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Abstract. Robustness of any statistics depends upon the number of assumptions it makes about the mea-
sured data. We point out the advantages of median statistics using toy numerical experiments and demon-
strate its robustness, when the number of assumptions we can make about the data are limited. We then
apply the median statistics technique to obtain estimates of two constants of nature, Hubble Constant
(H0) and Newton’s Gravitational Constant(G), both of which show significant differences between differ-
ent measurements. For H0, we update the analysis done by Chen and Ratra (2011) and Gott et al. (2001)
using 576 measurements. We find after grouping the different results according to their primary type of
measurement, the median estimates are given by H0 = 72.5+2.5

−8 km/sec/Mpc with errors corresponding to

95% c.l. (2σ) and G = 6.674702+0.0014

−0.0009 × 10−11Nm2kg−2 corresponding to 68% c.l. (1σ).

PACS. 06.20.Jr Determination of fundamental constants – 98.80.-k Cosmology – 02.50.-r Statistics

1 Introduction

Rapid advances in observational cosmology due to avalanche
of new data have led to the era of “precision cosmol-
ogy” with many of the key cosmological parameters de-
termined to about 1% precision. The current best cosmo-
logical constraints come from Cosmic Microwave Back-
ground anisotropy measurements from the Planck satel-
lite [1]. These constraints are expected to be measured to
even better precision with ongoing CMB experiments and
a variety of optical photometric and spectroscopic surveys
such as eBOSS, DES, Euclid, HSC, KiDS etc.

However, despite this, there is still no consensus for
over half a century on the measurements of first ever
cosmological parameter introduced in literature, viz. the
Hubble constant (H0), which measures the expansion rate
of the universe. Until the 1990s, H0 ranged from 50 to 100
km/sec Mpc. (See for example the contradictory points of
views as of 1996 on measurements of H0 between Tam-
mann [2] and Van Den Bergh [3].) The tension between
different measurements of H0 continues to persist in 2016
in the era of precision cosmology [4,5]. Currently there
is a 3.3σ tension between the latest Planck constraint [6]
(H0 = 66.93 ± 0.62 km/s/Mpc) and local measurements
from Hubble Space Telescope (H0 = 73.24±1.74 km/s/Mpc)
based on Cepheid variables [7].

Similar conflicting measurements have also been re-
ported for measurements of Newton’s Gravitational Con-
stant G. This constant appears in Newton’s law of univer-
sal gravitation and Einstein’s field equations in General
Relativity. G is notoriously hard to measure and the sta-
tistical significance of the tensions between different mea-
surements is about 10σ [8,9]. There have also been claims

of periodicities in measurements of G [10], which however
have been disputed [11,12].

Here, we use median statistics technique (introduced
by Gott et al [13] (hereafter G01) to combine results from
all the latest measurements of H0 and G to calculate the
central values and associated uncertainties. We note that
this technique was previously applied to about 553 mea-
surements of H0 as of 2012 by Chen and Ratra [14] (here-
after R11). Median statistics has also been used to esti-
mate values of other cosmological parameters [15], in SN1a
data analysis [16], mean matter density [17], and cosmo-
logical parameter estimation from SZ and X-ray observa-
tions [18].

The outline of this paper is as follows. In Sec. 2, we
introduce the concept of median statistics, including cal-
culation of confidence intervals and and demonstrate its
advantages over mean statistics using toy numerical ex-
periments. We then apply the median statistics technique
to measurements of H0 in Sec. 3 and G in Sec. 4. We
conclude in Sec. 5.

2 Median statistics

The central limit theorem [19] says that under certain con-
ditions, the arithmetic mean of a sufficiently large num-
ber of iterations of independent random variables, each
with a well-defined (finite) expected value and finite vari-
ance, will approximately be normally distributed, regard-
less of the underlying parent distribution. If we consider
each measurement (X) to be independent, we can expect
the distribution of X to be Gaussian.
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One of the interesting features of a Gaussian distribu-
tion is that it’s mean and median are exactly the same.
This opens up the possibility of using the median of a
dataset for measurements when the mean is not adequate.
Median statistics estimate can be obtained by minimizing
sum of absolute deviation or L1 norm [19]. In the forth-
coming sections we build upon this idea further using
toy numerical simulations and finally use the “Median

Statistics” technique to obtain best-fit values of H0 and
G. For an accurate treatment of the median statistics on a
given dataset, one should make the following assumptions:

All the measurements are independent This implies
that the rank of the next observation is random and is
equally likely to happen between any of the previous
measurements.

There is no overall systematic error If there exists an
overall error, which affects all the observations with the
same magnitude as the statistical error, median statis-
tics will lead to the wrong result (as we shall show
at the end of subsection 2.2). An important point to
realize here is that even though there cannot be an
error affecting the whole data, it is possible to have
different errors and sources of errors affecting mutu-
ally exclusive groups of data. We elaborate on this fur-
ther in subsection 2.2. In case of the Gaussian distri-
bution analogy discussed before, the bell curve would
be shifted and hence, wouldn’t be equal to the TRUE
VALUE. Median statistics is immune to outliers, which
otherwise affect our mean. In Gott et al [13], they have
shown for a Cauchy distribution how the robust me-
dian and the 95% c.l. are well-behaved unlike the mean
and variance, which are plagued by outliers. They have
calculated the empirical mean and c.l., which they
compared with the median and its c.l. They note that
c.l. range for mean is lot more than that for median.
This shows the robustness of Median statistics. The
mean of a dataset can be easily biased by adding/re-
moving few extreme values, however the median re-
mains insensitive.

The median is agnostic to measurement errors We
shall elaborate upon the “watch” analogy (originally
introduced by Zeldovich) described in G01. Let us con-
sider nine watches for which the measurement of time
from each watch is independent and its associated er-
ror is known apriori. The times shown by each watch
and associated uncertainties can be found in Table 1
with the true time equal to 1:00 PM.
We find that the median time, 1:02 PM, turns out to
be something close to the true value, viz. 1:00 PM.
We need to employ different ways to calculate the un-
certainty in median. Sufficient care has been taken to
ensure that the time the watches read and the uncer-
tainties they have are consistent. On an average, we
expect watches to be inaccurate to within few minutes.
So, uncertainties are chosen in such a way that the
TRUE time lies in the interval around the watch time
with uncertainty about the same as the half width.

Table 1. Time read by nine watches along with the uncertain-
ties of each watch in minutes. We also provide a unique “Build
ID” for each watch in the third column. These uncertainties
are chosen in an ad-hoc fashion with one outlier deliberately
introduced.

Time Uncertainty (in minutes) Build ID
11:50 AM ± 25 2
12:49 PM ± 55 2
12:52 PM ± 4 3
12:59 PM ± 36 3
01:02 PM ± 7 1
01:07 PM ± 5 2
01:10 PM ± 70 1
01:27 PM ± 240 3
02:35 PM ± 3 1

2.1 Evaluating confidence levels

We briefly summarize the procedure for calculating the
median confidence levels (c.l.), following G01 and R11,
wherein more details can be found. The median of an
array is defined as the 50% percentile. Given x ∈ array,
then, there would be i elements which are ≤ x and
(n− i) elements > x for some i, where n is the length
of the array.
Since we know that each given measurement is random
and its rank completely arbitrary, we can show that
there are

(

n

i

)

ways to choose i from n measurements.
Furthermore, we assume that each measurement has
equal probability of being ≤ x or > x, or has a prob-
ability equal to 1

2
. Let Pi be the probability that i

element to be the TRUE MEDIAN. Pi is then given
by:

Pi =
1

2N

(

n

i

)

(1)

Using this formula, we compute Pi at every i and define
Cj as sum of all Pi’s for i ranging from j : (N − j).
To evaluate the 95% confidence limit indices about the
median, we choose the minimum value of r for which
Cr ≥ 0.95 where Cr ∈ (Cj : CN−j) for all values of j

between 1 and N
2
.

Using the above procedure, we find that the 95% con-
fidence limits ranges from 12:49 PM to 01:10 PM. Our
error is directly proportional to 1/

√
N [14]. This is the

same as what we would expect from Gaussian mean
statistics. This implies that our median statistics is
able to obtain this value without positing anything
about the error distribution.

Median Confidence limits We understand from the method-
ology discussed in the previous point, that the median
confidence limit is a function of the sample size, N and
does not depend, in any way, on the sample distribu-
tion. In the limiting case, when N = limn→∞, we find
that the 100% confidence limits index (r in the pre-
vious section) is that of the median only. This agrees
with our intuition that larger the size of our dataset,
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Table 2. Robustness of Median statistics: Here, we generate random samples from three separate distributions with
different sizes and means. Then, we compute the empirical mean and median of each of the samples and tabulate the result.
We notice that our estimate based on mean statistics is sensitive to outliers, whereas our median is approximately equal to the
true mean.

Distribution Sample size Parameters Calculated Mean Median 95% c.l. for Median

Gaussian
1000 −10 −9.997 −9.993 [−9.996,−9.991]
2000 10 10.020 10.029 [10.027, 10.031]
3000 0 0.0107 0.0104 [0.0092, 0.0106]

Cauchy
1000 −10 −10.201 −10.1384 [−10.148,−10.1381]
2000 10 8.513 10.044 [10.043, 10.045]
3000 0 −2.234 −0.007 [−0.008,−0.006]

Pareto with α ≤ 1 , xm = 1
1000 1/2 15549.92 3.663 [3.660, 3.665]
2000 1/3 607468177 8.465 [8.389, 8.494]
3000 1/4 8.663e + 12 16.079 [16.047, 16.096]

smaller is the range of 95% confidence intervals. To
further drive home this point, see Table 2.

An alternative to our approach of Median statistics
would be Bayesian analysis [20,21] (and references therein),
wherein one uses Bayes’ rule to determine the conditional
probability of the correct observation (measurement) given
the other observations in hand. Although detailed compar-
ison of the two methods is beyond the scope of this paper
and depends on the data been analyzed, usually Bayesian
parameter estimation is expected to be more accurate
compared to median estimates. In Bayesian analysis, one
needs to posit a prior (based on previous measurements or
expectations from theoretical models) used for the param-
eters or the model. Bayesian analysis is also computation-
ally expensive compared to the calculation of the median.
The Bayesian approach was first used by Press [22] for H0

values to marginalize over the bad measurements. Most
recently, H0 was determined from Cepheid data by using
Bayesian hyper-parameters [23].

2.2 Effects of systematic errors

One of the strongest assumptions we make about the dataset
is that it contains no overall egregious errors. This as-
sumption does not preclude us from saying that mutually
exclusive groups may have similar systematic errors affect-
ing them. If one were to extend the nine watches analogy
to demonstrate this effect, one would have to provide extra
information about the watches. This extra information is
usually some way to classify the types of watches for exam-
ple, eg. Model number, Batch code, Manufacturer name,
etc. The only constraint the extra information has to sat-
isfy is to be able to classify each observation uniquely into
mutually exclusive groups. The result can be summarized
in Table 3.

Given any additional information about the nine watches,
our estimate of the true median is more accurate than eval-
uating the median of the whole data, which gives a value
of 1:02 PM. To summarize, we have taken into account
the systematic error which affects the mutually exclusive
groups encompassing our data.

We should point out one caveat related to the median
estimate if the data contains systematic errors with a sim-

Table 3. Here, we group all the watches based on their “Build
ID” and calculate the group median. We then calculate the
median of medians and show that this value is very close to the
true value. We note that this simulated data has been designed
(by choice) so that the median of medians results in a better
estimate of the true value.

Build ID Group Group Median Median of Medians

1
01:02 PM

01:10 PM

12:59 PM

01:10 PM
02:35 PM

2
11:50 AM

12:49 PM12:49 PM
01:07 PM

3
12:52 PM

12:59 PM12:59 PM
01:27 PM

ple example. If we add an offset of 30 minutes to the time
shown by each watch in our dataset, our median of medi-
ans changes to 01:29 PM. Since the true value is close to
01:00 PM we can essentially get any value for the median
of medians by adding/subtracting an arbitrary value to
all our watches. A way to counter this is to hypothesize
that there are NO overall systematic errors affecting our
entire dataset.

We now apply the median statistics method to mea-
surements of Hubble’s constant (H0) and Newton’s Grav-
itational Constant (G).

3 H0 : Hubble’s constant

G01 introduced the notion of median statistics and carried
out this analysis for 331 published estimates of H0. This
was updated by R11, using 553 measurements of H0 com-
piled by J. Huchra. We replicate the analysis of R11 with
updated measurements and present median statistics esti-
mates using 576 values of H0 (updated as of Sept. 2016) .
We do not include any errors in our analysis. The full list
of all H0 measurements is uploaded on google docs.

The median value of all H0 measurements along with
95% c.l. without any grouping is given by H0 = 69.75 ±

https://docs.google.com/spreadsheets/d/103HiCp2UFT4IgPQ6xJGHJXQs2LreAD0970Qj9In8tDM/edit?usp=sharing
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5.25 km/sec/Mpc. The extra information in the context
of H0 becomes the methodology employed to estimate H0.

R11 classified all measurements of H0 into 18 primary
types and 5 secondary types. Using this well-maintained
list, one can calculate the median of each subgroup and
also the median of all these medians. Furthermore, one can
even calculate the 95% c.l. as explained in subsection 2.1.
The primary types grouping has been done based on the
procedure employed to measureH0 and is therefore a good
way to classify measurements. The secondary types are
more concerned with non-procedural factors involved in
the measurement, namely, determinations by one group
(Sandage), indirect measurements based on the underlying
cosmological models, etc.

In Table 4, we have grouped all measurements accord-
ing to primary type. And, in Table 6, we do the same but
group on the basis of secondary type. Similar to R11, we
also calculate the median values after excluding all mea-
surements of primary and secondary type. These are shown
in Table 5 and Table 7 respectively. The sub-group me-
dian values of both the primary and secondary types are
shown in Table 12. The median estimate after group-
ing according to primary type is given by H0 = 72.5+2.5

−8

km/sec/Mpc. After grouping according to secondary type,
we get H0 = 68+4.5

−15.5 km/sec/Mpc.

4 G : Newton’s Gravitational Constant

We now apply the median statistics technique to do similar
analysis of G. For this purpose, we use the tabulated mea-
surements of G from Schlamminger et al [24], who have
a compiled a list of all G measurements since 1980. A re-
view of all previous measurements (starting from the first
one by Cavendish in 1798) and associated controversies
are reviewed in Refs. [8,9,25]. The global median value of
all measurements is given by G = (6.674252+0.003655

−0.002342) ×
10−11Nm2kg−2, where the error bars correspond to 95%
c.l. We now group the measurements, similar to what was
done for H0 according to how the measurements were
made. For our grouping criterion, we have considered the
device used for measurement and the mode in which the
device was used. In case of torsion balance, the same setup
can be used for different procedures. Similar to H0, we
catagorize the grouping done according to mode and de-
vice as primary and secondary respectively.

A tabular summary of the median of G measurements
after collating the observations into various groups can
be found in Table 8 and Table 10. Table 8 shows the re-
sults when classification of all G measurements is done
only by device. Similar grouping and tabulation are done
for mode in Table 10. The median values after exclud-
ing all measurements of device and mode type are shown
in Table 9 and Table 11 respectively. The sub-group me-
dian values of both the primary and secondary types are
shown in Table 12. The median estimate after grouping
according to primary type is given by G = 6.674702 ×
10−11 Nm2/kg2, and after grouping by secondary type is
equal to 6.673765× 10−11 Nm2/kg2. Unlike H0, we could

not obtain 95% c.l. intervals for the subgroup medians,
since the total number of measurements were quite small.
So we only calculate 68% c.l. uncertainties for the sub-
group medians for G, which can be found in Table 12.

5 Conclusions

In this article, we have described the usage of median
statistics technique used to obtain the central values of
parameters along with associated 95% c.l. uncertainties.
We have demonstrated its robustness over mean statistics
using numerical experiments. We have extended previous
median statistics measurements by R11 to the full list of
576 Hubble Constant (H0) measurements (updated as of
Sept. 2016). We grouped all measurements according to
primary and secondary categories (using the same classi-
fication as R11) and estimated the median value in each
category. We then calculated the median of all these sub-
group medians in both the categories. We find that for
the primary type of measurements, the sub-group median
estimate is given by H0 = 72.5 kms−1Mpc−1 with 95%
confidence limits between 64.5 and 75.0 km/s/Mpc. We
then carried out the same exercise for all measurements
of Newton’s Gravitational Constant (G), tabulated since
1980. Here, the grouping was done on basis of the device
used for measurements and the mode of measurement (for
any given device). We find that the sub-group median (af-
ter splitting according to mode of measurement) is given
by G = 6.674702 × 10−11 Nm2kg−2 and 68% confidence
limits are [6.671910, 6.675565]×10−11Nm2kg−2. The sum-
mary statistics of H0 and G are tabulated in Table 12.

Acknowledgements: We would like to thank Gang Chen for
sharing with us the data used in R11.
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Table 4. H0:Primary type grouping. Here, we group the updated list of H0 measurements on the basis of “Primary type”
and perform median statistics analysis. “Type” is the class name. “Number” is the strength of the group. “Median” is the
median of that group. “95% Confidence limits” is the lower and upper confidence limits. The categories are the same as in R11.

Type Number Median 95% Confidence limits
Global Summary 118 70.0 69.0 71.0
Type Ia Supernovae 97 64.0 60.0 66.0
Other 85 68.0 60.0 71.0
Lens 84 64.5 62.0 69.0
Sunyaev-Zeldovich 46 60.5 57.0 66.0
Baryonic Tully-Fisher 23 60.0 56.0 71.0
Infrared Tully-Fisher 19 82.0 65.0 90.0
Fluctuations 18 75.0 71.0 81.0
Tully-Fisher 18 72.5 68.0 74.0
CMB fit 16 69.5 58.0 71.0
Globular Cluster Luminosity functions 14 76.5 65.0 80.0
Dn − σ/Fund plane 10 75.0 67.0 78.0
Inverse Tully-Fisher 9 74.0 69.0 77.0
Type II Supernovae 8 59.5 52.0 76.0
Planetary Nebula Luminosity Functions 6 85.0 77.0 87.0
Novae 4 77.0 - -
Red Giants 1 74.0 - -

Table 5. H0:Complement of Primary type grouping. Here, we form a set of measurements which do not belong to a
specific “Primary Type” and perform median statistics analysis. “Type” is the class name. “Number” is the strength of the
group. “Median” is the median of that group. 95% Confidence limits correspond to the lower and upper confidence intervals.

Type Number Median 95% Confidence limits
Red Giants 574 68.95 68.11 69.0
Novae 571 68.9 68.0 69.0
Planetary Nebula Luminosity functions 569 68.0 68.0 68.11
Type II Supernovae 567 69.0 68.9 69.0
Inverse Tully-Fisher 566 68.0 68.0 68.0
Dn − σ/Fund plane 565 68.11 68.0 68.9
Globular Cluster Luminosity Functions 561 68.0 68.0 68.11
CMB fit 559 68.9 68.0 69.0
Fluctuations 557 68.0 68.0 68.0
Tully-Fisher 557 68.0 68.0 68.0
Infrared Tully-Fisher 556 68.0 68.0 68.0
Baryonic Tully-Fisher 552 69.0 69.0 69.0
Sunyaev-Zeldovich 529 69.0 69.0 69.0
Lens 491 69.0 69.0 69.0
Other 490 69.0 69.0 69.0
Type Ia Supernovae 478 69.0 69.0 69.0
Global Summary 458 68.0 67.0 68.0

Table 6. H0:Secondary type grouping. Here, we group on the basis of “Secondary type” and perform median statistics
analysis. “Type” is the class name. “Number” is the strength of the group. “Median” is the median of that group. “95%
Confidence limits” is the lower and upper confidence limits.

Type Number Median 95% Confidence limits
No second type 329 69.0 69.0 69.0
Cosmology dependent 84 68.0 67.0 68.0
Sandage and/or Tammann 71 55.0 55.0 56.0
Key Project or Key Project team Member 62 72.5 72.0 73.0
deVaucouleurs or van den Bergh 21 95.0 89.0 95.0
results presented at Irvine Conf 5 65.0 - -
Theory with assumed Omega 4 52.5 - -
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Table 7. H0:Complement set of Secondary type grouping. Here, we tabulate a set of measurements which do not belong
to a specific “Secondary Type” and perform median statistics analysis. “Type” is the class name. “Number” is the strength of
the group. “Median” is the median of that group. ‘ ‘95% Confidence limits” is the lower and upper confidence limits.

Type Number Median 95% Confidence Limits
Theory with assumed Omega 571 69.0 68.9 69.0
results presented at Irvine Conf 570 69.0 69.0 69.0
deVaucouleurs or van den Bergh 554 68.0 68.0 68.0
Key Project or Key Project team Member 513 67.0 67.0 67.0
Sandage and/or Tammann 504 70.0 70.0 70.0
Cosmology dependent 492 69.0 69.0 69.0
No second type 246 67.0 67.0 67.0

Table 8. G:Device grouping- We have grouped all measurements by “Device” and computed the group-wise median and
95% confidence interval. “Number” denotes the strength of each group. Please note that Median and 95% confidence limits have
a multiplication factor of ×10−11 and units are in Nm2kg−2

Device Median x10−11 Number 95% Confidence interval x10−11

Torsion Balance 6.674255 17 6.67346 6.67553
Two Pendulums 6.67328 2 - -
Atom Interferometer 6.67191 1 - -
Beam Balance 6.67425 1 - -

Table 9. G:Complement set of Device Grouping- We have considered all the measurements which do not belong to a
“device” and calculated group-wise median along with 95% confidence limits. “Number” denotes the strength of each group.
Please note that Median and 95% confidence limits have a multiplication factor of ×10−11 and units are in Nm2kg−2

Device Median x10−11 Number 95% Confidence interval ×10−11

Atom Interferometer 6.674235 20 6.67352 6.67455
Beam Balance 6.67415 20 6.67346 6.67455
Two Pendulums 6.67425 19 6.673460 6.67515
Torsion Balance 6.67328 4 - -

Table 10. G:Mode grouping- We have grouped by “Mode” and computed group-wise median and 95% confidence limits.
“Number” denotes the strength of each group. Please note that Median and 95% confidence limits have a multiplication factor
of ×10−11 and units are in Nm2kg−2

Mode Median x10−11 Number 95% Confidence interval ×10−11

time of swing 6.67352 9 6.6729 6.674
No Mode given 6.67328 4 - -
electrostatic servo 6.67515 3 - -
Cavendish 6.675755 2 - -
Cavendish and servo 6.675565 2 - -
acceleration servo 6.674255 1 - -

Table 11. G:Complement set of Mode grouping- As done before, we have analyzed all the measurements which do not
belong to a “mode” and computed groupwise median and 95% confidence limits. “Number” denotes the strength of each group.
Please note that Median and 95% confidence limits have a multiplication factor of 10−11 and units are in Nm2kg−2

Mode Median x10−11 Number 95% Confidence interval ×10−11

acceleration servo 6.67415 20 6.67346 6.67455
Cavendish 6.67408 19 6.6729 6.67435
Cavendish and servo 6.67408 19 6.6729 6.67435
electrostatic servo 6.67415 18 6.6729 6.67435
No mode given 6.674255 17 6.67352 6.67515
time of swing 6.6747025 12 6.67387 6.67554
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Table 12. This table summarizes the outcome of this paper. Here, groups correspond to the “group by”Primary and secondary
type in case of H0 and, Device and Mode in case of G. Since, each constant has one “group by”, there are total of two cases for
each constant. For H0, the first two values in “Table Wise Median” column correspond to Primary type, Secondary type.
In case of G, the two values correspond to Mode, Device. We are specifying 68% c.l. only for Mode “group” as the strength
of the group is too less to compute 95% c.l. For the remaining case, c.l. corresponds to 95% c.l. In the Median and 95% c.l, we
take global median and 95% c.l. using the two tables we computed for each Fundamental Constant. Please note that for G, the
values in all the rows corresponding to it have a multiplication factor of ×10−11.

Constant Group Median c.l. Global Median 95% c.l.

H0

72.5 64.5 75.0
69.75 km/s/Mpc

64.5 74.0
68 52.5 72.5

G
6.674702 6.67328 6.675565

6.674252 Nm2kg−2 6.67191 6.675565
6.673765 6.67191 6.67425
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