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Abstract
Epithelial to mesenchymal transition (EMT) is an important event during development and

cancer metastasis. There is limited understanding of the metabolic alterations that give rise

to and take place during EMT. Dysregulation of signalling pathways that impact metabolism,

including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and

metastasis. In this study, we report the investigation into EGFR signalling and metabolic

crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial

EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signal-

ling network for EMT based on stoichiometric coefficients and constrained the network with

gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks.

Metabolic alterations arising from differential expression of EGFR genes was derived from a

literature review of AKT regulated metabolic genes. Signaling flux differences between

EGFR_E and EGFR_Mmodels subsequently allowed metabolism in D492 and D492M

cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M

suggested higher glycolytic activity in D492 that we confirmed experimentally through mea-

surements of glucose uptake and lactate secretion rates. The signaling genes from the

AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype.

Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithe-

lial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the

metabolic phenotype may be predicted by in silico analyses of gene expression data of

EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple

trend.

Author Summary

The epidermal growth factor receptor (EGFR) signaling cascade is one of the key signaling
pathways that are involved in the induction of Epithelial Mesenchymal Transition (EMT)
and tumor metastasis. These signaling cascades often affect metabolic fate in tumor cells
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and control their progression. Here we demonstrate a method to build a mathematical
model of the EGFR signaling cascade and use it to study signaling in EMT and how signal-
ing affects metabolism. The model was used to obtain a list of potential signaling and met-
abolic targets of EMT. These targets may aid in the understanding of the molecular
mechanisms that underlie EMT and metastasis. Our results further highlight the heteroge-
neity of cell models used to study EMT and support the idea of cell specific anti-cancer
interventions.

Introduction
Epithelial to mesenchymal transition (EMT) is a developmental process where polarized epi-
thelial cells transition to an invasive mesenchymal-like phenotype through molecular repro-
gramming that leads to degradation of the extra-cellular matrix (ECM) and the loss of cell
polarity. Following recruitment to specific sites at distant locations within the developing
embryo, the mesenchymal cells may revert back to the epithelial phenotype by a process
known as mesenchymal to epithelial transition (MET), thereby seeding new epithelial tissues
[1]. Although EMT is fundamental for several developmental processes and wound healing,
dysregulation of EMT may cause cancer cells to initiate metastasis and form secondary tumors
at distant sites [1–3].

EMT is induced by a number of distinct molecular processes [1]. These include the binding
of several growth factors, including the platelet derived growth factor (PDGF), insulin-like
growth factor (IGF), neuregulin and epidermal growth factor (EGF) to their cognate cell-sur-
face receptors, leading to receptor activation [4]. This activates downstream signaling pathways
that regulate the control of specific transcription factors, cell-surface proteins and microRNAs
[5]. EMT is also involved in reorganization and expression of cytoskeletal proteins and produc-
tion of ECM-degrading enzymes [1]. This series of events leads to increased expression of mes-
enchymal markers like N-cadherin and vimentin and decreased expression of epithelial
markers such as E-cadherin [6]. Binding of EGF to its cognate epidermal growth factor recep-
tor (EGFR) family has been shown to stimulate EMT in breast cancer cells [7,8], leading to
altered expression of E-cadherin and vimentin [8,9]. Activated EGFR signaling suppresses E-
cadherin expression either by promoting its endocytosis [10] or by enhancing the expression of
transcription factors (TFs) like Snail and Twist [11,12]. As a result, the cells may transition
from epithelial to mesenchymal phenotype with spindle like morphology [8]. EGFR regulates
mammary gland development and in certain aggressive breast cancer cells has been shown to
regulate invasion and migration [8]. The most common signaling cascades activated down-
stream of EGFR are PI3K/Akt, Ras/Raf/Mek and DAG/IP3 and CaM signaling, that affect cell
cycle progression, inhibition of apoptosis, angiogenesis, tumor cell motility, and metastases
(Fig 1) [13,14].

EMT is likely to impact metabolism, but the effects are not as widely studied as cancer
metabolism [15,16] Cancer cells exhibit a shift of ATP generation from oxidative phosphoryla-
tion to aerobic glycolysis known as the Warburg effect [17]. This leads to a higher rate of gly-
colysis in cancer cells. Cancer cells also tend to show enhanced glutamine metabolism which
has been shown to contribute cancer cell migration [18]. Signaling pathways have often been
associated with metabolic consequences, but can themselves be influenced by metabolism.
Interestingly, up-regulated glycolysis has been linked with higher AKT signaling in cancer cells
[19,20]. However, the mechanistic manner in which metabolism is affected during EMT is
unknown.
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Computational approaches such as Constraint-based modeling and analysis (COBRA) tech-
niques are very useful in analysis of the complex biological networks like signaling networks
[21–23]. Prior efforts of modeling of signaling cascades include modeling of the EGFR pathway
[21,22,24–26], TLR signaling [27–29], JAK-STAT signaling [23], MAPK pathway [30] and
interleukin 1 signaling [31]. COBRA techniques mainly focus on the use of physio-chemical
and biological constraints and are sparsely dependent on kinetic data that has limited availabil-
ity. Protocols for the generation of biochemical networks and computational algorithms/meth-
ods for querying these networks are now well established [32,33]. They involve conversion of
biological data (e.g. genomic, metabolic, and regulatory) to a mathematical reaction format.
This allows better definition of regulatory changes associated with specific events such as EMT
and exploration of metabolic alterations associated with the process. For example, how altered
EGFR signaling is propagated to a metabolic phenotype can be investigated using COBRA
methodology.

In this study, we built a computational signaling network of EGFR to query how the expres-
sion of signaling genes can affect metabolic alterations during EMT in human breast epithelial
cells. An EGFR signalling network was reconstructed (EGFR_SN) and was constrained with
the transcriptomics data of the breast epithelial cell line D492 and its mesenchymal counterpart
D492M [34] to form EGFR_E and EGFR_M networks. D492 is an E6/E7 viral oncogene
immortalized human breast epithelial basal cell line with stem cell like properties that differen-
tiates into both myoepithelial and luminal cells and has the ability to undergo branching mor-
phogenesis when grown in a 3D reconstituted basement membrane matrix [35]. The 3D co-
culture of D492 cells with human endothelial cells led to establishment of mesenchymal cells
with spindle-like morphology called D492M. The D492M cells have high expression of N-cad-
herin and vimentin and low expression of E-cadherin that is typical for cells that have under-
gone EMT [34].

Fig 1. An overview of downstream signaling pathways induced by EGFR signaling. Three main
pathways: AKT, RAS/MAPK and CaM and DAG/IP3 are induced downstream of active EGFR signaling.

doi:10.1371/journal.pcbi.1004924.g001
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The EMT specific signaling network of D492 and D492M enabled us to investigate differen-
tial gene expression of EGFR signalling genes. This was subsequently extended to other breast
epithelial cell lines and their mesenchymal counterparts. Through extensive literature review,
the EGFR_SN network was linked to metabolic genes that were likely to be affected. The differ-
ential flux values in EGFR_E and EGFR_M allowed the assessment of how the altered signaling
affects metabolic gene expression and metabolism in D492 and D492M cells. Increased flux
within the AKT and RAS/MAPK signaling pathways was predicted in D492 as compared to
D492M. The in silico predicted increase in flux of the AKT pathway induced higher glycolytic
activity in D492 cells. This suggested that there may be an EMT-related decrease in glycolysis
in D492M as compared to D492 cells, which was confirmed in vitro by glucose uptake and lac-
tate secretion measurements. Comparative analysis of EGFR signaling networks in three other
breast epithelial cell lines showed that regulation of signaling pathways are cell specific and fol-
low no simple trend.

Results and Discussion

EGFR signaling network reconstruction
In order to capture how altered EGFR signaling is propagated through metabolic pathways in
the breast epithelium, we built a constraint based EGFR network, EGFR_SN. To generate
EGFR_SN, the EGFR pathway map (Reactome ID: R-HSA-177929) was downloaded from the
Reactome database [36]. Several modifications such as incorporation of gene-protein reaction
(GPRs) rules/association, additions of modifiers, inhibitors and activators and removal of dead
ends were made to the Reactome pathway to make it feasible for analysis with the COBRA
methodology (methods section). Due to the incorporated GPRs, experimental data (e.g, gene
expression, proteomic, fluxomic data) can now be mapped onto EGFR_SN, thereby relating
genomic information to the reactions in the network.

The resulting reconstructed network EGFR_SN accounts for 182 reactions, 216 genes, 152
reacting species, 11 inhibitors and 2 activators. The 182 reactions were divided between 83
internal reactions and 99 exchange reactions. Exchange reactions were added in order to
remove dead-ends in the network and acquire feasibility. The number of exchange reactions
added here is large compared to what is typically present in metabolic networks, where
exchange reactions are added mainly to allow for accumulation of metabolites and secretion of
wastes. Internal reactions represent connections between internal signaling components, while
the exchange reactions represent connections of the system boundary with the environment.
Fig 2 shows a sub-network of EGFR_SN representing AKT signaling.

D492 and D492M specific EGFR signaling networks
Microarray gene expression profiles of the human breast epithelial cell line D492 and the mes-
enchymal like D492M were used to constrain the EGFR_SN network to build an EMT specific
signaling model. D492 can be used as a model for studying EMT for which biological data is
available: mRNA, micro-RNA, cell phenotypic data, growth curves etc. [34,37]. D492 has pre-
viously been used in determining the role of microRNAs in EMT [37], studies related to
branching morphogenesis [38] and more recently it was used to investigate the role of EGFR as
a tumor suppressor [39].

To derive epithelial and mesenchymal specific signaling networks, gene expression data
from D492 and D492M was mapped onto the EGFR_SN network. The pipeline is described in
Fig 3. Differentially regulated (up-regulated and down-regulated) genes in the two cell lines led
to two different signaling networks: EGFR_E and EGFR_M for D492 and D492M respectively,
as described in the methods section.
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Network simulation of D492 and D492M
Flux analysis discriminates between D492 and D492M EGFR signaling phenotypes.

EGFR_E and EGFR_M networks were investigated through flux analysis. Flux distribution in
EGFR_E and EGFR_M networks were estimated using random sampling [21,40] (Fig 4). Fig
4A shows the probabilty density for the flux in selected reactions, where red and blue lines
denote EGFR_M and EGFR_E, respectively. Fig 4A, panel A1 shows that the most probable
flux for this reaction in EGFR_E is higher than in EGFR_M, indicating this reaction is more
active in EGFR_E. The panels A2-A6 belonging to AKT and RAS/MAPK pathways show that

Fig 2. Sub-network of EGFR_SN network. A part of the EGFR signaling network representing AKT signaling. Nodes indicate the reacting
component and edges denote the reactions. Red nodes indicate inhibitors which were manually added to the model in the form of GPRs
(information obtained from the Reactome database), white nodes indicate signaling components present in the original SBML file downloaded
from the Reactome database and green nodes indicate exchange reactions which were added to the model to remove dead ends. Node ‘B’ and
‘P’ indicates binding, and phosphorylation, respectively. Edges:! transition,⟞ inhibition, ⫯ catalysis.

doi:10.1371/journal.pcbi.1004924.g002
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the most probable flux in EGFR_M is lower than the most probable flux in EGFR_E. The
graphs in panels A7-A9, belong to the CaM pathway and are in contrast to panels A2-A4, indi-
cating higher flux in EGFR_M.

Fig 4B shows the relative mean flux values in each reaction within the AKT, RAS/MAPK and
DAG/IP3 and CaM pathways. The EGFR_E network had higher flux through the AKT and RAS/
MAPK pathways. In contrast, the transition from epithelial (EGFR_E) to mesenchymal (EGFR_M)
phenotype promotes higher flux through the calcium CaM signaling pathway in the EGFR_M net-
work. Moreover, flux was also increased in the di-acyl glycerol (DAG) and inositol trisphosphate
(IP3) pathway in the EGFR_M network, which constitutes an important part of the CaM pathway.

Predicting reversal of mesenchymal to epithelial phenotype
We next studied how the flux in the EGFR_M network could be modified so that it became
similar to the EGFR_E flux, in order to identify how the EMT process could be reversed. This

Fig 3. The pipeline employed to generate context specific signaling networks EGFR_E and EGFR_M of an immortalized breast epithelial
cell line (D492) andmesenchymal cell line (D492M). SBML pathway map from Reactome was converted to mathematical format using the
COBRA toolbox. This network was further modified to remove dead ends and include GPRs for modifiers, activators and inhibitors, resulting in the
formation of the EGFR_SN network. The EGFR_SN network was constrained with the transcriptomic data of D492 and D492M to form EGFR_E
and EGFR_M networks. Flux differences between EGFR_E and EGFR_Mwere used to further predict metabolic phenotype and target reactions
critical for the reversal of mesenchymal to epithelial phenotype.

doi:10.1371/journal.pcbi.1004924.g003
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Fig 4. Flux differences between epithelial network (EGFR_E) andmesenchymal network (EGFR_M).
A) Probability density estimates for the flux values in selected reactions as obtained by random sampling.
The blue curve represents the flux distribution of EGFR_E and the red curve that of EGFR_M. Vertical axis
denote probability and flux values are represented on the horizontal axis. AU: arbitrary units B) Relative mean
flux for each reaction in EGFR_E and EGFR_M through the AKT, RAS and DAG/IP3 and CaM pathways.
Higher flux within reactions in AKT and RAS/MAPK pathways are observed in the EGFR_E network
compared to EGFR_Mwhile CaM and DAG/IP3 have higher flux in EGFR_M. Negative values denote higher
flux in EGFR_E and positive values denotes higher flux in EGFR_M. Numerical values of these fluxes are
given in supplementary file (S1 File).

doi:10.1371/journal.pcbi.1004924.g004
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was achieved by using an optimization algorithm similar to the MOMA algorithm which is fre-
quently used to study perturbations in metabolic networks [41]. The algorithm searches for a
flux distribution in EGFR_M, which most closely resembles the average flux values obtained
previously for the EGFR_E model with random sampling, with minimum relaxation in the
reaction bounds in EGFR_M while maintaining steady state conditions, see the methods sec-
tion for more details.

The algorithm highlighted five reactions whose bounds needed to be relaxed such that the
flux distribution of EGFR_M is close to that of EGFR_E. These included three internal reac-
tions: 1) phosphorylation of the MAP2K dimer by RAF, 2) phosphorylation of MAPKs by
MAP2Ks (RAF/MAPK pathway), 3) PIP2 conversion to PIP3 by PIK3 (AKT pathway), and
two exchange reactions, belonging to the RAF/MAPK pathway. Through GPRs we identified
that there are 22 genes associated with the reactions predicted above (S1 Table). However,
among these 22 genes,MAPK1, NRAS,HRAS and EGFR genes were overexpressed in D492 as
compared to D492M and the inhibitor PTEN was overexpressed in D492M.

Based on these predictions and by analysing the flux differences between EGFR_E and
EGFR_M, we hypothesize that increased AKT and RAS/MAPK signaling in D492 epithelial cells
promotes their transition to the D492Mmesenchymal like phenotype. However, after attainment
of a mesenchymal state, AKT and RAS/MAPK signaling is reduced and alternative pathways
such as CaM signaling gets activated which may be involved in the maintenance of the mesen-
chymal state. We also hypothesize that up-regulation ofMAPK1, NRAS,HRAS and EGFR and
down-regulation of PTEN inhibitor in EGFR_Mmay lead to its transformation into EGFR_E.

Interestingly, most of the in silico predicted targets from our study have previously been
implicated to play a role in EMT. The activation of MAPK1 protein has been shown to induce
EMT in MCF10 breast epithelial cells by phosphorylation and consequent stabilization of
Twist1 [42]. In another study, the silencing of MAPK1 led to increased expression of E-cad-
herin and a decrease in vimentin and Snail expression in human cervical cancer cells [43], sug-
gesting its role in the transition from epithelial to mesenchymal phenotype. HRAS and Slug
together have been shown to induce the expression of vimentin and enhance cell migration in
pre-malignant MCF10A breast epithelial cells [43]. Further, activation of EGFR has been
shown to induce the expression of Twist by activating STAT3, suggesting a prominent role of
EGFR in EMT [11]. In a recent study where mesenchymal cells were generated from D492 by
overexpressing HER2 (ErBb2) [39], subsequent overexpression of EGFR promoted mesenchy-
mal to epithelial transition. In light of this finding, and based on our in silico predictions, we
made EGFR overexpressing D492M cell line (D492MEGFR) (method section). D492MEGFR

cells showed higher phosphorylation of AKT and ERK1/2 (Fig 5), although reversal of mesen-
chymal to epithelial phenotype was not observed (S1 Fig). Thus, we hypothesize that for com-
plete reversal of mesenchymal to epithelial phenotype, theMAPK1, NRAS and HRAS genes
may need to be overexpressed in addition to EGFR, along with PTEN inhibition in D492M.
Likewise, maintaining expression of theMAPK1, NRAS,HRAS and EGFR in epithelial cells
while suppressing the expression of PTEN is expected to inhibit EMT. At present, a number of
EGFR inhibitors have been approved by the FDA for cancer treatment. These include Cetuxi-
mab and Panitumumab that are monoclonal antibodies against EGFR, and Erlotinib, Gefitinib
and Lapatinib which are specific tyrosine kinase inhibitors against EGFR. All these compounds
are prescribed against advanced, late-stage or metastatic cancers [44,45]. The findings we pres-
ent here suggest that inhibition of EGFR may contribute to or increase the risk of EMT in can-
cers of epithelial origin. Indeed, the overexpression of HER2 in D492 cells has recently been
shown to suppress EGFR expression and induce EMT [39]. Our predictions also indicate that
PTEN inhibition can help maintain the epithelial phenotype, thereby preventing EMT and
metastasis. However, recent findings suggest that loss of PTEN function may promote tumor
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progression in a mouse model [46] and EMT in human colon cancer cells [47], highlighting
the fact that further research on the role of PTEN in EMT is needed.

Taken together, these above results demonstrate the EGFR_SN network can be used to
study in detail the differences in EGFR signaling between epithelial and mesenchymal cells dur-
ing EMT and identify gene targets which could possibly be used to hinder or even revert EMT.

Crosstalk of the signaling and metabolism in D492 and D492M
We next studied how changes in AKT signaling could influence metabolic gene expression in
EMT. The AKT pathway was chosen since it has previously been shown to affect various meta-
bolic pathways, e.g. glycolysis and fatty acid metabolism in cancer cells [19,48]. To reflect how

Fig 5. EGFR overexpression in D492M. (A) Real-Time Quantitative Reverse Transcription PCR of EGFR in
D492, D492MEGFR and D492MEmpty, normalized to GAPDH. EGFR transcription level is significantly higher in
D492MEGFR compared to D492MEmpty but does not reach the D492 EGFR transcription level. (B) Protein
expression of EGFR, Phospho-p44/42 MAPK (ERK1/2) and Phospho-AKT determined byWestern blotting.
Overexpression of EGFR in D492M leads to increased protein expression of EGFR in D492MEGFR compared
to D492MEmpty, but EGFR protein expression does not reach the D492 level. Overexpression of EGFR in
D492M leads to increased MAPK (Erk1/2) and Akt phosphorylation which is higher than in both D492MEmpty

and D492.

doi:10.1371/journal.pcbi.1004924.g005
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alterations in the AKT signaling pathway may affect metabolism, a literature based survey was
conducted to identify the connections between this pathway and its target metabolic genes.
This suggested that active AKT signaling induces the expression of metabolic genes involved in
glycolysis, fatty acid metabolism and purine and pyrimidine metabolism, while it suppresses
the expression of metabolic genes involved in gluconeogenesis (Table 1).

The ratio of average flux in each signaling reaction of the AKT pathways in the EGFR_M
and EGFR_E network was used to identify differences in relative metabolic gene expression in
the D492 and D492M cells. The higher flux observed in the AKT pathway in the EGFR_E net-
work suggested increased expression of genes belonging to glycolysis, fatty acid and purine/
pyrimidine metabolism in D492 in comparison to D492M (Table 1). Higher expression of gly-
colytic genes suggested higher glycolytic activity in the D492 cells.

To test these in silico predictions, we compared the predicted expression of the metabolic
genes with their corresponding relative expression values in the microarray data set [34] and
compared relative expression of metabolic genes in D492 and D492M. Up- and down-regu-
lated metabolic genes were identified based on differential expression and significance mea-
surements, as analyzed by SAM [49], included in the microarray dataset. A cut-off of 0.05 on
the significance measure was used. The relative gene expression of 13 out of 15 metabolic genes
(86.6%) affected by AKT signaling were in agreement with the predicted in silico expression
(Table 1). Since the experimental expression values of the metabolic genes were not used to

Table 1. Predicted expression of metabolic genes regulated by AKT in D492 and D492M cells.

No. References Metabolic Genes Proposed Expression Microarray Expression

1 [50] GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) # M # M

2 [51] GLUT1 (facilitated glucose transporter) # M # E

3 [48,52] GYS1 (Glycogen [starch] synthase, muscle) # M # M

4 [53,54] HK1 (Hexokinase-1) # M # M

5 [53,54] HK2 (Hexokinase-2) # M # M

6 [52] G6PC (Glucose-6-phosphatase) # E NA

7 [52] PCK1 (Phosphoenolpyruvate carboxykinase 1) # E NA

8 [48] ACLY (ATP-citrate synthase) # M # M

9 [48] ME1 (Malic enzyme) # M # M

10 [19,55] PFKFB2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2) # M NA

11 [48] HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase) # M # M

12 [48] HMGCS1 (Hydroxymethylglutaryl-CoA synthase, cytoplasmic) # M # M

13 [56] ACC (acetyl-CoA carboxylase alpha) # M NA

14 [56] SREBF1 (Sterol regulatory element-binding protein 1) # M # E

15 [48,56] SREBF2 (Sterol regulatory element-binding protein 2) # M NA

16 [56] FASN (Fatty acid synthase) # M # M

17 [57] ATIC (Bifunctional purine biosynthesis protein PURH) # M # M

18 [57] HPRT1 (Hypoxanthine-guanine phosphoribosyltransferase) # M # M

19 [57] TALDO1 (Transaldolase) # M # M

20 [58] TKT (Transketolase) # M # M

Increased flux through the AKT pathway in EGFR_E network as compared to EGFR_M suggested up-regulated expression of genes involved in

glycolysis, fatty acid and purine/pyrimidine metabolism in D492 cells and down-regulated expression of genes involved in gluconeogenesis pathway. The

“References” column lists the studies from which the influence of AKT signaling on the expression of the corresponding metabolic genes was derived. No:

1–7 belong to Carbohydrate metabolism, 8–16 to fatty acid metabolism and 17–20 to purine/pyrimidine metabolism. NA: gene expression data is not

present in the microarray data set.

doi:10.1371/journal.pcbi.1004924.t001
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generate the EGFR_E and EGFR_M networks, this data corresponds to an independent valida-
tion set for the in silico predictions.

However, the gene expression of 2 out of 15 (13.3%) of the metabolic genes (GLUT1 and
SREBF1) from the microarray data and in silico predictions were not in agreement. This sug-
gests an alternate level of regulation that metabolic genes may encounter during EMT, in addi-
tion to the direct regulation by molecular signaling pathways. For accuracy measure we did
not take into account metabolic genes which did not have any detectable expression values
(denoted NA). Ultimately, we observed that the expression of most of the metabolic genes
directly affected by AKT signaling during EMT was correctly predicted in our D492 model
system.

Glycolytic flux is increased in D492 as compared to D492M and
consistent with model predictions
Gene expression measurements of metabolic genes are not necessarily a quantitative predictor
of their metabolic activity. We therefore tested our in silico prediction that glycolytic activity is
higher in D492 than in D492M by measuring the proliferation rates and glucose consumption
and lactate secretion rate to estimate glycolytic activity in vitro. Cells with a higher rate of pro-
liferation may have higher nutrient and energy requirements and consequently greater meta-
bolic demand [59]. Cell proliferation assays showed that the D492 cells had a higher growth
rate than D492M (Fig 6A). Spent medium of D492 and D492M cells was analyzed to measure
glucose and lactate levels. Higher glucose levels and lower lactate levels in cultured superna-
tants of the D492M cells indicated a lower rate of glucose consumption and lactate secretion
rates in D492M cells (Fig 6B). This indicates a lower glycolytic rate in D492M cells compared
to D492 and suggests a shift in the glycolytic capacity of the cells in response to EMT and is in
agreement with the in silico predictions that indicated higher gene expression of glycolytic
enzymes in D492 cells.

We conclude that this EMT related decrease in aerobic glycolysis appears to be driven by an
overall decrease in the expression of glycolytic enzymes due to down-regulated AKT signaling
in D492M cells. To the best of our knowledge, this is the first report that demonstrates that in
silico network predictions can be used to study the influence of a molecular signaling pathways,
such as AKT, on the metabolic outcome during EMT in breast epithelial cells. Our findings are
in agreement with a previous study on human non-small cell lung carcinoma (NSCLC) cells
[60] which demonstrated a decrease in aerobic glycolysis during EMT but are in contrast to
results obtained for MCF7 breast epithelial cells that have undergone EMT [61].

EMTmetabolic network constrained with AKT signaling regulated
metabolic genes
Results from the previous section showed that the metabolic phenotype could be accurately
predicted by in silico analyses of the changes in the expression of AKT signaling genes. Further,
we investigated how these changes in AKT signaling, that impact the expression of metabolic
genes (Table 1), are propagated through other metabolic pathways during EMT. Based on
RECON2 [62], we have also built an EMTmetabolic network (MODEL1602080000). This met-
abolic network was built by constraining RECON2 with microarray gene expression data [34]
of metabolic genes during EMT in D492 and D492M. RECON2 is a global human metabolic
reconstruction that has been used previously to investigate regulation of metabolism in diseases
like obesity and diabetes [40,62]. In this study, we constrained our EMT metabolic network
with the metabolic genes that were predicted to be regulated by changes in AKT signaling
(Table 1). This led to the formation of epithelial metabolic (Met_E) and mesenchymal

Modelling EGFR Signaling in Human Breast Epithelium

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004924 June 2, 2016 11 / 26



Fig 6. Proliferation rate and glycolytic activity are higher in D492 than in D492M cells. A) Cell
proliferation assay demonstrated a higher growth rate of D492 cells compared to D492M cells. B) Spent
medium analysis of glucose (dashed lines) and lactate (solid lines) shows higher glucose uptake and lactate
secretion in D492 cells (blue) than in D492M cells (red). C) Calculated glucose uptake and lactate secretion
rates indicate higher glycolytic flux rates per cell per hour in D492 cells than D492M cells. Data represents
results from 3 independent experiments. Error bars represent standard deviation in a single experiment done
in triplicate. mM: milli molar, fmol: femto molar.

doi:10.1371/journal.pcbi.1004924.g006
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metabolic (Met_M) networks, specific for AKT signaling regulated metabolism during EMT
(described in methods section). Metabolic differences between the Met_E and Met_Mmodels
were identified based on differences in their relative flux span (methods section). Reactions car-
rying higher flux in Met_E compared to Met_M included reactions that are involved in N-gly-
can metabolism, Glycolysis, Fatty acid synthesis, Fatty acid oxidation, nucleotide
interconversion and pentose phosphate pathway. Reactions carrying higher flux in Met_M
involved Glutathione, glycerophospholipid, and inositol phosphate metabolism. Alteration of
metabolic pathways, including N-glycan, glutathione metabolism, glycolysis, fatty acid and
purine metabolism that we observed from our constructed Met_E and Met_Mmetabolic net-
works, have been shown to play an important role in the regulation of EMT
[19,48,57,60,63,64]. However, the details of the mechanism are still unknown. A list of the met-
abolic reactions similarly predicted to be affected by the AKT pathway in the Met_E and
Met_M networks are provided in the supplementary file (S2 File). In conclusion, this method
was able to predict metabolic pathways that may be affected downstream upon activation of
AKT signaling in breast epithelial cells during EMT. This method extends the approach of
associating metabolic phenotype with regulation of signaling pathways. Further, it also suggests
the possibility of determining the metabolic regulation in cases that are limited by the availabil-
ity of metabolomic data or the gene expression data of metabolic genes. Although these predic-
tions are context specific in relation to AKT signaling, the integration of other signaling
pathways affected during EMT may give a more coherent picture of altered metabolism.

Comparative analysis of the EGFR signaling network between D492 and
three other human breast epithelial cell lines
We next studied whether a general trend of higher flux in the reactions of the AKT and RAS
pathways (downstream of EGFR) was observed in other human breast epithelial cell lines,
when compared to their mesenchymal counterparts. We mapped the microarray transcrip-
tomic datasets for the three human breast epithelial cell lines (HMLE, MCF-7 and MCF-10A)
onto the EGFR_SN network similar to the method used for the D492 cells (methods section).
Comparisons between cell lines were done in terms of the ratio between flux in the mesenchy-
mal network vs flux in the corresponding epithelial network (Fig 7). Numerical values of the
fluxes within AKT, RAS and CaM pathways in HMLE, MCF-7 and MCF-10A are given in sup-
plementary file (S3 File).

Higher flux through the reactions in the AKT pathway was observed in both the D492 and
HMLE epithelial cells, suggesting that the HMLE cells may have similar metabolic phenotype
as D492 (Fig 7). In contrast, the mesenchymal counterparts of MCF7 and MCF10A cells had
higher flux in the AKT pathway (Fig 7), suggesting that cells that have undergone EMTmay
have increased glycolytic activity. This is in agreement with Kondaveeti et al. who have
reported an increase in glycolytic activity post-EMT in MCF-7 cells as a result of increased
expression of glucose transporters and lactate dehydrogenase [61]. The flux in the RAS/MAPK
pathway was higher in the D492 and the MCF7 epithelial cells than in their mesenchymal
counterparts. Analysis of DAG/IP3 and CaM pathway showed that D492M, MCF7 mesenchy-
mal cells and those of HMLE which have undergone EMT due to induction of Twist, had
higher flux as compared to their epithelial counterpart (Fig 7). Thus, no general pattern was
observed in the flux distributions between the epithelial and mesenchymal networks for the dif-
ferent breast epithelial cell lines. Induction of EMT by different factors (viral induction of
SNAIL, SLUG, TWIST, miR374a or TGFβ1 treatment) also seemed to differentially regulate
signaling pathways as was evident in the MCF10A and HMLE cells. For example, the induction
of EMT in HMLE cells by overexpression of Slug and Twist resulted in different flux patterns
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in the RAS/MAPK and DAG/IP3 and CaM pathways (Fig 7). Similar effect was seen by
Deshiere et al., where they have shown that TGFβ1 treatment and CK2b silencing activate
divergent signaling pathways, that ultimately lead to EMT in MCF-10A cells [65]. Finally, we
compared the predicted metabolic phenotypes to the metabolic gene expression data for the
MCF7, MCF10A and HMLE cell lines similar to the method used for the D492 cells, however
the gene expression data of metabolic genes were not statistically significant and hence was not
included in our study (S1–S4 Tables).

In summary, we observed that different cell lines may affect different signaling regulation
during EMT. Moreover, variation in the methods of EMT induction may dictate differential
regulation of the signaling and metabolic cross talk.

Conclusions
Herein we have demonstrated a method to build a stoichiometric model of the EGFR signaling
(EGFR_SN) network employing COBRA methods that aids in understanding the differential
activation of downstream EGFR signaling pathways during EMT. Epithelial and mesenchymal
specific EGFR signaling networks were obtained by integrating microarray transcriptomics
data of signaling genes from the D492 breast epithelial and mesenchymal cells with EGFR_SN.
The epithelial and mesenchymal networks were used to predict the expression of metabolic
genes. The predicted expression values were in agreement with transcriptomics data of

Fig 7. Comparison of flux distribution in the reactions within AKT, RAS and CaM pathway in different breast
epithelial cell lines. The heat map has been generated using log2 relative mean flux of the reactions within the AKT,
RAS and DAG/IP3 and CaM pathways in epithelial and mesenchymal cells of D492, MCF, MCF10A and HMLE cells.
Exchange reactions are not included in the heat map. The negative and positive values as depicted on the color
scale denote higher flux in reactions of epithelial and mesenchymal cells, respectively. D492M, MCF7_mirna,
MCF7_snail, MCF10_snail, MCF10A_tgfb, HMLE_slug, HMLE_twist and HMLE_snail are EMT derived
mesenchymal cells.

doi:10.1371/journal.pcbi.1004924.g007
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metabolic genes as well as biochemical data that demonstrated higher glycolytic activity in
D492 epithelial cells. Furthermore, signaling genes leading to reversion to the epithelial pheno-
type (MET) via up- regulation in the mesenchymal cells were predicted. Additional in vitro
testing would be required to confirm these in silico predictions. Thus, in this study we showed
that the metabolic phenotype can be predicted in silico using gene expression profiles of EGFR
signaling components.

EGFR_SN is not limited in scope to the investigation of EMT. The signalling network could
be used to highlight signaling-metabolic crosstalk in different cell types for which metabolic
reconstructions exist [66] or for different conditions [66] where EGFR signalling is known to
be influential [67]. Furthermore, the network described herein could be expanded to allow for
more comprehensive coverage of signalling pathways of relevance to EMT. Signaling networks
for platelet derived growth factor (PDGF), insulin like growth factor (IGF), and vascular endo-
thelial growth factor (VEGF) for example, could be constructed and co-integrated. The co-inte-
gration of these signaling networks regulated by different growth factors would give more
comprehensive knowledge of cross talk between signaling and metabolic pathways during
EMT.

The pipeline developed for D492 was used on other cell models representative of breast epi-
thelial cell lines. We assumed that different breast epithelial cells models would have similar
signaling patterns and hence could have a general interpretation of regulation of signaling
pathways during EMT. In contrast to our hypothesis, the regulation of signaling pathways
showed no general pattern and appeared to be a cell-specific phenomenon. Flux values in the
AKT pathway from our network, suggest that there may be an EMT related decrease in aerobic
glycolysis in both the HMLE and D492 cell lines, while the opposite was observed in the MCF-
7 and MCF-10A breast epithelial cells. There are several possible explanations for this disparity.
First, the highly complex nature of the regulation of EMT, which may be differentially regu-
lated by the cellular micro environment or EMT inducing factors as seen in our in silico predic-
tions. Second, our study of EMT signal transduction is primarily based on transcriptional
signatures which may or may not necessarily correlate with the translational output (protein-
levels) [68,69]. This last issue might be addressed by co-integrating transcriptomics and prote-
omics/phospho-proteomics data in order to obtain more accurate models. Such a strategy was
recently reported where it was used to reconstruct a metabolic network for predicting of meta-
bolic signatures in diabetes patients [70]. The disparity between cell models suggests consider-
able heterogeneity of the cell models used for EMT research in general. Finally, these efforts
highlight a lack of comprehensive datasets available that accurately describe EMT and ulti-
mately hinder mechanistic understanding of the genotype phenotype relationship underlying
EMT. The direct link between regulation of signaling pathways and the consequent metabolic
phenotype may be of clinical interest, as metabolically based therapeutics to combat cancer
EMT could be masked by inaccurate metabolic understanding.

Methods

Reconstruction of signaling network
The EGFR pathway network was downloaded from the Reactome database which is curated
and peer reviewed [71]. The EGFR pathway was then converted from SBML to COBRA format
for further analyses. This conversion is based on the stoichiometric coefficients of the reacting
species provided in the Reactome pathway and also requires setting constraints on each reac-
tion in the form of lower and upper bounds, which determine the minimum and maximum
allowable reaction rates (fluxes), respectively [33]. Flux in a signaling network is defined as
the rates of phosphorylation, de-phosphorylation, dimerization, or binding of proteins.
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The COBRA model was represented by anm by r stoichiometric matrix S, wherem denotes
the number of network components (metabolites, proteins, and complexes) and r the number
of network reactions. Reactions within the network were mass-balanced. The system was
assumed to be at steady state, which means that the fluxes v = (v1,. . .,vm) satisfy the equations
Sv = 0. The upper and lower bounds of all the internal reactions were set to 1000 and zero,
respectively. A lower bound of zero was used since all the reactions are irreversible.

The initial COBRA model contained many dead ends and was infeasible due to network
gaps [72]. Dead-ends represents those reacting species which are either only produced or only
consumed in the network, leading to blocked reactions, i.e. reactions unable to carry flux.To
remove the dead ends and obtain a feasible model, exchange reactions were introduced allow-
ing uptake and secretion of components across the system boundary. By adding exchange reac-
tion for all reacting species, a feasible model was obtained. In this model, the network topology
becomes irrelevant since all demands on the network can be met by the exchange reactions. To
avoid this situation, an optimization algorithm, ‘relax_rxns’ (S1 Dataset) was developed that
enabled a feasible steady state network, while minimizing uptake/secretion (exchange) of the
dead-end molecules. The methodology is similar to the one used by Vardi et al. [21]. First, the
lower bounds of all the internal reactions were set to 1 to force removal of blocked reactions
(reactions with zero flux) and consequently removal of the dead-end species. Exchange reac-
tions were then added for every reacting species in the network, initially with all uptake and
secretion rates set to zero. The optimization algorithm returns a minimal set of exchange reac-
tions that need to be present in order to remove all dead ends. These reactions were included in
the final model, but the other exchange reactions were removed. The optimization problem
was formulated as follows:

minimize
P

j2Rr yj ð1Þ

Sv ¼ 0 ð2Þ

lj�nj � vj � uj þ pj j 2 Rr ð3Þ

li � vi � ui i 2 Rn ð4Þ

pj � Myj; nj � Myj j 2 Rr ð5Þ

pj � 0; nj � 0 j 2 Rr ð6Þ

yj 2 f0; 1g j 2 Rr ð7Þ

The decision variables are v, the flux values in individual reactions, pj and nj which represent
the amount of relaxation of upper and lower bounds for reaction j, respectively and binary vari-
ables yj which indicate whether reaction j is relaxed or not. The objective is to minimize the
number of reactions that are relaxed (1). The steady state mass balance constraints are repre-
sented by (2), Rr is the set of reactions that are to be relaxed (3) with the corresponding upper
and lower bounds set to zero. The set Rn represents all the remaining reactions (4) with the cor-
responding upper bounds set to 1000 and lower bounds set to 1. The value of the constant M in
(5) was set to 1000. The optimization model was implemented in Matlab (Mathworks, Natick,
MA, USA) using the CVXmodeling language [73,74] and solved using the Gurobi solver [75].
The version of CVX used in this study supports binary variables as those in constraint (7).
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Modelling modifiers, activators and inhibitors
The signaling network from section 4.1 was extended to include modifiers, activators and
inhibitors. Modifiers are phosphorylated protein entities that further phosphorylate down-
stream targets. In the original Reactome pathway, the modifiers were not included as reacting
species in reactions, such that they were not connected to downstream targets. For this reason
modifiers were included as the reacting species in their target reactions. We included the modi-
fiers in the same way as described by Dasika et al. [22]. Briefly, modifier mod1 acts as a modi-
fier for the transition of A to B. In order to avoid unambiguous stoichiometry, we added
mod1p, as a product of mod1 during the reaction as shown below.

Production of mod1 ! mod1 ðexchange reactionÞ

Aþmod1 ! Bþmod1p ðmod1 becomes mod1pÞ

mod1p ! consumption of mod1p ðexchange reactionÞ
Activators and inhibitors are responsible for positive and negative regulation of the reaction,

respectively. Activators and inhibitors were included in the model via gene-protein reaction
rules as described in the next section.

Addition of gene information
The original Reactome signaling network described the transmission of signal, in terms of acti-
vation or inhibition of the subsequent downstream entities. This did not include any enzymatic
reactions or the gene-protein rules required to map gene expression data [33]. The signaling
network was therefore modified to include GPRs by associating each network reaction with
genes encoding modifiers, activators and inhibitors. Reactions not having any information of
modifiers, activators or inhibitors were not designated with GPRs. For the GPR generation, we
employed UniProt IDs of the protein entities within the Reactome pathway to identify genes,
which were then associated with reactions using Boolean logic. Multiprotein complexes were
represented with an ‘AND’ operator, while isoforms were represented by an ‘OR’ operator to
create a corresponding Boolean rule. Wherever an inhibitor was involved, the corresponding
genes were prefixed by a ‘NOT’ operator in the GPR. Exchange reactions were also assigned
GPRs. If a reaction is catalysed by a modifier and inhibited by an inhibitor, the presence of
modifier will activate the reaction, while an inhibitor will inhibit the reaction. GPRs for all the
reactions are provided in the S1 File in the sheet named “GPRs”. The blank rows denote that
they were not assigned any GPRs. Fig 8 below, illustrates examples of GPR generation.

The resulting network is referred to as EGFR_SN. A spreadsheet containing all the network
reactions, reacting species, modifiers, inhibitor, activators, and GPRs in different sheets is pro-
vided in the supplementary file (S1 File). All the models used in this study are provided in the
supplementary dataset (S1 Dataset).

Microarray data integration
Gene expression data for the D492 and D492M cell lines was obtained from Sigurdsson et al
[34]. The microarray expression data for the HMLE, MCF-7 and MCF-10A cell lines was
obtained from NCBI GEO [76], GEO IDs: GSE52593 [77], GSE43495 [78], GSE58252 [79],
GSE39358 [80], and GSE28569 [65]. Illumina/Affimetrix IDs within the microarray data were
mapped with the Uniprot IDs of the genes in the EGFR_SN network using the Python API of
bioDBnet, biological DataBase network. Mapped gene expression of the EGFR signaling genes
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for each cell line is provided in the supplementary material S4 File with sheets named after
each cell line. Negative values indicate higher gene expression in epithelial cells and positive
values indicate higher gene expression in mesenchymal cells. Integration of expression data
with the EGFR_SN network and subsequent analysis was performed in Matlab. The cut-off
value on the relative fold change between epithelial and mesenchymal cell lines, to determine
up- and down-regulated genes, depended on the relative expression of housekeeping genes and
the statistical significance (p-value� 0.05) of the fold change. Accordingly, a cut-off of� 2 was
considered for D492 cells, 0.5 for MCF7 and MCF10A cells and 0.3 for HMLE cells. Since
GPRs link genes with reactions, up- and down-regulated genes identified consequently up-reg-
ulated and down-regulated reactions. The change in the expression value of each gene in the
EGFR_SN signaling network was used to define the upper and lower flux bounds of its associ-
ated reactions, such that up-regulated reactions were allowed to have higher flux values and
down-regulated reactions were allowed to have lower flux values. Since, the upper bounds on
individual fluxes are essentially infinite, up-regulation in an epithelial model was simulated by
downregulating the corresponding reaction in its mesenchymal counterpart, and vice versa.
Flux bounds of the up-regulated reactions in D492 were constrained by an arbitrary factor
one-hundredth of the initial bounds in D492M and vice versa. Similarly, flux bounds of the
activated and inhibited reactions were constrained. Activation in the epithelial model was sim-
ulated by downregulating the corresponding reaction in its mesenchymal counterpart and vice
versa, while inhibition was simulated by downregulating the corresponding reaction in the
same model. This led to the formation of EGFR_E and EGFR_M networks for D492 and
D492M respectively.

Random sampling was used to obtain flux distributions in the networks [81] using the
COBRA toolbox [32], technical details of which can be found in Supplementary methods (S1
Methods).

Fig 8. The rules for adding GPRs.Reaction1 is catalyzed by a modifier which is a multiprotein complex of
gene1 and gene2. The combination of both the genes are required for the reaction to take place. Reaction2 is
inhibited in presence of inhibitor which is an isoform of gene3 and gene4. Presence of either gene3 or gene4
will inhibit Reaction2. A ‘NOT’ operator is assigned to the GPR of Reaction2 to indicate inhibition. A GPR is
not assigned to Reaction 3 in this example.

doi:10.1371/journal.pcbi.1004924.g008
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Flux differences in epithelial and mesenchymal networks and crosstalk
to metabolism
Flux differences in individual reactions in the mesenchymal and epithelial networks were
quantified in terms of fold changes, vM(i) / vE(i) where vM(i) and vE(i) represent the average
flux in reaction i for the mesenchymal and epithelial networks, respectively. Reactions which
had vM(i) / vE(i) greater than 1 carried higher flux in the mesenchymal network. A ratio below
1 indicates higher flux in the epithelial network. A literature based survey provided evidence of
whether a metabolic gene is positively or negatively regulated by AKT signaling (S5 Table).
The prediction of the metabolic gene expression derives from whether EGFR_E or EGFR_M
have higher flux in AKT signaling.

Minimization of the distance between the Mesenchymal and Epithelial
flux distributions
The optimization algorithm of section 4.1 was modified by replacing the objective function (1)
by

minimize akv � vEk þ ð1�aÞPj2Rr yj ð1aÞ

where v and yj represents the decision variables as before, vE are fixed values representing the
mean flux distribution of EGFR_E, obtained from random sampling and ||. || represents the
Euclidean norm. The upper and lower bounds for each flux correspond to the values from the
EGFR_M network. The algorithm returns a set of reactions in EGFR_M whose bounds can be
relaxed in order to obtain a flux distribution that resembles that of EGFR_E.

The effects of active AKT signaling on the EMT metabolic network
We constrained RECON 2 [62] using the microarray data from Sigurdsson et al. [34] to gener-
ate an EMT metabolic network (submitted to Biomodels: MODEL1602080000). This recon-
struction consists of all the metabolic reactions encoded in both the D492 and D492M cell
lines. This EMT metabolic network has information on GPRs connecting each reaction with
the genes of the enzymes catalyzing the reaction. Since GPRs associate genes with correspond-
ing reactions, the metabolic genes predicted to be up-regulated in epithelial cells due to AKT
signaling (Table 1) led to the identification of up-regulated reactions in D492 and similarly
were determined in D492M. This information was then used to define the upper and lower
flux bounds of the affected reactions in the EMT metabolic network to formMet_E (metabolic
epithelial) and Met_M (metabolic mesenchymal) networks (Fig 9). Up- and down-regulation
of the Met_E and Met_M models was simulated as described in section 4.4. Specifically, up-
regulation in an epithelial metabolic model was simulated by downregulating the correspond-
ing reaction in its mesenchymal counterpart, and vice versa. Flux bounds of the up-regulated
metabolic reactions due to AKT signaling in D492 were constrained by an arbitrary factor,
one-hundredth of the initial bounds in D492M and vice versa.

The flux values through each reaction in both the models were determined through random
sampling method and the relative flux span, sM(i)/ sE(i) was used to quantify the flux differ-
ences between the networks. Here, sM(i) and sE(i) represent the average flux in reaction i for
the mesenchymal and epithelial cells, respectively.

Cell proliferation assay and metabolite measurements
For proliferation assays and spent medium analysis, 1.5 × 104 D492 or D492M cells were cul-
tured in 48-well plates (Costar) in 200μL H14 medium as previously described [35]. Spent
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medium was collected and cells were fixed in ice-cold methanol at 0 h, 24 h, 48 h and 72 h. To
estimate proliferation, cells were stained with crystal violet, washed thoroughly with water, dis-
solved in 30% acetic acid and read in a spectrophotometer at 570 nm. The observed growth
rates were 0.0276 h−1 for D492 and 0.0161 h−1 for D492M. The glucose and lactate concentra-
tions in the spent medium were measured in an ABL90 blood gas analyser (Radiometer,
Brønshøj, Denmark). Glucose uptake and lactate secretion per cell were calculated for each cell
line as described in [82], based on the ABL90 measurements and growth rates.

Viral transduction
Vectors used for viral production were acquired from Addgene, pBABE-EGFR and empty
backbone (#11011, #1764, respectively) and were used as provided. Phoenix HEK293 cells were
used for retroviral (EGFR) virus production, using Arrestin transfection (Life Technologies).
D492M cells were transduced overnight with viral supernatant containing 8 μg/ml Polybrene
(Sigma-Aldrich). EGFR and empty backbone cells were selected using 2 μg/ml puromycin (Life
Technologies).

Real-Time Quantitative Reverse Transcription PCR
Total RNA was isolated using TRI-Reagent solution (Ambion) and reverse transcribed using
SuperScript IV (Invitrogen). The resulting cDNA was used for Real-Time Quantitative Reverse
Transcription PCR, in Maxima Probe/ROX qPCRMaster Mix (Thermo Scientific) with primer
pairs and probes for EGFR (Hs00540086_m1, Life Technologies), ZEB1 (Hs00232783_m1, Life
Technologies) and GAPDH (Hs99999905_m1, Life Technologies). Experiments were done in
triplicates on 7500 Real Time PCR System (Applied Biosystems). EGFR mRNA levels were
normalized to GAPDH and relative mRNA differences were calculated using the 2ΔCt method.

Fig 9. The pipeline used to determine the effects of active AKT signaling on the EMTmetabolic network.
The metabolic genes predicted to be altered in D492 and D492M dependent on the AKT signaling network, were
used to constrain the EMTmetabolic network generated from Recon2, in order to identify downstreammetabolic
pathways that are affected by AKT activation.

doi:10.1371/journal.pcbi.1004924.g009
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Western blotting
Proteins were isolated using RIPA lysis buffer supplemented with protease and phosphatase
inhibitors (Life Technologies). For Western blot analysis 5 μg of protein lysates were loaded
per lane on NuPage 10% Bis-Tris gels (Life Technologies) in 2-(N-morpholino)ethanesulfonic
acid (MES) running buffer (Life Technologies). Samples were denatured using 10% mercap-
toethanol at 95°C for 10 minutes before loading. Samples were transferred to Immobilon FL
PVDF membranes (Millipore) and blocked in Li-cor blocking buffer for 1 hour. Primary anti-
bodies were incubated overnight at 4°C and secondary IRDye antibodies were incubated at
room temperature for 1 hour (Licor). The following primary antibodies were used for Western
blotting: Actin antibody (Abcam, ab3280), EGF Receptor (Cell Signaling, CS#4267), Phospho-
Akt (Ser473) (Cell Signaling, CS#4060), Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204)
(Cell Signaling, CS#4370), N-Cadherin (BD Biosciences, 610921), E-Cadherin (BD Biosciences,
610182) and Cytokeratin 14 (Abcam, ab15461). Near-infrared fluorescence visualization was
measured using Odyssey CLx scanner (Li-Cor, Cambridge, UK).
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