
limited production of IgG, IgM and IgA[20]. In addition, the 
regulatoryskewing propensity of MSCs observed in innate 
immune system also applies to T and B lymphocyte. 
In fact, the ability of MSCs to expand regulatory T (Treg) 
cells and regulatory B (Breg) cells have been intensively 
studied. However, the mechanism of how Treg and Breg 
cells are induced by MSCs has not been fully understood. 
Some suggest regulatory lymphocytes induction by 
MSCs requires mediation of other immune cells, while 
others propose MSCs-released cytokines are sufficient to 
expand Treg and Breg cell populations, but more and more 
researchers have come to the consensus that MSCs can 
use multiple pathways to generate regulatory lymphocytes 
and which pathways are more favorable is determined by 
the microenvironment that MSCs encounter[21]. Altogether, 
MSCs modulate immune cells to acquire regulatory 
phenotype, hence, alter the inflammatory milieu into a 
tolerogenic one (Figure 1). 

There is another advantage of using MSCs for cellular 
therapy. MSCs have low immunogenicity, implying that 
MSCs can be used for allogeneic transplantation. This 
property is particularly helpful to the patient whose 
MSCs are compromised. Thereby, MSCs possess valu
able therapeutic potential to treat immunemediated 
disorders[22]. 

Although MSCs have demonstrated as a promising 
immunoregulator for clinical use, the immunomodulatory 
and lowimmunogenicity properties of MSCs are not 
constitutive. The function of MSCs is based on the signals 
from the vicinity. MSCs, in the absence of tumor necrosis 
factor (TNF)a and IFNγ may adopt proinflammatory 
phenotype, which activate T cells to response. On the 
contrary, when MSCs are exposed to high level of TNFa 
and IFNγ they will behave as an antiinflammatory 
regulator by producing TGFβ1, IDO, and PGE2[23]. Like
wise, depending on the level of IL6, MSCs can convert 
monocyte into M1 or M2 macrophages[22,2426]. Thus, 
before any clinical application, the plasticity of MSCs should 
be carefully considered. In this review, we summarized 
current understandings on how MSCs interact with 
regulatory lymphocytes, Treg and Breg cells particularly, to 
attenuate autoimmunity, and how this knowledge can 
contribute to therapeutic development.

Treg LYMPHOCYTE
The notion of “suppressive” T cells has long been pro
posed in 1970s. Due to technical limitation, their identities 
and phenotypic characteristics cannot be described until 
1995, Sakagucho et al[27] isolated a unique CD4+ CD25+ T 
cells that can suppress immune responses and maintain 
immunologic selftolerance[28]. Later, this subpopulation 
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of T cells was named as Treg cells. For those Treg cells that 
undergo maturation in thymus, are referred to as thymus
dervied Treg (tTreg) cells. Three days postmaturation, tTreg 
cells will relocate from thymus to periphery[29]. Surprisingly, 
tTreg cells only comprise 5%10% of peripheral T cells, 
but they are the critical regulator of autoimmunity. This is 
evidenced in mice lacking peripheral Treg cells. They were 
lethal due to various autoimmunity enhancements[29,30]. 

Apart from tTreg cells, Treg cells can also be generated 
in periphery[31,32]. Peripheryderived Treg (pTreg) cells 
are converted from naïve T cells (CD4+CD25Foxp3

CD45RBhi). Upon activation of naive T cells and in the 
presence of particular cytokines, two main types of Treg 
cells can be differentiated in the periphery and in vitro, 
namely, T helper 3 (Th3) cells and type 1 regulatory T 
(Tr1) cells. Th3 cell and Tr1 cell differentiation are pro
moted by TGFβ and IL10, respectively[3335]. Both Th3 
and Tr1 cells are suppressive to effector and memory 
T cells, and they are able to secrete cytokine for self
activation. However, one distinct phenotypical difference 
is Th3 cells are Foxp3+ whereas Tr1 cells are Foxp3. 

Forkhead box P3 (Foxp3) is a transcription factor that 
constitutively express in tTreg cells and some types of pTreg 
cells. It has been recognized as the master regulator 
of Treg cells. Scurfy, a Foxp3 gene mutated mouse, is 
lethal by one month after birth, displays hyperactivation 
of CD4+ T cells and overproduction of proinflammatory 
cytokines[36]. In human, immune dysregulation, polyendo
crinopathy, enteropathy, Xlinked syndrome (IPEX) 
is Xlinked recessive disorder caused by mutation in 

Foxp3 gene[37]. Treg cells from the patients with IPEX are 
either dysfunction or completely vanished. As a result, 
IPEX patients are afflicted with various autoimmune 
diseases, allergy and/or inflammatory bowel disease[38]. 
The provoked inflammation on IPEX patients indicates 
the failure of immune tolerance. Foxp3 promotes its 
regulatory effect by enhancing the expression of IL2 
receptor (CD25), cytotoxic T cellassociated antigen4 
(CTLA4), and glucocorticoidinduced TNF receptor 
familyrelated protein (GITR), meanwhile suppressing 
the production IL2, IL4 and IFNγ[39]. Treg cells monitor 
the inflammatory status by the exogenous level of IL-2. 
Binding of IL2 to CD25 would enhance the expression of 
Treg-cell associated genes and regulate the inflammation 
by suppressing effector T cell proliferation or by altering 
the function of antigen presenting cells[40]. Retroviral 
transfer of Foxp3 to naïve T cells (CD4+CD25Foxp3) can 
upregulate the expression of some Treg cellassociated 
genes, including CD25, CTLA4, GITR and CD103, 
and the Foxp3-transduced T cells were shown to be 
suppressive[41]. Altogether, Foxp3 is critical to the function 
and the development of Treg cells and to a greater extent, 
the maintenance of immune homeostasis[42,43].

Treg LYMPHOCTYE INDUCTION BY MSCs
MSCs are able to induce Foxp3+ Treg cell population in 
vitro and in vivo. So far, several mechanisms have been 
proposed, including: (1) secretion of soluble mediators; 
(2) cellcell interaction; and (3) modulation of antigen 
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Figure 1  Immunosuppression by mesenchymal stem cells. MSCs suppress innate and adaptive immune responses by enhancing regulatory immune cells with 
tolerogenic properties. MSCs suppress macrophages by favoring monocyte polarization to anti-inflammatory M2 macrophages, increasing the production of IL-10, and 
decreasing the production TNF-a and IL-12. MSCs can also regulate DCs by downregulating the expression of MHC, CD40, CD80, CD83 and CD86, thus, diminishing 
their antigen presenting ability, while upregulating the expression of IL-10. MSCs can reduce the NK cell cytotoxicity and decrease their production of TNF-a and 
IFN-γ. Treg and Breg cells can be induced by MSCs, further increase the production of anti-inflammatory cytokines (IL-10 and TGF-β1). However, the mechanisms of 
how Breg cells are induced by MSCs are still not clear. MSCs: Mesenchymal stem cells; TNF: Tumor necrosis factor; IL: Interleukin; NK: Natural killer; DCs: Dendritic 
cells; IFN-γ: Interferon-γ; Treg: Regulatory T; Breg: Regulatory B; TGF: Transforming growth factor; PGE2: Prostaglandin E2; IDO: Indoleamine 2,3-dioxygenase.
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presenting cells (Figure 2). 

Secretion of soluble mediators
TGF-β1: MSCs can secrete TGFβ1 to promote Treg cell 
differentiation, especially when MSCs are placed in an 
inflammatory environment[21]. TGFβ1 is a potent immuno
suppressor secreted by every leukocyte lineages, including 
macrophages, DCs, NK cells, T cells and B cells. Both 
TGFβ1 knockout mice and Tcell specific TGFβ receptor 
Ⅱ knockout mice develop severe autoimmunity, leading 
to multiple organs failure and death, suggesting the 
importance of TGFβ1 in regulating peripheral tolerance[44,45]. 
Generally, TGFβ1 can suppress the proliferation of 
T cells, the activation of B cells, the maturation and 
antigen presentation of DCs, the cytotoxicity of NK cells, 
and phagocytic effect of macrophages[46]. Moreover, as 
mentioned earlier, TGFβ1 is able to convert naïve T cells 
to Foxp3+ Th3 cells, although such conversion seems 
to be concentrationdependent. High concentrations of 
TGFβ1 suppresses the expression of IL23R and shifts 
the conversion to Foxp3+ Th3 cells, whereas at lower 
concentrations and in the presence of IL6 and IL21, the 
expression of IL-23R is enhanced and results in RORγt+ 
Th17 differentiation[47]. In addition, neutralizing TGFβ1 
reduced mRNA and protein level of Foxp3 and CD25, 
further confirms its essential role in promoting Treg cell 
differentiation[48]. In conclusion, MSCssecreted TGFβ1 not 
only acts as a suppressor of innate and adaptive immune 
response, it can also induce development of Treg cells from 

naive T cells, which further enhance the regulatory effects.

PGE2: MSCs can also secrete PGE2 to induce Treg 
cells. PGE2 plays a major role in suppressing chronic 
inflammation. PGE2 can reduce IFN-γ production of NK 
cells, limit the phagocytic ability of macrophages and 
interfere early activation of B cells[4952]. Although PEG2 
can suppress early development of DCs, it is surprising 
that PGE2 also stabilize matured DCs and enhance its 
antigen presenting capacity[5355]. Moreover, despite PGE2 
is able to shift the differentiation of naïve T cells from 
Th1 to Th2 cells, PGE2 also promote proinflammatory 
Th17 cell development by elevating IL23 production[56]. 
Thereby, PEG2 is not exclusively antiinflammatory. 
It also possesses the ability to provoke inflammation. 
Nevertheless, like TGFβ1, PGE2 can induce Foxp3+Treg 
cell differentiation and it is one of many soluble medi
ators that produce by MSCs. Diminishing PGE2 signaling 
when coculture CD4+ T cells with MSCs by antagonist 
indomethacin fail to upregulate Foxp3 and CD25 ex
pression. In fact, when inhibiting both TGFβ1 and PGE2 
signaling, the expression of Foxp3 and CD25 further 
decreased[48]. Furthermore, after transferring adipose 
tissuederived MSCs in asthmatic mice, the number of 
infiltrated inflammatory cells was significantly reduced 
and no obvious goblet cell hyperplasia was found in the 
lung. Meanwhile, the number of Treg cells was elevated. 
When TGFβ1 neutralizing antibodies or indomethacin 
was added to MSCstreated asthmatic mice, the anti
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Figure 2  Mesenchymal stem cells-mediated regulatory T cell induction. MSCs induce Treg cells through soluble mediators stimulation, cell-cell interaction, and 
modulation of antigen-presenting cells. Under inflammatory environment, MSCs secretes TGF-β1, PGE2 and IDO to facilitate the differentiation of naïve T cells to 
Foxp3+Treg cells. MSCs can also interact with Th17 cells by direct contact via CD54 and C11a/CD18. With the presence of PGE2, differentiated Th17 cells can be 
converted to functional Foxp3+Treg cells. MSCs can increase the secretion of IL-10 by antigen presenting cells, which will then induce Tr1 cells differentiation. MSCs: 
Mesenchymal stem cells; IL: Interleukin; Treg: Regulatory T; TGF: Transforming growth factor; PGE2: Prostaglandin E2; IDO: Indoleamine 2,3-dioxygenase.
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inflammatory effects promoted by MSCs as well as 
the Treg cell expansion. These results demonstrated the 
necessity of TGFβ1 and PGE2 for Treg cell induction as 
well as the anti-inflammatory effect of MSCs[57].

IDO: IDO is a ratelimiting enzyme that catalyzes the 
degradation of tryptophan via kynurenine pathway. IDO 
is expressed in various cell types, including macrophages, 
DC and MSCs. Interestingly, IDO expression can be 
induced by IFNγ and other proinflammatory cytokines. 
Munn et al[58] treated pregnant mice carrying allogeneic 
or syngeneic fetus with 1methyltryptophan, an IDO 
inhibitor. As a result, allogeneic, but not syngeneic, fetuses 
provoked severe immune rejection[58]. Also, some studies 
suggested the association of tryptophan catabolism 
with inhibition of T cell proliferation, emphasizing its 
tolerogenic potential[59,60]. In addition, kynurenines, a 
tryptophan catabolite, can promote Treg cell induction[61]. 
Infusion of MSCs to kidney allograft murine model 
prevented graft rejection, and the Treg cell population 
was elevated. In contrast, allograft tolerance and Treg cell 
expansion diminished when the recipients were treated 
with IDOdeficient MSCs. These results demonstrated 
the importance of IDO in MSCsmediated Treg cell 
induction and graft tolerance[62]. Other soluble factors, like 
human leukocyte antigenG5 and haem oxygenase 1, 
are also shown to be involved in MSCsmediated Treg cell 
induction[63,64]. However, the underlying mechanisms are 
not clear. More studies need to be done in order to further 
increase the efficacy of MSCs-based therapy and to reveal 
the potential risk that could cause to the patients.

Cell-cell interaction
Apart from soluble mediators, cellcell interaction is also 
important to the modulatory function of MSCs and Treg 
cell induction. MSCs are known to express adhesion 
molecules on their surface, although only low level 
of expression can be detected in normal condition. 
However, after placing MSCs in inflammatory conditions, 
adhesion molecules, ICAM1 and VCAM1, chemokine 
ligands of CCR5 and CXCR3 are upregulated. Through 
these molecules, T cells are attracted and anchored to 
MSCs. With close proximity, adhesion molecules co
operate with IDO and NO, suppress T cell activity by 
inducing their apoptosis or cell arrest[6568]. It is also 
worth to note that MSCs can inhibit the expression of 
ICAM1, CXCR3 and aintegrin on CD3+ T cell, reduced 
the interaction between T cells and endothelial cells, 
thus, disrupted T cells from infiltrating into CNS[69]. On 
the other hand, MSCs can attach to Th17 cells via CCR6 
and CD11a/CD18 and facilitate Th17 to adopt regulatory 
phenotype[70]. Moreover, when coculture MSCs with 
CD4+ T cells in transwell system; Treg cells cannot be 
induced, even in the presence of PGE2 and TGFβ[48]. 
These results further confirmed cellcell interaction 
is essential to the overall suppressive effect of MSCs. 
However, Treg cell induction ability was recovered if MSCs 
were cocultured with peripheral blood mononuclear 

cells instead of isolated CD4+ T cells, suggesting there 
is an alternative pathway that does not require cellcell 
contact, and it is likely, through soluble mediators in 
peripheral blood mononuclear cells[48]. 

Modulation of antigen presenting cells
Increasing evidence has indicated MSCs are able to 
shift macrophages, DCs and NK cells to a regulatory 
phenotype and alter their cytokines production. For 
example, MSCs skew monocyte toward M2 macrophage 
differentiation. Subsequently, M2 macrophages secrete 
CCL18 and IL10 to exert suppressive response and 
induce Treg cell differentiation[26]. As discussed above, 
IL10 is able to induce naïve T cell to Foxp3 Tr1 cell, 
which secrete high level of IL10 and TGFβ to modulate 
the inflammatory microenvironment. Interestingly, 
although MSCs express neither IL10 nor its receptor, 
MSCs are able to induce NK cells, DCs, macrophages, 
T cells and B cells to produce IL10[5,1012,17]. In addition, 
IL10 is a powerful antiinflammatory cytokine that 
suppresses antigen-specific immune responses, reduces 
pathological immune responses and promotes allograft 
tolerance. 

In conclusion, the mechanisms underlying MSCs
mediated Treg cell development are complicated, which 
involve synthesis and secretion of multiple mediators, 
direct interaction with target cells and modulation of 
certain antigenpresenting cells. Apparently, there is 
no single pathway that governs the whole induction 
process, indicating that MSCs possess certain degree 
of plasticity. Regardless of how Treg cells are enhanced 
by MSCs, MSCsactivated Treg cells play a significant 
role on immunoregulation and affect a wide spectrum 
of immune responses[43,71,72]. Certainly, Treg cells can 
massively amplify the immunomodulatory effect of 
MSCs. However, the mechanism in regard to Treg cell 
induction is far from elaborate and additional researches 
are required. 

Breg LYMPHOCYTE
In recent decade, Breg cells were being intensively 
investigated due to its immunosuppressive effect on 
excessive inflammation. Like Treg cells, Breg cells can 
produce antiinflammatory cytokines, like TGFβ and 
IL10. Among these, IL10 is strongly associated with 
Breg cells since depleting IL10producing B cells result 
in chronic inflammation, outgrowth of proinflammatory 
T cell after autoimmune induction[7375]. But unlike Treg 
cells, there is no “master regulator” being identified 
in Breg cells, which complicated the process of Breg cell 
classification. So far, there are several B cell subsets 
have been identified as Breg cells in mice. They are 
CD5+CD1dhi B (B10) cells and Tim1+ B cells[7678]. In 
human, there is CD19+CD24hiCD38+CD1dhi B cells and 
CD19+CD24hiCD27+ B cells[79,80]. Breg cells control infla
mmation by suppressing IL12 secretion from DCs, 
thus inhibiting Th1 and Th17 differentiation[81]. Through 
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the secretion of TGFβ, Breg cells can induce CD4+ T cell 
apoptosis and anergy in CD8+ cytotoxic T cells[82,83]. 
Recent studies indicated that Breg cells play a role in Treg 
cell development and function. As Breg cells are one of the 
major sources of IL10, which drive Tr1 differentiation, 
it is not surprising that Breg cells can expand Treg cell 
population during inflammation. Additionally, when B cell 
specific IL10 defective mice (DBA/1IL10 KO/ mice) 
were induced with arthritis, the percentage of Tr1 was 
significantly decreased, indicating effects of IL10+Breg 
cells on Treg cell formation[75]. Besides TGFβ and IL10, 
recent studies reported that IL35 is another pleiotropic 
cytokine that regulate overwhelming inflammation and 
autoimmunity[84,85]. Antigendriven proliferation assay 
revealed that IL35 was able to suppress CD4+ T cell 
proliferation[86]. Treatment with IL35 ameliorated 
disease severity and reduced Th1 and Th17 cells in mice 
with experimental autoimmune uveoretinitis (EAU)[85]. 
More importantly, IL35 can increase Treg and Breg cell 
populations. Similar to IL10, IL35induced Treg (iTr35) 
cells are Foxp3. However, adoptive transfer of iTr35 
cells to various autoimmune disease animal models has 
sufficiently alleviated their clinical severity, and the effect 
was comparable to tTreg cellstreated mice[35]. On the 
other hand, when recombinant IL35 was injected into 
the EAU mice, the frequency of B220+ IL10+Breg cells, IL
35+Breg cells and B10 cells were upregulated in the spleen 
and draining lymph nodes[85]. Collectively, Breg cells exhibit 
anti-inflammatory and immunoregulatory effects, at least 
in part, by secreting multiple anti-inflammatory cytokines 
(TGFβ, IL10 and IL35), promoting differentiation of 
other regulatory cells, and inhibiting the proliferation and 
function of effector T cells.

Breg LYMPHOCYTE INDUCTION BY MSCs
Although MSCs do not constitutively express IL10, and 
currently there is no evidence to indicate that MSCs 
produce IL35, several studies have reported that 
MSCs induce IL10+Breg cell differentiation in mouse 
model[8789]. Our group studied the effects of human bone 
marrowderived MSCs in experimental autoimmune 
encephalomyelitis (EAE), an animal model of multiple 
sclerosis, and observed attenuation of clinical severity 
and neuroinflammation; and excitingly, these were 
associated with expansion of CD1dhi CD5+ Breg cells after 
MSCs administration[87]. Subsequently, another study 
demonstrated intravenous infusion of adipose tissue
derived MSCs to Roquinsan/san mice, an animal model of 
systemic lupus erythmatosus (SLE), lead to increased 
numbers of B10, B10pro and naïve Treg cells[89]. Moreover, 
the MSCsmediated Breg cell induction is not restricted 
to murine models. Administrating MSCs into refractory 
chronic graft vs host disease (cGvHD) patients have 
improved patients’ overall clinical conditions. Consistent 
with murine models, MSCs increased the frequency 
and the function of CD5+ IL10+Breg cells by enhancing 
their proliferation and survival[88]. Momentarily, we are 
still not clear about the mechanism regarding to MSCs

mediated Breg cell induction. It is worthwhile to ask 
whether the induction is IL35 or IL10dependent since 
MSCs can induce IL10 production by Treg cells, DCs, and 
M2 macrophages, implying the possibility of creating a 
positive feedback loop for Breg cell generation. Further 
understanding the mechanisms of how MSCs induce Treg 
and Breg cells can definitely contribute to the therapeutic 
development of MSCs and further improve their potential 
therapeutic efficacy.

THERAPEUTIC POTENTIAL OF GENETIC 
ENGINEERED MSCs
MSCs contain multiple properties that are suitable for 
therapeutical use. Widespectrum of differentiation capacity 
made it a perfect candidate for regenerative medicine. 
MSCs have been used to generate cartilage, bone, liver, 
intervertebral disc, and cardiac tissue[90]. Recent reports 
have suggested using MSCs for neural cell replacement. 
However, rather than direct neural differentiation, MSCs 
tend to recruit neural progenitor cells (NPCs) to the injury 
sites and support NPCs proliferation and differentiation[91]; 
Immunomodulatory properties of MSCs are potentially 
useful for the treatment of autoimmune diseases and 
GvHD. Transplanted MSCs suppressed the proliferation 
and activation of T cells and NK cells in type 1 diabetes 
animal model. Also, the level of IFNγ and TNFa were 
reduced. When MSCs were cotransplanted with 
pancreatic islets, MSCs protected grafted islets from 
immunorejection and secreted various trophic factors to 
promote graft vascular network[92,93]. Another intriguing 
advantage of using MSCs to treat immune diseases is 
that, unlike traditional immunotherapy in which a certain 
modulator act on a particular pathway, MSCs elicit their 
suppression on multiple immune cell types via various 
mechanisms. Although the immunosuppressive effects of 
MSCs appear very promising, further investigations are 
required to elucidate the underlying mechanisms, so as 
to prevent complications and maximize the therapeutic 
efficacy. 

One current issue on immunotherapy is that a 
particular modulator or antibody may be seemingly 
effective, however, the therapeutic efficacy is limited 
since such modulator may also compromise certain 
cells or mediators beneficial to the disease recovery. 
Rituximab, for example, is a CD20 neutralizing antibody 
and it is believed to be an effective treatment for B and 
Tcellmediated diseases, such as rheumatoid arthritis, 
multiple sclerosis and systemic lupus erythematosus[9496]. 
Rituximabinduced Bcell depletion depends on the ex
pression of CD20 on the cell surface, but the expression 
of CD20 gradually disappeared upon plasma cell diff
erentiation[97,98]. Moreover, Breg cells were also depleted, 
thus, exacerbates the disease symptoms[73]. In EAE, B10 
cells play an important regulatory role during the initiative 
phase whereas they are less involved at the late phase of 
the disease[99,100]. Therefore, depleting B cells by rituximab 
at the early phase have a potential risk of worsening the 
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clinical conditions. As a consequence, it is necessary to 
develop an alternative strategy. 

The immunosuppressive properties of MSCs on 
different murine autoimmune disease animal models 
support its potential clinical application. However, the 
immunomodulatory secretome of MSCs vary and greatly 
rely on the host inflammatory environment[21]. To mini
mize this uncertainty, a novel therapeutic strategy, in 
which MSCs are genetically engineered with defined 
immunoregulatory cytokines, has been developed. 
Transplantation of IL10engineered adiposederived MSCs 
attenuated EAE by reducing the number of immune cell 
infiltration to the CNS, decreasing the secretion level of IL-
17A, TNFa and IL2, and inhibiting antigenpresenting 
function of DC[101]. Since the immunosuppressive effect 
of MSCs is enhanced if they are placed proximal to 
the inflammatory area, Liao et al[102] engineered MSCs 
with CNS homing ligand genes, Pselectin glycoprotein 
(PSGL1) and SialylLewisx (SLeX), along with IL10 to EAE 
model. Consequently, EAE was attenuated, CNS homing 
ability was enhanced and their therapeutic efficacy was 
increased[102]. Genetic engineering of MSCs has been well 
studied in regenerative medicine. Different combination 
of treatments is documented and aims to redirect the 
MSCs differentiation propensity. Comparatively, genetic 
modification of MSCs for the treatment of autoimmune 
diseases is currently under development. Considering 
that the effect of MSCs may vary between patients with 
different severity of neuroinflammation, information on the 
clinical condition and pathology of the individual patient 
will probably help to predict treatment efficacy. Moreover, 
questions like in what phase of a particular disease 
introducing MSCs can improve the clinical outcome, or 
to what extent MSCs can elicit their suppressive effect 
and meanwhile, does not compromise the immunity in 
response to pathogens or infectious agents, are worthwhile 
to explore in order to safely use in human patients.

SAFETY AND CONCERNS OF MSCs AS 
CELLULAR THERAPIES IN PATIENTS
To date, there are nearly 500 ongoing MSCbased cli
nical trials. They aim to investigate the effectiveness of 
MSCs on treating different diseases, including GvHD, 
diabetes, cardiovascular diseases, hematological diseases 
and neurological diseases[103]. Although most of these 
clinical trials reported the patients were well tolerated 
to the MSC infusion and administration, there are some 
safety concerns requiring caution[104]. During in vitro 
expansion, MSCs can give rise to replicative senescence, 
which may affect the activity of surrounding healthy cells 
and therefore, reduce the clinical efficacy[105]. Moreover, 
although MSCs have low immunogenicity due to the 
reduced expression of costimulatory receptors and major 
histocompatibility complex (MHC) class Ⅱ antigens, in 
vitro stimulation of pro-inflammatory cytokines on MSCs 
can upregulate MHC class Ⅰ and MHC class Ⅱ expression, 
compromising the hypoimmunogenicity property of 

MSCs. 

CONCLUSION
The immunomodulatory properties of MSCs have been 
massively studied due to its intriguing suppressive effects 
on various immunological diseases. Broadrange of 
immune cells can be regulated by MSCs through a series 
of soluble mediators stimulation, chemokine attraction, 
and celltocell interaction. MSCsinduced Treg and Breg cells 
enhance the immunosuppressive capacity and generate 
a tolerogenic microenvironment against overwhelmed 
inflammation. This hypothesis supports the observation 
that infused MSCs can only survive in the recipient for a 
short period of time, however, the regulatory effects of 
MSCs are long lasting, suggesting MSCs may act as an 
activator or a switcher that initiate certain cells, possibly 
Treg and Breg cells, to react to the inflammation and at the 
same time, alter the microenvironment for those cells to 
sustain their immunosuppressive effects. Although MSCs 
appear very promising as treatment in experimental 
models of autoimmune diseases, there are still many 
challenges need to overcome before MSCs can be widely 
use in clinical medicine. 
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