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Forkhead box transcription factor 1: role 
in the pathogenesis of diabetic cardiomyopathy
Vidya Kandula1, Ramoji Kosuru1, Haobo Li1, Dan Yan1, Qiqi Zhu1,2, Qingquan Lian2, Ren‑shan Ge2, 
Zhengyuan Xia1,2* and Michael G. Irwin1

Abstract 

Diabetic cardiomyopathy (DCM) is a disorder of the heart muscle in people with diabetes that can occur independent 
of hypertension or vascular disease. The underlying mechanism of DCM is incompletely understood. Some transcrip‑
tion factors have been suggested to regulate the gene program intricate in the pathogenesis of diabetes prompted 
cardiac injury. Forkhead box transcription factor 1 is a pleiotropic transcription factor that plays a pivotal role in a 
variety of physiological processes. Altered FOXO1 expression and function have been associated with cardiovascular 
diseases, and the important role of FOXO1 in DCM has begun to attract attention. In this review, we focus on the 
FOXO1 pathway and its role in various processes that have been related to DCM, such as metabolism, oxidative stress, 
endothelial dysfunction, inflammation and apoptosis.
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Background
Diabetic cardiomyopathy (DCM) is causative for 80  % 
of the fatality rate in the diabetic inhabitants [1, 2]. The 
molecular theory of DCM describes that, hyperglycae-
mia is the core pathogenic cause, which roots irregulari-
ties at the cardiac myocyte level, ultimately contributing 
to structural and functional anomalies [2]. This is also 
nurtured by the datum that patients with diabetes mel-
litus, independently of the viciousness of coronary artery 
disease, have amplified threat of heart failure in contrast 
with subjects deprived of diabetes mellitus [3, 4].

DCM linked pathologies have their ancestries in shifts 
of gene expression. Although various origins of cardiac 
injury have been identified, the vital molecular contrap-
tions of their pathogenesis have not been anticipated. 
The molecular operations within the cardiac cell are 
organised by transcription factors such as forkhead box 
(other) transcriptional factor (FOXO). In heart diseases 
such as atherosclerosis [5], diabetic cardiomyopathy [6, 
7], there is an augmented FOXO activity. In this paper 

we will focus on the possible role of FOXO regulation in 
DCM. This entity embraces the direct outcome of diabe-
tes mellitus, as one of the utmost rampant diseases, on 
the myocardium. FOXO regulation may deed in DCM via 
numerous pathways, by governing different set of genes 
being involved in allied processes such as oxidative stress, 
metabolism, inflammation, endothelial dysfunction and 
apoptosis.

FOXO’s
The “forkhead” name was conferred on account of the 
two spiked-head structures observed in the embryos 
of the Drosophila Melanogaster forkhead mutant and 
its part was connected to the development of gut of the 
Drosophila fetus [8]. Forkhead proteins are identified as 
novel class of transcription factors in the late 20th cen-
tury [9]. FOXO is one amongst 19 families of FOX super-
family and incorporates FOXO1, 3, 4, and 6 [10, 11]. 
FOXO in humans is similar to dFOXO in Drosophila 
Melanogaster, and abnormal dauer formation-16 in Cae-
norhabditis elegans [10].

FOXO’s consists of highly conserved forkhead/winged 
helix DNA-binding domain, which encompasses the 
most common 110 amino acids of FOXO family and 
embodies 3a, 3b, and 2 winged helices, facilitating its 
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DNA binding [12, 13]. FOXO1 and FOXO3 are expressed 
globally, and FOXO1 isoform is abundantly located 
in hepatic, fatty tissue and pancreatic β cells [14, 15]. 
FOXO4 is mainly located in muscle, renal, and colorec-
tal tissue while FOXO6 is predominantly located in the 
liver and cerebrum [16]. Post-translational modifications 
(PTM) such as phosphorylation, acetylation, ubiquitina-
tion, arginine methylation, and O-glycosylation [13, 17] 
are known to determine the FOXO1 nuclear transit and 
transcriptional activity [18]. These modifications can 
either enhance or reduce the FOXO1 transcriptional 
activity as determined by the upstream target and/or the 
sites concerned [17]. AKT phosphorylates FOXO1, facili-
tating its nuclear transit, which consecutively decreases 
the transcriptional function of FOXO1 [19–21]. How-
ever, several other kinases like mitogen-activated protein 
kinases (also known as JNKs), cyclin-dependent kinase 2 
and nuclear factor κB (NFκB) kinase are also involved in 
FOXO1 phosphorylation [22–24]. The nuclear compart-
mentalization and transcriptional function of FOXO1 
can also be modified by other PTM like acetylation, ubiq-
uitina-tion, glycosylation and methylation [25–29].

Over the recent decade, numerous studies have uncov-
ered the essential functions of FOXOs in managing 
diverse range of cellular processes. FOXO1 is the key 
member among the ‘O’ subfamily, in controlling equi-
librium of cardiac cells [18, 30]. Global loss of FOXO1 
is fatal as it initiates embryonic cell death because of 
inadequate vascular growth [31]. From the embryo to 
adulthood, FOXO factors play an important role in main-
taining cardiac homeostasis [32]. Furthermore, FOXO1 is 
concerned in controlling cellular responses like oxidative 
stress response, cell multiplication, immune homeosta-
sis, cell death, and metabolism in diverse kinds of tissues 
[33].

FOXO regulated genes
In relation to the heart, FOXO controls the expression 
of a variety of target genes that are involved in cellular 
metabolism, oxidative stress, apoptosis and cell cycle dif-
ferentiation (Table  1). Interestingly, FOXO factors have 
been shown to be regulated by numerous stress stimuli, 
including DNA damage, cytokines, nutrient and oxy-
gen deprivation [24, 34–39]. In addition, stimulation of 
FOXO factors by 5′ adenosine monophosphate-activated 
protein kinase stimulates the preferential expression of 
a gene expression program that heightens cellular stress 
resistance [37, 38]. In spite of the fact that the regula-
tion of FOXO components is majorly controlled by 
posttranslational changes, a series of latest studies have 
emphasized how FOXO factors additionally coordinate 
extracellular stimuli through substitute mechanisms. 
For instance, the growth regulatory cytokine such as 

transforming growth factor β triggers the expression of 
genes involved in cell cycle inhibition like p15 and p21 
through complex formation between FOXO, Smad, and 
C/EBPb transcription factors at particular promoters 
[34–36, 40, 41]. These most recent studies highlight the 
complex regulation of the FOXO transcription factors, 
by an extensive variety of different stimuli, including 
cytokines, glucose availability, DNA damage and oxygen 
deprivation, that may aid to refine FOXO function in dis-
tinctive cell kinds under diverse environmental settings.

The role of FOXO1 in the heart
Among the FOXO subfamily, FOXO1, FOXO3, FOXO4 
are expressed in the heart [57] and localizes in nucleus 
where they get associated with coactivators and modu-
late multiple signal transduction pathways [34, 58–60]. 
The impacts of FOXO family on heart function and car-
diac remodelling have been reviewed [61, 62]. Within the 
setting of cardiac function, the FOXO proteins are sup-
posed to be participated in oxidative stress [63], regula-
tion of metabolism [58], cell cycle [64], and cell death 
[65]. Fetal development of heart obliges cell development 
and division, and FOXO1 is essential for embryonic vas-
cular and cardiac development. For instance, FOXO1 
gene knocked out embryos die at E10.5–E11  day and 
demonstrated curbed vascular and cardiac growth [31, 
66]. On the contrary, mice overexpressing a myocardial 
specific FOXO1 also die by E10.5 because of anomalous 
expression of cyclin-dependent kinase inhibitors p21 
(cip1) and p27 (kip1), resulting in diminished prolifera-
tion of cardiomyocytes, decreased cardiac size and myo-
cardium thickness, and ensuing cardiac catastrophe [67]. 
Myocardial SIRT1 overexpression and precludes aging of 
heart via FOXO1 mediated induction of catalase expres-
sion [51].

FOXO1 and cardiovascular diseases
Dysregulated activity of FOXO1 has been implicated 
in the pathophysiology of DCM [6, 7, 68], ischemic 
heart disease [69] and cardiac hypertrophy [54]. In gen-
eral, FOXO1 has been found to play a protective role in 
ischemic heart diseases. For instance, Benzhi Cai et  al. 
[70], reported that deletion of FOXO1 in heart caused 
an increment in myocardial Na+ load by augment-
ing NaV1.5, a principle α subunit of the cardiac sodium 
ion channel and Na+ channel subunit β3 mRNA and 
resulted in shortening of QRS complex significantly, 
proposing that FOXO1 is facilitating the modulation of 
sodium channel in ischemic cardiomyopathy. The pro-
tective role of FOXO1 is further confirmed by Sengupta 
et  al. who observed that in mice with cardiac-specific 
deficiency of both FOXO1 and FOXO3 the hearts dem-
onstrated lowered systole, enlarged scar development 
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and amplified apoptosis relative to control mice, when 
subjected to myocardial infarction through surgical 
ligation of coronary artery [71]. Moderate increment of 
FOXO1 expression in heart diminished while its cardiac 
overexpression in diabetes [72] or deficiency aggravated 
myocardial ischemia reperfusion injury [71]. The role 
of FOXO1 in mediating diabetic heart susceptibility to 
ischemia–reperfusion injury has recently been reviewed 
by our group [72]. Besides, in light of an ischemia–reper-
fusion convention, the FOXO1 and FOXO3 dual knock-
out mice displayed diminished expression of catalase and 
Manganese superoxide dismutase (MnSOD). Further-
more, both FOXO1 and FOXO3 transcription factors 
prevent cardiac hypertrophy by stimulating the expres-
sion of atrogin-I (an E3 ubiquitin ligase) that facilitates 
the inhibition of calcineurin/nuclear factor of activated 
T cells [54]. In addition, ubiquitinization of FOXO1 by 
atrogin-I promote its nuclear retention and enhancement 
of its transcriptional activity, and facilitate to oppose 
the Akt-dependent physiological hypertrophy [54, 73]. 
In contrast to the protective role, Yajuan Qi et  al. [6] 
recently observed that FOXO1 plays a prominent role in 
the development of DCM. FOXO1 upregulation in insu-
lin resistance state may lead to impairment of cardiac 
contractility by increasing β-myosin heavy chain gene 
expression in cardiac cells [6].

FOXO1 and DCM
Diabetic patients are more prone to the risk of cardio-
myopathy, and heart failure is a foremost cause of death 
in diabetes populations [74–76]. This could not be expli-
cated by considering several other diabetes related risk 
factors such as dyslipidemia, obesity, infarction, endothe-
lial dysfunction. Thus, diabetes mellitus independent of 
coronary vascular disease and hypertension can modify 
the structures as well as functions of the myocardium, 
a state acknowledged as DCM [77]. In this process, the 
metabolic derangements in glucose and lipids trigger rig-
orous cardiac changes that progresses to dysfunction of 
ventricular diastole and systole [78]. Furthermore, lipid 
overload in the myocardium leads to contractile dysfunc-
tion in animal models and humans by upregulating gene 

expressions of peroxisome proliferator activated recep-
tor (PPAR)α, myosin heavy chain (MHC)-β, and tumor 
necrosis factor (TNF)-α [79]. In addition, deficiency of 
muscle ring-finger protein (MuRF)2, an ubiquitin ligase 
resulted in the development of diabetic cardiomyopathy 
by enhancing cardiac PPARα and PPARγ1 gene expres-
sion [80]. However, cellular mechanisms associated with 
DCM, including FOXO1 signalling, are not yet com-
pletely understood [77]. Understanding for the patho-
genesis of DCM is stemmed mainly from in vivo animal 
models [81, 82]. Recent in vivo and in vitro studies indi-
cate that enhanced cardiac FOXO1 activation has been 
illustrated in diabetic mice [7]. The responses in the heart 
such as metabolic adaptation, oxidative stress, endothe-
lial dysfunction, inflammation, and apoptosis in which 
FOXO1 could participate that may lead to DCM are illus-
trated below (Fig. 1).

FOXO1 and DCM‑associated metabolism
Disturbances in myocardial glucose and lipid metabolism 
are initial events that lead to cardiac dysfunction in dia-
betic condition. FOXO1 is involved in various pathways 
related to cellular energy metabolism. During insulin 
resistance, pyruvate dehydrogenase kinase 4 (PDK4) is 
known to inhibit glucose oxidation by blocking pyruvate 
to enter into mitochondrial oxidation through phos-
phorylating the E1 moiety of pyruvate dehydrogenase 
complex [83]. Enhanced expression of FOXO1 down-
stream target gene PDK4 gene is also observed in high 
fat and obese animal models of insulin resistance, which 
adversely regulate insulin actions [84, 85]. FOXO1 can 
modulate glucose metabolism in adult cardiomyocytes 
in insulin resistance and diabetic conditions by inhibit-
ing glucose oxidation preceded by PDK4 activation, sub-
sequently altering the substrate preference for fatty acid 
and lactate [33, 83]. In addition, FOXO1 upholds glu-
coneogenesis in liver by enhancing G6Pase and PEPCK 
mRNA [86, 87]. Besides, FOXO1 depletion abolished 
the high-fat diet induced aberration of glycolytic genes 
(declined hexokinase 1 and glucose transporter 4) and 
lipid oxidation gene expression patterns (diminished 
PGC-1α and amplified PDK4). These findings collectively 

(See figure on next page.) 
Fig. 1 Regulation and function of FOXO‑1 in the development of DCM. In diabetes mellitus, various stimuli like excess glucose, excess lipids, oxygen 
free radicals, cytokines and other growth factors triggers several mechanisms that promote posttranslational modifications like phosphorylation, 
acetylation, deacetylation which may regulate the FOXO‑1 activity and function. Akt promotes the phosphorylation and translocation of FOXO1 
to cytosol and facilitates its binding with 14‑3‑3 protein which directs it for degradation whereas protein phosphatase 2A (PP2A) causes dephos‑
phorylation and translocates FOXO1 to nucleus from cytosol. E3 ubiquitin ligase facilitates ubiquination of FOXO1, while ubiquitin specific protease 
(USP7) inverted the process. Further, phosphorylation by Mst1 stimulates FOXO1 transcriptional activity. In addition, cAMP response element binding 
protein (CBP) and p300 histone acetyltransferase acetylates FOXO1, and silent information regulator 1 (SIRT1) deacetylates it. Activated FOXO‑1 
binds to the FOXO‑binding site and triggers several genes involved in inflammation, oxidative stress, nitrosative stress, glucose and lipid metabolism, 
hypertrophy, autophagy and apoptosis that finally leads to alteration of cardiac structure, metabolism, function and cardiac cell death. P phoshoryla‑
tion; Ub ubiquitination; Ac acetylation
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suggest that FOXO1 is a key factor responsible for anom-
aly of glucose and lipid metabolic pathways in insulin 
resistance.

Surprisingly, Battiprolu and his colleagues noticed 
morphological and functional myocardial modifications 
similar to DCM in two dissimilar animal models of type 
2 diabetes, db/db mice lacking leptin receptor and high-
fat diet obese mice, as an outcome of FOXO boosted 
pathological alterations. Moreover, mice with cardiac 
specific FOXO1 knock out were resistant to high-fat diet 
provoked myocardial dysfunction and hypertrophy [7]. 
Recent evidences suggest that FOXO1 plays a key role 
in regulating cardiac aberrant metabolisms (i.e.; glucose 
and fatty acid metabolism) leading to DCM [7, 83]. These 
studies concludes that FOXO1 stimulation promote car-
diac remodelling by altering cardiac metabolism whereas 
FOXO1 deletion resists cardiac remodelling. Thus, 
FOXO1 was distinguished as a central player in the car-
diac metabolic abnormalities in DCM.

Another cardinal feature of DCM is lipotoxicity result-
ing in part from excessive lipid accumulation [79]. 
Puthanveetil et  al. suggested that FOXO–iNOS–clus-
ter domain 36 transporter (CD36) axis was involved in 
lipid accumulation in cardiomyocytes under lipid excess 
conditions. Oversupply of lipids augments the nuclear 
localization of FOXO1 accompanied by augmented CD36 
translocation to the membrane without affecting its 
mRNA or total protein content, ensued by amplified lipid 
oxidation and triglyceride accrual [30]. Further, FOXO1 
nuclear compartmentalization and enhancement of its 
transcriptional activity was observed especially during 
diabetes and obesity [88, 89]. Enhanced fatty acid flux 
into the cardiac cell can boost its oxidation with subse-
quent production of reactive oxygen/nitrogen species 
[90], which can subsequently induce hypertrophy and 
cardiac failure [91]. Additionally, FOXO1 has indispen-
sable role in positive regulation of adipocyte fatty acid 
binding protein (FABP4) gene transcription, thereby 
controlling uptake and accumulation of lipids in mac-
rophages, and promoting atherosclerosis [92]. Thus, 
FOXO1 over-activation plays a prominent role in myo-
cardial lipid accumulation as a result of augmented lipid 
uptake over deployment.

Latest studies have disclosed the FOXO1 ability to 
relate insulin pathway to numerous kinds of metabolic 
stress in the heart. FOXO1 indirectly controls the insu-
lin sensitivity via negatively modulating the insulin sens-
ing genes. Insulin sensitivity is restored upon FOXO1 
restricted deletion in genetic mouse model of insulin 
resistance, and this conditional deletion further reduced 
the expression of genes related to gluconeogenesis (e.g., 
G6pase and PEPCK1) in the liver and enhanced insulin 
sensitizing genes expression (e.g., Leptin gene, PPARγ, 

and solute carrier family two (facilitated glucose trans-
porter), member four) in adipocytes, thereby salvaged 
the diabetic phenotype [93]. Battiprolu et  al. further 
demonstrated that FOXO mediated feedback control 
of insulin signalling played an essential role in DCM 
through inactivation of insulin receptor substrate 1 
(IRS-1) [7]. In a preceding study, Niet et  al. reported 
that FOXO stimulation promoted insulin resistance and 
impairment of glucose metabolism in primary cardio-
myocytes through modulating Akt phosphorylation [94]. 
These observations of the FOXO-regulated vicious cycle 
of insulin resistance offer novel perceptions in the under-
standing of the pathogenesis of DCM and other diabetic 
complications.

The major role of FOXO factors in myocardial meta-
bolic stress adaptation may be correlated through their 
regulation of autophagy [95, 96], a characteristic of 
numerous versatile responses of the cardiomyocyte, com-
prising the reactions to starvation, ischemia–reperfusion, 
and pressure overload [97, 98]. FOXO1 deacetylation 
by sirt1 (a class III histone deacetylase) seems to be an 
essential module of the autophagic reaction to nutrient 
deficit, and possibly different types of metabolic stress in 
cardiomyocytes [99]. In the heart, FOXO transcription 
factor can promote autophagy by stimulating autophagic 
genes such as Atg12 and Gabarapl1 under stress circum-
stances [100].

FOXO1 and DCM‑linked oxidative stress
Hyperglycemia and the subsequent formation of 
advanced glycation end-products are major culprits for 
the generation of ROS within the cardiac tissue in dia-
betes [101]. In addition, excess mitochondrial oxidation 
resulting primarily from lipid degradation is another 
cause for oxidative stress in cardiomyocytes [102]. ROS 
like hydroxyl, superoxide anion and H2O2 are extremely 
irritable and can trigger destruction to lipids, proteins 
and DNA [103]. As oxidative stress plays a significant role 
in the development of DCM [104], antioxidant therapy 
can be beneficial for the amelioration of DCM. Recently, 
rutin, a flavonoid antioxidant was shown to attenuate 
myocardial ventricular dysfunction and cardiac remode-
ling in diabetic condition [105]. Hyperglycemia provoked 
disruption of cellular protective antioxidant mechanisms 
has been associated in the progression of cardiovascular 
ailments. Xiaonan Li et  al. reported that FOXO1 takes 
part in the mediation of high glucose induced elevation 
of oxidative stress that prompted the dysregulation of 
thioredoxin (Trx) antioxidant system [47]. Hyperglyce-
mia promotes coupling of FOXO1 to the Txnip promoter 
that is facilitated by p38 MAPK pathway [47]. FOXO1 
seems to stimulate cell demise, particularly in tissues 
that are influenced by diabetes associated complications 
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where oxidative stress is beyond normal limits [106]. 
However, FOXO1 has an imperative role in cellular pro-
tection against oxidative stress by inducing enzymes 
such as MnSOD and catalase that catalyse ROS [63, 107]. 
FOXO1 can safeguard pancreatic β-cells against oxidative 
stress [108].

FOXO1 and DCM‑related endothelial dysfunction
Endothelial dysfunction is the harbinger of atherosclero-
sis that drives the detrimental consequence of diabetes 
on the heart. Endothelial dysfunction has been revealed 
in both type 1 and type 2 diabetic patients [109, 110] as 
well as in several animal models of diabetes [111]. The 
plausible mechanisms by which FOXO1 causes some fea-
tures of endothelial dysfunction include the controlling 
of the expression of both isoforms of nitric oxide syn-
thase enzyme i.e. inducible and endothelial isoforms. It is 
apparent that impaired endothelial nitric oxide synthase 
(eNOS) activity leads to endothelial dysfunction [112]. 
FOXO1 repress transcription of eNOS in endothelial 
cells [113]. In consistent with this, a recent study by Lee 
et  al. showed that malfunction of FOXO1/KLF2/eNOS 
signalling promotes diabetic endothelial dysfunction [48]. 
Besides eNOS regulation, gain of function of FOXO1 in 
vascular endothelial cells further increased iNOS mRNA 
with resultant endothelial dysfunction [5]. This is in con-
sistent with the finding that FOXO1 deletion in strepto-
zotocin induced diabetic mice attenuated lipid peroxides 
and aortic iNOS activation in vascular endothelial cells.

Hyperglycemia-induced oxidative stress promotes post 
translational modifications of FOXO1 and its nuclear 
translocation, accounting for its enhanced transcrip-
tional activity, thereby its participation in the progression 
of atherosclerosis in diabetic patients [5, 49]. Li et  al., 
employed FOXO1 KR/KR knock-in mice to mimic the 
effect of oxidative stress- (or hyperglycemia-) induced 
FOXO1 deacetylation on atherosclerosis and demon-
strated that FOXO1 gain of function in vascular endothe-
lial cells trump its beneficial effects to lower triglycerides 
and low density lipoprotein cholesterol levels in its coun-
terpart WTD-fed Ldlr-/- mice, suggesting that FOXO1 is 
involved in primary atherogenic abnormality occurred in 
the vascular endothelium [114]. Furthermore, unbridled 
activity of FOXO1, as a result of hyperglycemia induced 
O-glycosylation, accounted for its disproportionate regu-
lation of apoptotic and proapoptotic factors (decreased 
Bcl-2 and increased caspase-3 and BAD), thereby con-
tributing to endothelial cell death in human aorta 
endothelial cells [49]. In addition to this, any interrup-
tion in the endothelin (ET)1-Akt-FOXO1 feedback loop 
may be a contributing element for ET-1 deregulation and 
endothelial dysfunction in inadequately managed diabe-
tes mellitus [49].

FOXO1 and DCM‑induced inflammation
Inflammation has deemed as a prime causative factor 
in diabetes and linked with the occurrence of heart fail-
ure in DCM. It has been reported that diverse stimuli 
like high glucose, TNF-α and lipopolysaccharides regu-
late the expression of proinflammatory cytokines via 
FOXO1 [106]. In insulin resistant obese mice model, 
macrophages have amplified FOXO1 stimulation with 
concomitant elevation of IL-1β production. Further-
more, FOXO1 accomplishes IL-1β expression by combin-
ing directly with the IL-1βpromoter [115]. On the other 
hand, inflammatory cytokines stimulate FOXO1 and 
may be indulged in positive feedback loop. This was sup-
ported by the findings of Behl et  al. who observed that 
augmented TNF-α in diabetes stimulated FOXO1 and 
this in turn further stimulated the expression of TNF-α 
levels in microvascular endothelial cells [88]. Elevated 
glucose levels in diabetes also activate toll-like receptor 
(TLR) pathway, which causes long-lasting inflammation 
and tissue injury. A recent study disclosed that FOXO1 
supports inflammation during diabetes by increasing the 
expression of TLR4, recommending that FOXO1 may 
function as an essential regulator of inflammatory reac-
tions during obesity and diabetes mellitus [116]. Since 
insulin is involved in FOXO1 repression, FOXO1 is 
stimulated in insulin resistance condition where dimi-
nution of insulin signalling pathway prevails, leading to 
accelerated inflammatory response. Furthermore, cell 
fate i.e. whether a cell experiences survival or apoptosis 
is governed by the relative balance between NF-κB and 
FOXO1, under inflammatory settings where both fac-
tors are triggered [117, 118]. This emphasizes the role 
of FOXO1 transcription factor as a central mediator of 
inflammation in the perspective of insulin resistance and 
obesity.

FOXO1 and DCM‑involved apoptosis
Cellular damage that progresses to apoptosis can be con-
sidered as an important contributing factor to pathol-
ogy in maladies like diabetes and cardiovascular injury 
[119]. FOXO1 is the significant contributor in regulating 
cell death [33]. FOXO1 emerges as a potential regulator 
of different kinds of cell death during insulin resistance 
and diabetes. In diabetes, both intrinsic (mitochondrial 
cytochrome c mediated) and extrinsic (death receptors 
like Fas or TNF α mediated) apoptosis are reported to 
be augmented and FOXO1 is suggested to increase the 
expression of caspases and cell death receptors [120, 121]. 
Moreover, FOXO1 signalling can increase the proapop-
totic gene expression like Bim and Puma [122, 123] and 
BAD [30]. Puthanveetil et al. suggested that FOXO1 reg-
ulates BAD, a pro-apoptotic factor through PP2A induc-
tion in in vivo models of diabetes and insulin resistance 
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[30]. However, FOXO1 overexpression in cardiomyocytes 
suppresses the PP2A/B activity [94]. The discrepancy 
between the in vivo and in vitro models in relation to the 
effect of FOXO1 on PP2A could be the presence of excess 
lipids brought in by the FOXO1–CD36 pathway observed 
with diabetes, which turns on PP2A, thereby activating 
BAD stimulated apoptotic process.

FOXO1 and DCM‑associated mitochondrial dysfunction 
and calcium handling
Mitochondrial malfunction associated with insulin resist-
ance is a prime contributing factor for DCM. FOXO1 
is involved in the integration of mitochondrial function 
with insulin signalling. Elevated FOXO1 levels in insulin 
resistant states disrupt mitochondrial electron transport 
chain, thereby promoting impaired oxidative respiration 
[124]. In addition, FOXO1 is involved in the regulation 
of the mitochondrial biogenesis by affecting the expres-
sion of genes regulating mitochondrial fission and fusion 
through SIRT1/PGC1α pathway [124].

Stringent regulation of intracellular calcium  homeo-
stasis is essential for normal maintenance of cardiac 
function and growth [125]. Numerous challenges like 
accumulation of long-chain acetylcarnitines and oxida-
tive stress can lead to impairment of calcium homeosta-
sis in DCM [126]. DCM has been associated with altered 
function of sarco-endoplasmic reticulum Ca2+-ATPase, 
and Na+/Ca2+  exchanger (NCX) [127–129]. Altered 
calcium handling contributes to endoplasmic reticulum 
stress [130] and is the underlying cause for FOXO1 aggra-
vation of diabetic cardiomyocyte cell death in response 
to ischemic insult [131]. In addition, enhanced levels of 
interleukin (IL)-1β contributed to endoplasmic reticulum 
stress induced DCM via IL-1 receptor-associated kinase-
2/C/EBP homologous protein pathway [132]. It has been 
identified that calcium calmodulin-dependent kinase II 
has profound effect on FOXO1 nuclear retention, which 
may lead to excessive glucose production in the liver, in 
the context of obesity [133]. Surprisingly, in failing car-
diomyocytes, enhanced cytoplasmic calcium levels helps 
facilitate calcium/calmodulin-dependent protein kinase 
dependent stimulation of Akt which leads to down regu-
lation of microRNA-1 and NCX-1 expression by inhib-
iting FOXO3A activity [134]. Altogether, these studies 
implicate the role of FOXO1 in DCM associated mito-
chondrial dysfunction and calcium handling.

Conclusions
In summary, FOXO1 regulation may contribute to the 
detrimental outcomes of the cardiac cells in diabe-
tes, accelerating the development of DCM, one of the 

predominant cardiac difficulties in diabetic patients. 
Metabolic alterations, oxidative stress, endothelial dys-
function, inflammation and apoptosis have been shown 
to be implicated in the development and progression of 
DCM, and also in the desirable processes for the regula-
tion of FOXO1 gene. Dysregulated FOXO1 expression 
and activity appear to promote endothelial dysfunction, 
myocardial oxidative stress, cardiomyocyte cell death 
and inflammation observed in DCM. Thus, FOXO1 
or, favourably, any of its distinctive pathways may be of 
extreme concern for pharmaceutical target. However, 
mechanisms controlling the activity and expression 
of FOXO1 isoform in DCM are not well appreciated. 
There are so many unanswered questions relating to the 
FOXO1 activity in DCM. Some of them like, what could 
be the mechanistic link whereby FOXO1 activation con-
tributes to the increased vulnerability of diabetic heart to 
ischemic insults? What could be the cause for persistent 
activation of FOXO1 in cardiac tissue in the settings of 
insulin resistance, lipid overload, elevated inflammatory 
cytokines and hyperglycemia? Whether FOXO1 plays 
similar roles like insulin resistance, in non-obese type 1 
diabetic patients given that insulin deficiency is another 
characteristic feature of diabetes? Could FOXO1 gene 
polymorphism be responsible for individual susceptibil-
ity of DCM? What could be the direct metabolic conse-
quences of FOXO1 activation? What is the functional 
role of FOXO1 in nonmyocytes of the heart? Thus, fur-
ther research is necessary to unveil the precise mecha-
nism of FOXO1 in the development and progression of 
DCM.
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