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Summary

1. Fine-scale predator movements may be driven by many factors including sex, habitat and

distribution of resources. There may also be individual preferences for certain movement

strategies within a population which can be hard to quantify.

2. Within top predators, movements are also going to be directly related to the mode of hunt-

ing, for example sit-and-wait or actively searching for prey. Although there is mounting evi-

dence that different hunting modes can cause opposing trophic cascades, there has been little

focus on the modes used by top predators, especially those in the marine environment.

3. Adult white sharks (Carcharhodon carcharias) are well known to forage on marine mammal

prey, particularly pinnipeds. Sharks primarily ambush pinnipeds on the surface, but there has

been less focus on the strategies they use to encounter prey.

4. We applied mixed hidden Markov models to acoustic tracking data of white sharks in a

coastal aggregation area in order to quantify changing movement states (area-restricted search-

ing (ARS) vs. patrolling) and the factors that influenced them. Individuals were re-tracked over

multiple days throughout a month to see whether state-switching dynamics varied or if individ-

uals preferred certain movement strategies.

5. Sharks were more likely to use ARS movements in the morning and during periods of chumming

by ecotourism operators. Furthermore, the proportion of time individuals spent in the two different

states and the state-switching frequency, differed between the sexes and between individuals.

6. Predation attempts/success on pinnipeds were observed for sharks in both ARS and patrolling

movement states and within all random effects groupings. Therefore, white sharks can use both a ‘sit-

and-wait’ (ARS) and ‘active searching’ (patrolling) movements to ambush pinniped prey on the surface.

7. White sharks demonstrate individual preferences for fine-scale movement patterns, which

may be related to their use of different hunting modes. Marine top predators are generally

assumed to use only one type of hunting mode, but we show that there may be a mix within

populations. As such, individual variability should be considered when modelling behavioural

effects of predators on prey species.
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Introduction

Animals may use a variety of movement strategies to

locate prey including systematic searching and a variety of

types of random walk (e.g. Papastamatiou et al. 2011;

Sims et al. 2012). The type of strategy used will also

depend on the hunting mode of the predator with two gen-

eral modes: ‘active search/patrolling’ and ‘sit and wait’

(Huey & Pianka 1981; O’Brien, Browman & Evans 1990).

‘Patrolling’ or ‘roving’ behaviour is defined by a predator

moving through its environment looking for prey

(although the movement strategy may vary, e.g. random

walks vs. directed), whereas ‘sit-and-wait’ or area-restricted

searching (ARS, especially if the predator must move con-

tinuously) behaviour sees the forager waiting for prey to

cross the boundary of its strike space over long time peri-

ods (O’Brien, Browman & Evans 1990; Alpern et al.

2011). Experimental work in terrestrial systems has sug-

gested that patrolling/roving or sit-and-wait hunting

modes in predators may cause trophic cascades that act in

opposing fashion and on different trophic levels (Schmitz

2008). Although predator hunting mode may cause varia-

tions in predator-induced trophic cascades, it is rarely con-

sidered in studies of top-level predators (Heithaus et al.

2009; Martin & Hammerschlag 2012; Higginson & Ruxton

2015).

Predator movements are not going to be solely con-

cerned with finding prey but also include other factors

such as finding mates or optimal environmental condi-

tions. Movement path structure will vary in time and space

in response to the environment and as the goals of move-

ment change (e.g. Papastamatiou et al. 2011; Langrock

et al. 2012). Predator movements are commonly found to

differ between time of day, sex, season and in response to

prey distribution. There may also be considerable variabil-

ity in individual movements within a population poten-

tially due to individual specialization. Individual

specialization in animal behaviour is being increasingly

recognized as prevalent in animal populations and may

manifest itself in an animal’s diet, patterns of movement

or other specific behaviours (e.g. Bolnick et al. 2003; Estes

et al. 2003; Matich, Heithaus & Layman 2011). The pres-

ence and degree of individual specialization can have

large-scale implications from both an ecological and con-

servation standpoint, and may even affect a population’s

stability (Bolnick et al. 2003). Individual specialization

may be driven by levels of intra and interspecific competi-

tion and/or be related to size, sex, habitat and available

prey (Matich, Heithaus & Layman 2011; Nifong, Layman

& Silliman 2015; Rossenblatt et al. 2015).

Generally, individual variability in movements is mea-

sured by comparing some aspect of the movement process

to model predictions (e.g. correlated random walks), or the

degree or even presence of cyclical behaviour (e.g. diel

habitat shifts, Austin, Bowen & McMillan 2004; Papasta-

matiou et al. 2010, 2011; Matich & Heithaus 2015). Such

an approach may miss movement processes at fine spatial

scales, which is ultimately the scale at which foraging

occurs. Furthermore, these studies identified intraspecific

variability, not specifically if individuals prefer a particular

movement strategy or routinely reuse the same strategy.

An analytical framework is required to detect fine-scale

differences in movements between individuals while

accounting for other factors such as size and sex. Move-

ment data from marine predators also suffers from large

positional errors or being collected at irregular intervals,

making it difficult to select suitable metrics. However, some

movement data can still be collected somewhat regularly

with relatively low spatial errors (e.g. active tracking) mak-

ing movement analysis easier. In these cases, hidden Mar-

kov models (HMMs) offer a powerful and readily

applicable set of analytical tools. In particular, HMMs can

be applied to movement data in order to identify beha-

vioural switches and how these are driven by environmen-

tal conditions (Patterson et al. 2009; Langrock et al. 2012).

HMMs are time-series models where an observation model

(e.g. step lengths and turning angles between movement

steps) is driven by an underlying hidden process model

(e.g. ARS or transient behaviour, Patterson et al. 2009;

Langrock et al. 2012). HMMs directly account for the

serial dependence prevalent in electronic tagging data and

allow for the decoding of latent behavioural states, or at

least proxies thereof (Patterson et al. 2009). Often, these

states are assumed to be associated with foraging (ARS)

and non-foraging (transient) behaviour, although designat-

ing foraging activity based purely on movement paths is

problematic (e.g. Bestley et al. 2008). In the case where for-

aging can be verified, ARS movements prior to foraging

would be considered a ‘sit-and-wait’ strategy, while patrol-

ling movements and foraging would be a more active

searching mechanism and considered ‘patrolling or roving’.

White sharks, Carcharodon carcharias, are the world’s

largest carnivorous fish and are widely distributed in tem-

perate and tropical waters. The species has received con-

siderable telemetric focus, largely due to its charismatic

profile, important ecological role and conservation status.

White sharks often show seasonal residency to pinniped

pupping areas, as juvenile seals or sea lions may present a

suitable prey source (Klimley et al. 1992, 2001; Laroche

et al. 2008). While associated with pinniped rookeries,

sharks are thought to patrol parallel to the shoreline- or

target-specific locations where prey may be vulnerable (e.g.

entry or haul-out sites, Goldman & Anderson 1999; Klim-

ley et al. 2001; Martin, Rossmo & Hammerschlag 2009;

Jewell et al. 2014). Pinnipeds are primarily ambushed at

the surface although previous studies have not quantified

if the sharks were performing ARS or patrolling behaviour

before the attack (e.g. Martin et al. 2005). There may be

spatial segregation and differences in long-term movements

or migration cycles between the sexes (Kock et al. 2013;

Domeier & Nasby-Lucas 2013). Further complicating the

study of white shark behaviour is that shark cage-diving

ecotourism occurs at several aggregation sites, where bait

and/or chum is used to attract individuals to boats for
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tourist viewing. Available evidence suggests that cage-

diving operations will alter the short-term movements of

white sharks but are unlikely to influence long-term migra-

tions (Strong et al. 1992; Laroche et al. 2007; Huveneers

et al. 2013; Gallagher et al. 2015). However, a statistical

framework is required which can detect changes in beha-

viour while being able to account for the presence of eco-

tourism activities, gender and shark size.

We developed and fitted mixed HMMs to fine-scale

acoustic tracking data to identify the drivers of switching

movement states (ARS or patrolling) in individual white

sharks within a heterogenous seascape environment in South

Africa. By definition, all white shark strikes of seals at the

surface are ambush strikes, but individuals are faced with a

choice regarding how to hunt; remain residential in a chosen

location by performing ARS to wait for prey; or actively

patrol to locate seals swimming on the surface (Klimley

et al. 2001; Martin, Rossmo & Hammerschlag 2009). While

these terms are associated with foraging, they are broader in

scope and do not define the resource (e.g. shark movements

may be non-foraging and associated with other functions

such as digestion). By simultaneously recording predation

attempts on seals at the surface by tracked sharks, we could

specifically link the movement process to a hunting mode.

Our goals were to (i) determine the role of shark size, sex

and individual preference on movement state dynamics, and

(ii) evaluate whether sharks use both ARS and patrolling to

catch prey, and if individuals switch between them.

Materials and methods

STUDY S ITE

Gansbaai is a semi-closed embayment situated on the south coast

of the Western Cape in South Africa. Dyer Island lies 4 km from

the nearest shore within Gansbaai. Geyser Rock lies directly

southwest of Dyer Island, and contains a breeding colony of Cape

fur seals Arctocephalus pusillus pusillus, with an estimated total

population of c. 55 000 seals (Cape Nature unpublished data).

The two islands – Dyer Island and Geyser Rock – are separated

by a shallow channel known as Shark Alley, which measures

approximately 160 m at its widest point with a maximum depth of

7 m. The Dyer Island system is surrounded by dense forests of

kelp (predominantly Ecklonia maxima) as well as rocky reefs, out-

crops and shallow reef pinnacles. Directly inshore of Dyer Island,

a large reef system, Joubertsdam, runs parallel to a 4-km stretch

of sandy beach. The reef is characterized by rocky patch reefs

interspersed with gullies and patches of sandy bottom. Eight cage-

diving operators are permitted to anchor around the reefs at Dyer

Island and Joubertsdam (Towner et al. 2013). Several other rocky

reef and kelp forest structures exist within the bay.

ACT IVE TRACK ING

We attracted 14 white sharks to a research vessel using a bait line

and mixture of teleost-based chum and water (Jewell et al. 2014).

Vemco (Halifax, Canada) V16 continuous acoustic transmitters

(size 16 9 54 mm, frequency 50–85 kHz) with umbrella dart heads

were inserted externally at the base of the shark’s dorsal fin using a

modified tagging pole. Animal ethics clearance was obtained from

the Department of Environmental Affairs (permit number

RES2011/54). Shark size was estimated (total length, TL cm) as the

shark swam past measured sections of the vessel. Active tracking

commenced immediately after tagging using a Vemco VR100 recei-

ver and hydrophone mounted to the side of the tracking vessel. To

avoid impeding shark movements, a distance of 20 m minimum

was maintained from the animal, determined by tag detections of

approximately 80 dB (Johnson et al. 2009; Jewell et al. 2014). Geo-

graphic locations were recorded every 5 min, and surface predation

events or attempts were noted during the track. Externally applied

transmitters were bright red making it easy to visually recognize the

tracked individual when it was attacking a pinniped. Due to fre-

quent changes in weather, tracking was broken up into multiple

smaller segments. Tracking at night was particularly difficult so

most data were from daylight hours. For further information on

tagging and tracking protocol, see Jewell et al. (2014).

MIXED EFFECTS H IDDEN MARKOV MODELS

We considered two measures of movement from white shark tracks:

step length (distance moved between 5 min sampling intervals) and

turning angles between movement steps in successive sampling

intervals. We developed a 2-state HMM to analyse the 76 observed

bivariate time series of step lengths and turning angles. These did

not represent 76 individuals but rather multiple tracking segments

of the 14 individuals tagged. Each time series is assumed to behave

according to a (multi-state) correlated random walk with turning

angles and step lengths generated by (state-dependent) von Mises

and gamma distributions, respectively. For each track, it is

assumed that an underlying, non-observable Markov chain deter-

mines the time-varying (behavioural) states. Each state is associated

with a distinct set of parameters for both the von Mises turning

angle distribution and the gamma step length distribution. State 1

area-restricted searching (ARS) behaviour consists of relatively

small step lengths with frequent turnings, while state 2 patrolling

behaviour consists of longer movement steps and fewer turnings

(Fig. 1). We included a point mass on zero in the step length distri-

bution in state 1 in order to accommodate the observed zero step

lengths (cf. McKellar et al. 2015; here ~2% of the data points).

White sharks necessarily never stop moving so a zero step length is

an artefact of the sampling process, corresponding to sharks mov-

ing distances smaller than error measurements of tracking (20 m).

For each track k, k = 1, . . ., 76, the Markov chain generating

the state sequence is assumed to be non-homogeneous, with time-

dependent transition probability matrix given by

CkðtÞ ¼ ck11ðtÞ ck12ðtÞ
ck21ðtÞ ck22ðtÞ

 !

where ck
ij
ðtÞ is the conditional probability of the shark being in

state j in the time interval (t, t + 1), given it is in state i during the

interval (t � 1, t). For a single bivariate time series of step lengths

and turning angles, observed for an individual track k, the likeli-

hood of such a basic model is calculated in the standard way,

that is

Lk ¼ dkPðz1kÞ
Ynk
t¼2

CkðtÞPðztkÞ
 !

1; eqn 1

where nk is the number of data points for track k, the row vector

dk is the Markov chain initial state distribution (which we will

assume to be the steady-state distribution for the given covariate

values at time t = 1), 1 = (1,1)t and

PðztkÞ ¼
f1ðztkÞ 0

0 f2ðztkÞ

 !
;
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with fi(ztk) denoting the conditional density of the observation ztk,

made at time t, given that the current behavioural state is i. The

conditional density is simply the product of the state-dependent

densities of the von Mises and the gamma/zero-inflated gamma

distribution, respectively. Thus, we assume that step lengths and

turning angles are conditionally independent, given the states. The

above matrix product expression for the likelihood is a conse-

quence of applying a recursive scheme called the forward algo-

rithm, which is a powerful HMM tool and one of the main

reasons for the popularity of these models (Zucchini & MacDon-

ald 2009). Even for fairly large nk, the evaluation of the likelihood

usually requires only a fraction of a second, rendering parameter

estimation via numerical maximum likelihood feasible in most

cases. We allowed the state transition probabilities to be func-

tions of up to three covariates: presence/absence of chum, shark

total length (in metres) and time of day (h). More specifically, we

use an indicator variable x1kt to denote the presence/absence of

chum at occasion t of track k, a variable x2k to denote the total

length (m) of the shark associated with track k, and two trigono-

metric functions with period 24 h, sin 2pt
288

� �
and cos 2pt

288

� �
, to

account for the diel pattern. As we model data collected at regular

time intervals, with observations every 5 min, the 24-h periodicity

is represented by 288 time points.

To account for heterogeneity across tracks caused by individu-

als being observed in different environmental and general beha-

vioural contexts, we additionally incorporated random effects in

the state transition probabilities. The full model is as follows:

logit ckiiðtÞ
� �

¼ ei;k þ b1;ix1kt þ b2;ix2k þ b3;isin
2pt
288

� �

þ b4;icos
2pt
288

� �
eqn 2

for i = 1,2 and k = 1,2,. . .,76. Here �k = (21,k, 22,k) are bivariate

random variables, with one realization for each shark track (track

lengths varied from 2 to 9 h). Such random effects are often

assumed to be Gaussian. However, such an assumption is restric-

tive, the resulting models can be difficult to interpret, and compu-

tational problems arise in the estimation because each continuous-

valued random effect adds an integral to the likelihood (cf. Alt-

man 2007). Therefore, we implemented a discrete random effects

model within the HMM (Maruotti & Ryd�en 2009). We assume

that ek ¼ ðum;1; um;2Þ with probability pkm for m = 1, . . ., M, withPM
m¼1

pkm = 1. Each possible outcome of the bivariate random effects

distribution and associated transition probability matrix corre-

sponds to one particular movement pattern exhibited during a

track. The probabilities pkm, also referred to as the mixture propor-

tions, denote the expected proportion of tracks that correspond to

the m-th movement pattern. In order to assess how the covariates

affect the state-switching dynamics of the M random effects

groups, we computed the stationary distribution at each time t for

given values of the covariates, as described by Patterson et al.

(2009). In this manner, we obtain the marginal probability of each

state throughout the day for the M groups under different values

of the random effects and covariates. To examine differences in

observed movement patterns by sexes, we allowed for the mixture

proportions to depend on sex in the following manner,

logitðpkmÞ ¼ am þ gmxsk; eqn 3

for m = 1, . . ., M, where xsk = 1 if the shark associated with track

k is male, and xsk = 0 for female. In other words, we assumed that

some of the M possible state-switching dynamics may be exhibited

more often by females than males, and vice versa. We also consid-

ered the state transition probabilities as a function of sex but it

was not selected for inclusion by the Akaike information criterion

(AIC). The value of M, giving the number of possible values of ek,
is chosen based on the AIC. Assuming independence of the indi-

vidual tracks, the log-likelihood of the model has the following

form:

l ¼ logL ¼
XK
k¼1

log
XM
m¼1

Lk;mp
k
m

 !
;

P
r(

0)
 =

 0
·0
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4
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Fig. 1. State-dependent conditional densities of step length and turning angles for tracked white sharks. For the state 1 step length density, Pr

(0) corresponds to the point mass at zero of the zero-inflated gamma. The dashed lines correspond to the mean of the step length distributions.
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where Lk,m is calculated exactly as in eqn (1), but with the values

um,1 and um,2 plugged in for �1,k and �2,k, respectively, in the state

transition probabilities, as defined by eqn (2); that is, Lk,m is the

likelihood for track k assuming that it was generated by the m-th

of M possible state-switching processes, corresponding to the dif-

ferent values for the discrete random effects.

Further, we can use the values of Lk,m and pkm to classify each

track into one of the M random effects groups. Using Bayes’ theo-

rem, we compute the probabilities pkm of the m-th state-switching

process having given rise to each track k in the following manner:

pkm ¼ Pr ek ¼ ðum;1; um;2Þjz1k; . . .; znkk
� � ¼ Lk;mpkmPM

m¼1 Lk;mpkm

For each track k, classification is then done by selecting the

value of m that gives the maximal probability among fpk1 ; . . .; pkMg.
The model formulation allows for a numerical optimization of

the likelihood, that is a simultaneous estimation of all model

parameters via maximum likelihood, which we conducted using R

(R Core Team 2014). For each model, we considered several sets

of initial values in the numerical maximization and as a result are

confident that we found the global maxima of the respective likeli-

hoods. A forward selection approach was implemented and

covariates included according to the AIC of the corresponding

models. We assumed fixed effects for the covariates across the M

values of the random effects. All plots were generated using the

ggplot2 and ggmap packages in R.

Results

Between September 2010 and April 2014, we tracked 14

individuals for a total of 468 h, 5 males and 9 females

(Table 1). Individuals ranged in size from 290 to 450 cm

TL and were tracked on multiple days over periods of 2–
9 h for a total of 76 tracking bouts.

Males and females differed in their habitat use, with

females using habitat closer to the bay in addition to Dyer

Island and Geyser Rock, while males spent more time

directly off Dyer Island (Fig. 2). Model results showed

clear geographic patterns of sharks being in state 1 (area-

restricted searching (ARS)) in certain habitats (Fig. 1).

These habitats include the channel between Dyer Island

and Geyser Rock, the edge of the kelp forest NW of Gey-

ser Rock, and areas adjacent to the beach where fish abun-

dance is high. However, overlaying location of chumming

by dive boats identified clear overlap between the presence

of chum and sharks being in state 1 (Fig. 2). While track-

ing, surface predation attempts on seals were observed 9

times, five of which were for an individual in state 1, and

four for individuals in state 2.

Using AIC, we settled on a model with M = 3 pairs of

random effects, that is three different state-switching pat-

terns (Fig. 3). We expanded this model to test the influence

of covariates on the state-switching dynamics. Again using

AIC, the transition probability matrix in the final model

depended on the covariates chum and time of day, and

mixture proportions were functions of sex (eqn 3,

Table 2). According to the fitted model, if chum is present,

there is an increase in probability of remaining in state 1

(ARS) when in state 1, and an increase in probability of

switching from state 2 to state 1 when in state 2, which

overall results in a substantial increase in state 1 occu-

pancy. Regarding the diel pattern, only the results for the

time period from about 7:00 to 19:00 are meaningful – out-

side of these hours there were not enough individual tracks

and observations to infer the state-switching behaviour.

The results indicate that, for each of the three random

effects groups, the marginal probability of individuals

occupying state 1 is highest during the early morning and

decreases throughout the day, reaching a minimum at

about 18:00–19:00. In contrast, the marginal probability of

individuals occupying state 2 (patrolling) is highest in the

evening.

The three random effects groups account for the hetero-

geneity in tracks observed, in part due to sample size and

duration of tracks. In particular, the estimated random

effects groups presented here are a reflection of the

observed behaviour and state-switching patterns of the

data set used for the analysis. On some occasions, sharks

were only observed in state 1 or state 2 throughout the

Table 1. Tracking criteria from 14 white sharks tagged and tracked at Dyer Island and Joubertsdam in Gansbaai, from 03 September

2010 until 11 April 2014

Shark ID Sex TL (cm) Start date End date Tracking segments Tracking hours Mean (�SD) in hours

WSF1 F 420 3/9/2010 17/10/2010 12 60�75 5�06 � 2�02
WSF2 F 400 5/9/2010 29/09/2010 6 25�08 4�19 � 2�36
WSF3 F 350 22/11/2010 13/12/2010 7 33�83 4�85 � 2�27
WSF4 F 290 26/01/2011 3/3/2011 11 55�00 4�91 � 2�16
WSM1 M 420 11/4/2011 12/5/2011 9 75�20 8�37 � 2�84
WSM2 M 350 15/05/2011 21/05/2011 3 18�50 6�17 � 0�12
WSF5 F 350 11/7/2011 20/07/2011 8 32�50 4�06 � 2�24
WSM3 M 300 15/11/2011 16/11/2011 2 13�00 6�50 � 4�50
WSM4 M 450 16/02/2012 12/3/2012 7 57�05 6�44 � 2�17
WSF6 F 340 7/9/2012 12/10/2012 7 27�50 3�93 � 1�81
WSF7 F 440 3/11/2012 19/11/2012 5 20�00 4�00 � 0�95
WSM5 M 430 12/5/2013 3/6/2013 9 33�30 3�73 � 1�48
WSF8 F 430 9/10/2013 10/10/2013 2 7�00 3�50 � 1�10
WSF9 F 380 11/4/2014 18/04/2014 4 8�88 2�22 � 1�36
Total 468�04
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track (i.e. no switching), although most were observed to

occupy both states with different degrees of state-switching

and dwell time in each state. As such, the random effects

groups account for the possibility that shorter or longer

lengths could exhibit different state-switching patterns and

any biases in covariate effect that could be attributed to

the pooling of tracks of varying durations. In the absence

of chum, the first random effects group (RE1) is character-

ized by a higher probability of inhabiting state 2 than state

1 across all times of day (i.e. corresponding tracks com-

prise a substantial amount of patrolling-type movement,

Fig. 3). Random effects group 2 (RE2) represents the other

extreme, where the marginal probability of inhabiting state

1 is higher than state 2 throughout most of the day (i.e.

corresponding tracks involve mostly ARS behaviour).

Random effects group 3 (RE3) lies in-between these

extremes, with a lower degree of state-switching through

most of the day, higher probability of state 1 through the

morning, and higher probability of state 2 in the evening

(Fig. 3). A period of time corresponding to a higher mar-

ginal probability of state 1 than state 2 (or vice versa) does

not indicate that the tracks in that period will only corre-

spond to state 1, but more generally reflects a higher

occurrence of state 1 behaviour. Tracks assigned to RE1

or RE2 may contain multiple state switches, while tracks

assigned to RE3 switched states sparingly, if at all. In the

presence of chum, the relative roles of the three random

effects groups remain the same, but the probabilities of

being in state 1 are generally much higher (Fig. 3). The

mixture proportions for the random effects groups for

females are 0�67 (RE1), 0�11 (RE2) and 0�22 (RE3), and

for males 0�17 (RE1), 0�18 (RE2) and 0�65 (RE3). The

large difference in mixture proportions between sexes for

RE1 indicates that females generally spend more time in

state 2 than males. The difference in mixture proportions

for RE3 indicates that males remain more often in either

of the two different movement strategies than females

(Fig. 4). As mentioned previously, female and male sharks

differed in their use of habitats. While we would like to

have incorporated an effect of habitat into the model, there

were insufficient data in some habitats to make appropri-

ate inferential statements. Although there were some differ-

ences in the geographic distribution of RE groupings,

there was also considerable overlap making it unlikely that

habitat was driving the results (Fig. 4). There was no dif-

ference in track duration for the track segments classified

as RE1, RE2 or RE3 (Kruskal–Wallis, chi-squared = 2�91,
d.f. = 2, P = 0�23).
We computed Lk,m for k = 1, . . ., 76 and m = 1,2,3

along with the mixture proportions for female and male

sharks, and used the values to assign each of the 76 tracks

to a random effects group. Individual sharks were tracked

on multiple days and could be assigned to different

random effects groups on different days (Fig. 5). Individu-

als appeared to consistently use the same RE grouping

despite being tracked over multiple days throughout a

month period. Furthermore, we observed predation on

seals while sharks were in either of the groups. In other

words, foraging could occur during any of the states or

random effects groups so we observed both ‘ARS’ and
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Fig. 2. Active tracks of white sharks (n = 14) within Gansbaai, South Africa. Locations have been colour coded based on whether the

HMM allocated the individual to state 1 or 2 behaviour at that time. The location of shark ecotourism operations (crosses) and observed

predation attempts on seals by tracked sharks (dorsal fins) are also shown. Tracks have been split by sex.
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‘patrolling hunting modes’. The decoded states confirm

that females, overall, spent more time in state 2 than males

(�56% vs. 46%). In general, about 53% of observations

were classified as state 2 and 47% classified as state 1.

According to the decoded states, there were 109 state

switches out of 2887 possible ones (�3�78%) for females,

and 50 state switches out of 1621 (�3�08%) for males.

Discussion

The unique combination of being able to follow the same

individuals over multiple different tracking periods, along

with simultaneous observations of surface foraging

attempts on marine mammals, allowed us to identify

fine-scale individual behaviour and two hunting modes

that white sharks may use: area-restricted search and

patrolling. Our analysis quantitatively identified changing

behavioural states without user subjectivity within indi-

vidual animals, and identified some of the factors that

cause variability in movements. Furthermore, mixed

HMMs allowed us to quantify changing behaviour in

white sharks that would not have been apparent using

traditional movement analysis methods. For example,

movement analysis of a smaller number of acoustically

tracked white sharks in Gansbaai identified core areas of

habitat use but was not able to detect switching beha-

viours or differences in movements between the sexes

(Jewell et al. 2014). Of course, movements by marine

predators will also include a vertical component and we

did not measure swimming depths. Sharks can switch

between diving strategies that include prey-specific strate-

gies (e.g. swimming along the bottom to visually locate

prey on the surface) or different forms of random walks

(e.g. l�evy vs. Brownian movements), based on the abun-

dance and distribution of resources in the habitat (Sims

et al. 2012). White sharks in Australia switch their diving

behaviour, likely due to changes in potential prey density

(Sims et al. 2012).

Movement states and transitions appeared to be a factor

of chumming, time of day, sex, individual preferences and

potentially habitat. We did not observe any effects of

shark lengths on movement patterns although there may

well be spatial segregation between smaller and larger
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Fig. 3. Probability of being in state 1 or state 2 throughout the day for each random effects group given values with or without the pres-

ence of chum.

Table 2. Log-likelihood and AIC values obtained for the mixed

hidden Markov models with different possible numbers (M) of

random effect outcomes and forward selection of covariates and

mixture proportions dependent on sex. The best-fit model is in

bold

M

Log-

likelihood AIC DAIC

1 (no covariates) �2301�671 4625�342 14�13
2 (no covariates) �2292�043 4612�086 0�874
3 (no covariates) �2288�606 4611�212 0

4 (no covariates) �2286�537 4613�074 1�862
3 (chum) �2275�309 4588�618 4�144
3 (chum, time of day) �2270�302 4586�604 2�130
3 (chum, time of day, size) �2268�885 4587�770 3�296
3 (chum, time of day, pm
(sex))

�2267�237 4584�474 0
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individuals (e.g. Jewell et al. 2013). Chumming by eco-

tourism dive vessels generated a high probability of sharks

either remaining in or switching to ARS behaviour. This is

not an unexpected result as white sharks tracked off Aus-

tralia responded to chumming by spending more time at

the surface and reducing their core use areas (Huveneers

et al. 2013). There is mounting evidence that shark eco-

tourism can cause changes in behaviour over short time

frames (h), but are unlikely to have an impact at longer

time scales based on previous studies and ongoing satellite

tracking (A. Towner unpublished data; Gallagher et al.

2015). However, less clear is how the change in behaviour

may influence foraging success or even daily energy expen-

diture of white sharks, as sharks may spend more time

turning and incur additional costs (e.g. Wilson et al. 2013).

Acknowledging the lack of night time observations in

this study, sharks were also more likely to be performing

ARS in the morning through early afternoon. At Seal

Island, another South African seal rookery, highest rates

of foraging success by sharks occur in the hours following

dawn (e.g. Martin et al. 2005; Laroche et al. 2008). Seals

enter and exit the island from predictable sites and the

dawn peak is likely due to a combination of juvenile seals

(the primary prey item) being present in the water during

this period and optimal ambient light conditions for

attacking at the surface (e.g. Laroche et al. 2008; Martin,

Rossmo & Hammerschlag 2009; Martin & Hammerschlag

2012). These conditions lead to white sharks using specific

(and presumably optimal) locations to attack, although

the behaviour of the sharks prior to surface strikes was

not recorded (Martin, Rossmo & Hammerschlag 2009).

Foraging attempts and success by sharks on seals are con-

siderably lower at Geyser Rock than at nearby Seal Island,

likely due to the extra kelp refuge provided at Geyser

Rock (Wcisel et al. 2015). The added protection provided

by kelp causes seal departure locations at Geyser Rock to

be more diffuse (i.e. no specific entry/exit point), but there

will still be preferable general areas of departure (Wcisel

et al. 2015). Hence, it may still be advantageous for sharks

to display ARS movements within key areas during the

morning period, but with less emphasis specifically at

dawn. The uniquely shaped channel between the islands

(Shark Alley) may also offer extended predation opportu-

nities on seals throughout daylight hours, here both preda-

tion risk and shark habitat use are notably high (Jewell

et al. 2014; Wcisel et al. 2015). As in other areas, selection

of ARS sites or predation hotspots is going to be related

to a number of factors including prey behaviour, habitat

and intraspecific competition (Martin, Rossmo & Ham-

merschlag 2009).

By assigning tracks to random effects groups, we were

able to detect two additional factors that influence white

shark movement patterns: sex and individual preference.

Sexual segregation in sharks is well known, although less
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is known about differences in fine-scale behaviours (e.g.

Heithaus et al. 2006). For example, female tiger sharks in

a subtropical embayment show different microhabitat

selection than males, even though they overlap in their

overall spatial distribution (Heithaus et al. 2006). In South

African bays, white sharks display sexual segregation sea-

sonally, but will overlap at other times of the year (Kock

et al. 2013). In Gansbaai, there was also some spatial seg-

regation between the sexes, with females more likely to use

shoreline habitat (similar to False Bay, Kock et al. 2013),

although individuals will also vary their behaviour within

those habitats. Our study shows subtle differences between

the sexes with females more likely to perform patrolling

behaviour throughout the day. Such fine-scale differences

in movements and even hunting tactics between the sexes

are seen in other taxa. Male chub would perform sit-and-

wait foraging more frequently than females (Katano 1996).

Female mantids were more likely to switch hunting modes,

especially in relation to prey density, while males tended to

remain in one hunting mode (Inoue & Matsura 1983).

However, it is difficult to separate the effects of sex and

habitat on movement patterns. Were movements different

because of the use of different habitats or specific to the

sexes (e.g. if females used the same habitats would their

movements be similar)? There was some overlap in habitat

use so we believe the differences are driven by sex, but we

cannot rule out that habitat was an important driver.

The repeated tracking of individuals over many days

showed that patterns of movement will vary between indi-

viduals even within each sex. Individual sharks showed a

preference for a particular pattern of movement (defined

by a random effect group), which they repeatedly used

over short time periods (over a month). Individuals may

learn a variety of different movement tactics for encounter-

ing and catching prey, and they may develop a preference

for a particular tactic based on their experiences. We did

not track animals for long enough periods to determine

whether these behaviours are fixed and cannot define them

as true specialization. Variability in short-term strategies

should be considered as these may translate to differences

in foraging success and potentially even how the predator

contributes to changes in prey behaviour (e.g. Heithaus

et al. 2009). Additional tools (e.g. accelerometers) will be

needed to determine the specific function and success (e.g.

foraging rates) of different patterns of movement, and

whether individual preferences of movement remain fixed

over long time periods.

As previously stated, movements by themselves cannot

be directly correlated with hunting as there are going to be

many times when sharks are not foraging. White sharks

have shown residency to coastal areas that do not harbour

pinnipeds suggesting times of foraging on other prey, or

some other function of ARS behaviour (Johnson et al.

2009; Bruce & Bradford 2012). We observed actual preda-

tion attempts by tracked sharks and these occurred for

sharks in either of the three random effects groupings and

either movement state (ARS or patrolling). Therefore,

sharks will target seals by either remaining in one location

(i.e. essentially sit-and-wait) or by actively patrolling for

swimming seals. However, while it is highly likely that

individuals will switch between these two hunting modes,

we never observed an individual using both ARS and

patrolling hunting modes. Of course we could only observe

predation on pinnipeds at the surface even though other

fishes (teleosts and sharks) are likely to also be an impor-

tant component of the diet, so predation rates are going to

be higher than recorded. Furthermore, there may have

been subsurface foraging attempts that we missed.

Hunting mode switching is often explained by different

levels of hunger, habitat characteristics, prey density and

distribution (Inoue & Matsura 1983; Kobler et al. 2009;

Michel & Adams 2009; Higginson & Ruxton 2015).

Changes in prey density (seal numbers) and habitat com-

plexity (kelp density) may explain seasonal changes in fine-

scale behaviour (although we lacked the sample size to test

for seasonal effects). Recent theoretical models predict that

active searching becomes more advantageous as prey move

slower and/or the energetic cost of predator movements

decrease (Higginson & Ruxton 2015; Ross & Winterhalder

2015). Individuals switching hunting modes may be a strat-

egy in itself, and match the predictions of the game theo-

retic Ambush Search strategy, where a predator alternates

ambush with active searching which is predicted to

increase the success of systematic searching (Alpern et al.

2011). Our results suggest that individual variability in

hunting mode, even within the sexes, should also be con-

sidered in future predator–prey models. Ambush sites at

Dyer Island may be more variable due to kelp refuge at

the island, and it would be interesting to compare move-

ment behaviours and/or hunting modes with Seal Island

where prey (seal pups) use more predictable entry/exit

locations (Martin, Rossmo & Hammerschlag 2009; Wcisel

et al. 2015; De Vos et al. 2015). Different hunting modes

have also been identified in terrestrial predators although

the function of the switching has not been examined (Wil-

liams et al. 2014; Higginson & Ruxton 2015). Pumas will

use both active stalking and sit and ambush to catch prey

with the energetic costs of these different strategies varying

widely (Williams et al. 2014).

Different hunting modes may cause trophic cascades

that operate in opposite directions and at different trophic

levels (Schmitz 2008). While the importance of hunting

mode in marine predators has been raised, it is generally

assumed that all individuals will use the same mode (i.e.

white sharks ambush all prey, Heithaus et al. 2009; Martin

& Hammerschlag 2012). To the best of our knowledge,

studies have not examined the repercussions of top preda-

tors that may switch between hunting modes or where

individuals prefer a particular strategy. White sharks in

South Africa are likely to exert ecosystem level impacts.

Pinnipeds at the rookeries almost certainly adjust aspects

of their behaviour to account for the threat of predation

from sharks (Laroche et al. 2008; Wcisel et al. 2015; De

Vos et al. 2015). How the threat of predation actually
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alters pinniped population dynamics or foraging success

are unclear, but the changes are likely to cascade through

the food web as the mammals themselves are upper level

predators (e.g. Johnson et al. 2006).

We highlight that sharks have essentially two foraging

strategies they can use and show individual preference for

particular short-term movement strategies. If individuals

have preferences for different strategies, and those strate-

gies alter the behaviour of prey in different ways, then not

all individuals in the white shark population will be equal

in terms of their ecological roles even if they are similar

sized. Furthermore, future predictive models will need to

consider that top marine predators may still use two

modes of hunting, especially those that consider how

predators change prey behaviour (e.g. Frid, Baker & Dill

2008; Heithaus et al. 2009; Higginson & Ruxton 2015).

Theoretical models may be expanded to include the situa-

tions where sit-and-wait could be more energetically costly

if the animals are having to make frequent turns to remain

in one location (Wilson et al. 2013; Higginson & Ruxton

2015). While animals are often described as using one form

of hunting mode or the other (often at the population

level), increasing numbers of studies are showing that in

many cases a continuum of modes is likely to exist in wild

predators (Cooper 2005).
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