
Community-based Outlier Detection
for Edge-attributed Graphs

Supriya Pandhre
Indian Institute of Technology, Hyderabad

Hyderabad, India
cs15mtech11016@iith.ac.in

Manish Gupta
Microsoft

Hyderabad, India
gmanish@microsoft.com

Vineeth N Balasubramanian
Indian Institute of Technology, Hyderabad

Hyderabad, India
vineethnb@iith.ac.in

Abstract—The study of networks has emerged in diverse disci-
plines as a means of analyzing complex relationship data. Beyond
graph analysis tasks like graph query processing, link analysis,
influence propagation, there has recently been some work in the
area of outlier detection for information network data. Although
various kinds of outliers have been studied for graph data, there
is not much work on anomaly detection from edge-attributed
graphs. In this paper, we introduce a method that detects novel
outlier graph nodes by taking into account the node data and edge
data simultaneously to detect anomalies. We model the problem
as a community detection task, where outliers form a separate
community. We propose a method that uses a probabilistic graph
model (Hidden Markov Random Field) for joint modeling of
nodes and edges in the network to compute Holistic Community
Outliers (HCOutliers). Thus, our model presents a natural setting
for heterogeneous graphs that have multiple edges/relationships
between two nodes. EM (Expectation Maximization) is used to
learn model parameters, and infer hidden community labels.
Experimental results on synthetic datasets and the DBLP dataset
show the effectiveness of our approach for finding novel outliers
from networks.

I. INTRODUCTION

Outlier (or anomaly) detection is a very broad field which
has been studied in the context of a large number of research
areas like statistics, data mining, sensor networks, environ-
mental science, distributed systems, spatio-temporal mining,
etc. Many algorithms have been proposed for outlier detection
in high-dimensional data, uncertain data, stream data and time
series data. By its inherent nature, network data provides very
different challenges that need to be addressed in a special way.
Network data is gigantic, contains nodes of different types,
rich nodes with associated attribute data, noisy attribute data,
noisy link data, and is dynamically evolving in multiple ways.
Outlier detection on networks for various applications can
be useful for: (1) identification of interesting entities or sub-
graphs, (2) data de-noising (both with respect to the network
nodes and edges), (3) understanding the anomalous temporal
behavior of entities, and (4) identification of new trends or sus-
picious activities in both static and dynamic scenarios. Some
examples of network outliers include users who spread rumors
on Twitter, unusual but successful associations of persons with
various organizations in an organizational network, sensor with
anomalous readings in a sensor network, anomalous traffic
between two components in a distributed network, snapshot
with broken correlation between network properties across

time, etc.
Given a static graph, one can find node, edge or subgraph

outliers. For dynamic graphs, the outliers could be time
stamps where the properties of the snapshot are significantly
different from the properties of other snapshots. In the dynamic
scenario, one can also identify a node (or an edge, or a
subgraph) which shows anomalous behavior across time as
an outlier. Popular outlier detection methods for static graphs
include the Minimum Description Length (MDL) method [10],
frequent subgraph mining, egonet analysis [5], and community
analysis [12], [14]. Popular methods for outlier detection for
dynamic graphs include graph similarity based methods [20],
temporal spectral analysis [19], temporal structural connectiv-
ity analysis [3], and temporal community analysis [15], [16].

While most work in the past on network outlier detection
has focused on graphs with node data and links, there is
very little work in the area of edge-attributed graphs. In some
cases, node data and linkage could be normal even when edge
data is abnormal, in the context of nodes on which the edge
is incident. With the rich variety of interactions in various
complex graphs across a variety of domains, it is critical to
incorporate such edge attributes in finding novel outliers. If we
could assign a latent community to every node and every edge,
a HCOutlier node is one which is linked to many nodes of
another community, or has incident edges belonging to another
community.

The following real-world examples demonstrate the impor-
tance of HCOutliers.
Organizational Graph Example: A graph of people working
in a company is called an organization graph. Edges represent
frequent communication. Role of a person can be considered
as the community label. Usually a chemist in a company would
communicate frequently with other chemists. But a suspicious
HCOutlier node would not just communicate frequently with
members of other roles, but also the community of the
communications would be different from the one expected for
its role. Such a person could be an activist planning a malicious
activity with other folks in the company, or a star performer
working on a secret collaborative project.
Co-authorship Graph Example: A co-authorship graph con-
tains authors as nodes. Two authors are connected if they
have published a paper together. On such graphs, research
areas can be considered as latent communities. Most authors
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collaborate with other authors, and publish papers in the same
research area. An HCOutlier would be an author who: (1)
collaborates frequently with authors from other research areas,
and (2) collaborates with other authors of same or different
community on papers which belong to other research areas.
Such authors perform inter-disciplinary research and are vital
in cross-pollination of concepts across research areas.
Co-actorship Graph Example: A co-actorship graph contains
actors as nodes. Two actors are connected if they have worked
in a movie together. On such graphs, movie genres can be
considered as latent communities. Most actors collaborate with
other actors, and work in movies in the same genre. An
HCOutlier would be an actor who: (1) collaborates frequently
with actors from other genres, and (2) collaborates with other
actors of same or different genre in movies which belong
to other genres. HCOutlier actors are ones who have built a
reputation for being multi-faceted actors with an eclectic range
of movies.
Limitations of Past Approaches: In the past, various ap-
proaches have been proposed by looking only at node data
and ignoring network structure. Clearly, HCOutliers cannot
be detected using such a global approach because HCOutlier
nodes belong to popular communities. There has been work
on finding community outliers for both homogeneous [12] and
heterogeneous graphs [14] by considering node data and link
structure but ignoring edge data. Clearly, such an approach
can identify some HCOutliers who are linked to nodes with a
different community label. But they cannot identify a HCOut-
lier who could be connected to nodes of the same community
label but has incident edges with a different community label.
Brief Overview of the Proposed Approach: We propose a
probabilistic model for detection of Holistic Community Out-
liers. We model the problem as a community detection task
where the outliers are modeled as a separate community. A
Hidden Markov Random Field (HMRF) is used to perform
joint community analysis for both nodes and edges considering
node data, edge data and the linkage structure. Thus, the
HMRF contains both nodes and edges from the graph as
vertices, referred to as a node-vertex and an edge-vertex
respectively. Community labels for outliers are sampled from
a uniform distribution while normal vertices could be sampled
from Gaussian or a multinomial distribution. EM is used for
the inference, and to compute the hidden community label Z
for every vertex.

We make the following contributions in this paper:
• We look at the community outlier detection problem from

a holistic perspective by incorporating node data, edge
data, and the linkage structure. Based on such a view, we
propose the problem of detecting novel HCOutliers.

• We model the problem as a community analysis task over
a HMRF and provide inference using an EM algorithm.

• Using several experiments on synthetic datasets and a
DBLP dataset, we show the effectiveness of the proposed
approach in identifying HCOutliers.

Section II gives a brief summary of related work. We de-
scribe our HMRF model in detail in Section III and present the

inference in Section IV. We discuss hyper-parameter settings
and initialization details in Section V. We provide details of
experiments on synthetic datasets and the DBLP dataset in
Section VI and conclude in Section VII.

II. RELATED WORK

Outlier detection has a long history and [2], [11], [18]
provide extensive overviews of popular methods; [6], [13]
focus on network outlier detection methods. Our work is
most related to two main sub-areas of network outlier detec-
tion: community-based outlier detection and analysis of edge-
attributed graphs, each of which is discussed below.

A. Community-based Graph Outlier Detection

Community-based outlier detection methods perform com-
munity analysis on graphs. Nodes that do not belong to
any community are labeled as outliers. Community-based
outlier detection has been studied both for static networks
and dynamic networks. The notion of community outliers has
been studied for static bipartite graphs using random walks
in [23], for static homogeneous networks using probabilistic
models in [12], and for static heterogeneous graphs using
non-negative matrix factorization in [14]. [22] summarizes
different anomaly detection methods in dynamic graphs such
as decomposition based methods [4], [24], distance based
methods [1]. Community based outlier detection method, for
dynamic graphs, is proposed for a two-snapshots setting in [16]
and for a series of snapshots in [15].

B. Analysis of Edge-attributed Graphs

Edge content indicates the type of relationship between the
two nodes. However very little work exists on analysis of
edge-attributed graphs. Qi et al. [21] proposed a edge-induced
matrix factorization based method for finding communities in
social graph using edge content. [8] proposed a method that
considers edge data of User-Likes-Pages Facebook graph for
temporal analysis to find the page-like pattern. [9] proposed a
method for mining coherent sub-graphs in multi-layer edges
by exploiting edge content. [17] proposed a method for finding
top-K interesting subgraphs matching a query template where
interestingness is defined using edge weights. We propose a
community-based outlier detection method for edge-attributed
graphs which jointly exploits edge content along with node
data and the linkage structure.

III. ANOMALY DETECTION USING NODE DATA, EDGE
DATA, AND LINKAGE

In this section, we develop the HMRF model which we
use to perform joint community analysis for both nodes
and edges considering node data, edge data and the linkage
structure. Consider an undirected graph G = {V,E}, where
V is the set of vertices and E is the set of edges.

Node and Edge Data: Let S be the set of observed data.
• Let Si represent the observed data of node vi ∈ V which

has p attributes, Si1 , Si2 , · · · , Sip .



• Let Sij represent the observed data of edge eij ∈ E,
i.e., edge data between nodes vi and vj , and there are q
number of attributes, Sij1 , Sij2 , · · · , Sijq .

HMRF Model: The HMRF contains a vertex representing
each node and each edge from G. We refer to the HMRF
vertices representing nodes and edges as node-vertices
and edge-vertices respectively. We use the index i to
refer to node-vertices in the HMRF, and the index ij to
refer to edge-vertices in the HMRF. We use the index b
to refer to all the vertices in the HMRF. Thus b ∈ B =
{1, 2, · · · , i, · · · , |V |, (1, 2), (1, 3), · · · , (1, |V |), (2, 3), · · · , (|V |−
1, |V |)}. Note that ij ∈ B if i < j. Thus, |B| = |V |+ |E|.
• Let X = {Xb} be a set of random variables. Xi generates

node data Si, and Xij generates edge data Sij .
• Let Z = {Zb} be the set of hidden random variables.
Zi indicates the community assignment of vi. Suppose
there are K communities, then Zi ∈ {0, 1, 2, · · · ,K}. If
Zi = 0, then vi is an outlier. If Zi = k, then vi belongs to
the community k. Similarly, Zij denotes the community
assignment for edge eij .

• Let W denote the weights in the HMRF. Wvi,vj is
set to the weight of the edge eij ∈ E and represent
edge strength. Wvi,vj ,eij are weights for a triangle clique
consisting of vi, vj and eij . Thus, |W | = 4|E| (3 faces
of the triangle formed by two node-vertices and an edge-
vertex, and the whole triangle itself).

Wvi,eij can be set in multiple ways. We set it to the inverse
of number of neighbors of vi in G. Thus, for a co-authorship
graph, this weight can be set to the inverse of the number of
co-authors of author vi in the graph. For a Twitter users graph,
this weight can be set to the inverse of the number of other
users that the user vi is connected to. In a directed network
sense, the weight can also be set to the ratio of the number of
tweets from user vi to user vj to number of total tweets from
user vi.
Wvi,vj ,eij should reflect some property of the triangle clique

which cannot be captured using individual edges. For a co-
authorship network, this could be set to ratio of number of
papers where authors vi and vj are co-authors to the total
number of papers on which either vi or vj are authors.
Similarly, for a Twitter user network, this weight can be set
to the ratio of tweets exchanged between users vi and vj to
the total tweets posted by either vi or vj .
Zb’s are influenced by their neighbors, i.e., if two nodes are

linked, it is likely that both belong to the same community.
This does not hold for the outliers. Let Ni denote the set of
neighbors of node vi. If Zi = 0, then vi is an outlier, and
so the neighborhood set is empty. Also, each node-vertex is
connected to the edge-vertex corresponding to the edges which
are incident on the node in G.

Ni =

{vj |Wvivj > 0, i 6= j, Zj 6= 0}∪
{exy|Wviexy > 0, x = i or y = i, Zxy 6= 0} Zi 6= 0

φ Zi = 0
(1)

Similarly, we also define neighbors for edge-vertices, Nij ,
as follows. Note that for an edge-vertex, the neighbors are only
the node-vertices on which the edge-vertex is incident except
for the case when these node-vertices are outliers.

Nij =

{
{vi|zi 6= 0} ∪ {vj |zj 6= 0} Zij 6= 0

φ Zij = 0
(2)

Data Likelihood: Let Θ = {θ1, θ2, .., θK} be the set of param-
eters describing the normal communities. Thus, likelihood for
node/edge data can be written as follows.

P (Xb = Sb|Zb = k) = P (Xb = Sb|θk) (3)

We assume the outliers follow uniform distribution as we
do not know beforehand which elements(node-vertex or edge-
vertex) are anomalous or what they look like.

P (Xb = Sb|Zb = k) = ρ0 (4)

where ρ0 is a constant.
Figures 1 and 2 illustrate a sample graph and its cor-

responding HMRF model. The graph has two communities,
blue and red. The node v5 has connection with the member
of blue community as if it is part of blue community but its
node attributes are similar to red community. Hence, in the
HMRF model, it is not connected to any other node, indicating
v5 as an outlier. The edge between v4 and v6 indicate the
cross-community collaboration and thus detected as interesting
nodes.

A. Cliques and Potentials in HMRF

As the community label assignment follows an HMRF,
we can define P (Z) = 1

H1
exp(−U(Z)) where U(Z) is the

potential function, defined as sum over all possible cliques.
We consider two kinds of clique potentials: pairwise (vi to

vj , vi to eij) and triangular (between vi, vj and eij). Then,
the potential function can be written as follows.

U(Z) = −λ1

∑
Wvivj

>0,

Zi 6=0,
Zj 6=0

Wvivj δ(Zi − Zj)

−λ2

∑
Wvieij

>0,

Zi 6=0,
Zij 6=0

Wvieij δ(Zi − Zij)

−λ2

∑
Wvjeij

>0,

Zj 6=0,
Zij 6=0

Wvjeij δ(Zj − Zij)

−λ3

∑
Wvivjeij

>0,

Zi 6=0,
Zj 6=0,
Zij 6=0

Wvivjeijψ(Zi, Zj , Zij)

(5)

where λ1, λ2, λ3 are constants, Wvivj > 0, Wvieij > 0,
Wvjeij > 0, Wvivjeij > 0, imply that there are links



Fig. 1: Original Graph G=(V,E)

Fig. 2: HMRF model of G indicating anomalous node v4, v5
and v6

connecting vi-vj , vi-eij , vj-eij and Zi, Zj , Zij are non-
zero. The δ function is defined as δ(x) = 1 if x = 0
and δ(x) = 0 otherwise. Also, ψ(Zi, Zj , Zij) = 1 if
δ(Zi−Zj) + δ(Zi−Zij) + δ(Zj −Zij) ≤ 1, and 0 otherwise.
Note that we define ψ this way to capture the intuition that
the clique potential should fire if at least two of the members
in the clique share the same community label. Overall, the
potential function suggests that, if members of the clique
are normal objects, they are more likely to be in the same
community when there exists a link connecting them in G,
and the probability becomes higher if their link (weight) is
stronger.

B. Probability of Generating the Data

Given the community label of a vertex (Zi or Zij)
in the HMRF, the corresponding data (Xi or Xij) can
be modeled as data generated from a distribution with
parameters specific to the community. Community labels
can be obtained using either Gaussian mixture model on the
data if it is continuous, or as multinomial if the data is textual.

Continuous Data: If the data is numeric and 1-dimensional,
we need to learn the mean (µk), and standard deviation (σk)
for each community k represented using a Gaussian. Given
the parameters and the community label, the log likelihood
can be written as follows.

lnP (Xi = Si|Zi = k) = − (Si − µk)2

2σ2
k

− lnσk − ln
√

2π (6)

In case of multi-dimensional data with p dimensions, the
log likelihood can be written as follows.

lnP (Xi = Si|Zi = k) = −
(Si − µk)T Σ−1k (Si − µk)

2

− ln Σk

2
− ln

√
(2π)p (7)

Discrete Data: If the node (or edge) data can be represented
as a document, we assume that the attributes (or words) are
independent of each other, given the community label.

P (Xi = Si|θk) =

p∏
c=1

P (Xic = Sic |θk) (8)

P (Xij = Sij |θk) =

q∏
c=1

P (Xijc = Sijc |θk) (9)

For text data, given a vocabulary of T words, let dbl be
the number of times the word l appears in data related to
vertex b. Then the parameters θk = {βk1, · · · , βkT } denote
the probability of a particular word belonging to community
k. Given the parameters, the data likelihood of an object
belonging to the kth community can be computed as follows.

lnP (Xic = Sic |Zi = k) =

T∑
l=1

dil lnβkl (10)

where βkl is the probability of the word with index l belonging
to community k.

IV. INFERRING Z AND ESTIMATING Θ

The model parameters Θ and the set of hidden labels Z
are unknown as described in Section III. In this section, we
describe methods to infer the hidden labels and also estimate
the model parameters.

A. Inferring Hidden Labels

Assuming the model parameters Θ are known, we find the
configuration Z that will maximize the posterior distribution
as follows.

Ẑ = arg max
Z

P (X = S|Z)P (Z) (11)

To find such a configuration, we use the Iterated Conditional
Modes (ICM) algorithm [7]. It is a greedy algorithm which
guarantees convergence to a local optima by sequentially
updating one Zb at a time assuming other Z’s (i.e., ZB−b)
as constant. At each step, the algorithm updates Zb given
Xb = Sb and the other labels such that the posterior
P (Zb|Xb = Sb, ZB−b) is maximized. If Zb 6= 0, applying
Bayes rule,

P (Zb|Xb = Sb, ZB−b) ∝ P (Xb = Sb|Z)P (Z) (12)



In Eq. 12, P (Z) can be computed using Eq. 5. But rather
than considering potential for the entire graph, Eq. 12 needs
potentials defined over only those cliques in which Zb is
involved. Thus, we can write the following equation for node-
vertices:

P (Zi|Xi = Si, ZB−{i}) ∝ P (Xi = Si|Z)×

exp(λ1

∑
vj∈Ni

Wvivj δ(Zi − Zj)

+ λ2

∑
exy∈Ni

Wviexyδ(Zi − Zxy)

+ λ3

∑
vj∈Ni,
exy∈Ni

Wvivjexyψ(Zi, Zj , Zxy))

(13)

Also, the corresponding equation for the edge-vertices can
be written as follows.

P (Zij |Xij = Sij , ZB−{(i,j)}) ∝ P (Xij = Sij |Z)×

exp(λ2

∑
vi′∈Nij

Wvi′eij δ(Zi′ − Zij)

+ λ3Wvivjeijψ(Zi, Zj , Zij))
(14)

Taking log of the posterior probability, we can transform the
maximizing posterior problem to minimizing the conditional
posterior energy function defined as shown in Eqs. 15 and 16
for node-vertices and edge-vertices respectively.

Ui(k) = − lnP (Xi = Si|Zi = k)− λ1

∑
vj∈Ni

Wvivj δ(k − Zj)

− λ2

∑
exy∈Ni

Wviexyδ(k − Zxy)

− λ3

∑
vj∈Ni,
exy∈Ni

Wvivjexyψ(k, Zj , Zxy)

(15)

Uij(k) = − lnP (Xij = Sij |Zij = k)

− λ2

∑
vi′∈Nij

Wvi′eij δ(Zi′ − k)− λ3Wvivjeijψ(Zi, Zj , k)

(16)

If Zb = 0, the vertex has no neighbors, and thus

P (Zb|Xb = Sb, ZB−{b}) ∝ P (Xb = Sb|Zb = 0)P (Zb = 0)
(17)

Hence,

Ub(0) = − ln(ρ0π0) = a0 (18)

Finally, the label Zb for vertex b in HMRF is set to
k ∈ {0, 1, · · · ,K} such that Ub(k) is minimized. The pre-
defined hyper-parameters, λ1, λ2, λ3, represent the importance
of the respective components of the graph structure. a0 is the
outlierness threshold. Algorithm 1 first randomly initializes
the labels for all vertices. At each step, labels are updated
sequentially by minimizing Ub(k).

Algorithm 1 Inferring Hidden Labels
Input: Node/Edge data S, weights W , set of model param-
eters θ, number of clusters K, hyper-parameters (λ1, λ2, λ3),
threshold a0, initial assignment of labels Z(1)

Output: Updated assignment of labels Z
1: Randomly set Z(0)

2: t← 1
3: while Z(t) is not close enough to Z(t−1) do
4: t← t+ 1
5: for b = 1; b ≤ |B|; i+ + do
6: Update Z

(t)
b = k which minimizes Ub(k) using

Eqs. 15, 16 and 18
7: return Z(t)

B. Estimating Parameters

In this subsection, we discuss a method for estimating
unknown θ from the data. θ describes the model that generates
node data and edge data. Hence we seek to maximize the
data likelihood P (X = S|θ) to obtain θ̂. However, since both
the hidden labels and the parameters are unknown and they
are inter-dependent, we use expectation-maximization (EM)
algorithm (as shown in Algorithm 2) to solve the problem.
We direct the reader to [12] for details.

The algorithm starts with an initial estimate of hidden labels
Z(1). Given the current configuration of hidden labels, we can
estimate model parameters as follows. For univariate numeric
data, µ(t+1)

k and σ(t+1)
k are estimated as follows:

µ
(t+1)
k =

∑|B|
b=1 P (Zb = k|Xb = Sb,Θ

(t))Sb∑|B|
b=1 P (Zb = k|Xb = Sb,Θ(t))

(19)

(σ
(t+1)
k )2 =

∑|B|
b=1 P (Zb = k|Xb = Sb,Θ

(t))(Sb − µk)2∑|B|
b=1 P (Zb = k|Xb = Sb,Θ(t))

(20)

For text data, given a vocabulary of T words, let dbl be the
number of times the word l appears in data related to vertex
b. Then, given the current configuration of hidden labels, we
can estimate parameters of the multinomial distribution βkl
for k ∈ {1, · · · ,K} and l ∈ {1, · · · , T} as follows:

β
(t+1)
kl =

∑|B|
b=1 P (Zb = k|Xb = Sb,Θ

(t))dbl∑T
l=1

∑|B|
b=1 P (Zb = k|Xb = Sb,Θ(t))dbl

(21)

Given the updated parameters, the new configuration of
hidden labels can be estimated using Algorithm 1 where
P (Zb = k∗|Xb = Sb,Θ

(t)) = 1 if k∗ = arg mink Ub(k),
and 0 otherwise.

In summary, the Holistic Community Outlier detection
algorithm shown in Algorithm 2 works as follows. It begins
with some initial label assignment of the vertices in the HMRF.
In the M-step, the model parameters are estimated using the
EM algorithm to maximize the data likelihood, based on the
current label assignment. In the E-step, Algorithm 1 is run
to re-assign the labels to the objects by minimizing U (k)

b for
each HMRF vertex sequentially. The E-step and M-step are



repeated until convergence is achieved, and the outliers are
the nodes that have 0 as the final estimated labels.

Algorithm 2 Holistic Community Outlier Detection
Input: Node/Edge data S, weights W , set of model param-
eters θ, number of clusters K, hyper-parameters (λ1, λ2, λ3),
threshold a0, initial assignment of labels Z(1)

Output: Set of Holistic Community Outliers
1: Randomly set Z(0)

2: t← 1
3: while Z(t) is not close enough to Z(t−1) do
4: M-step: Given Z(t), update parameters Θ(t+1) accord-

ing to Eqs. 19, 20 or 21.
5: E-step: Given Θ(t+1), update the hidden labels as
Z(t+1) using Algorithm 1.

6: t← t+ 1

7: return the indices of outliers: {i : Z
(t)
b = 0, b ∈ B}

V. DISCUSSIONS

In this section, we discuss how to set the hyperparameters
and how to initialize the hidden labels.

Setting Hyperparameters: The HCOutlier detection algorithm
has the following hyperparameters: threshold a0, clique im-
portance variables, λ1, λ2, λ3 and number of communities K.
λ1, λ2, λ3 indicate the importance of link between two

nodes, the importance of link between edge-vertex and a node-
vertex, and the importance of the triangle between the edge-
vertex and the node-vertices of which the edge is incident
respectively. If λs are set to low values, the algorithm will
consider only node information for finding the outliers. If their
values are set too high, all connected nodes will have the same
label, so an upper bound can be set for λ1+λ2+λ3, such that
a value above this bound will result into empty communities.
High λ1 will give more importance to the linkage in the graph.
High λ2 will give high importance to consistency between the
node data and edge data in the graph. High λ3 will give high
importance to consistency between the edge data and both the
incident nodes in the graph.

The threshold a0 can be replaced by another parameter (per-
centage of outliers r) as follows. In Algorithm 1, first calculate
Ẑi = arg mink Ui(k)(k 6= 0) for each i ∈ {1, · · · , |V |} and
then sort Ui(Ẑi) in non-descending order. Finally, select top
r percentage as outliers.
K represents the number of normal communities. For small

value of K, algorithm will find the global outliers, and for
large value of K many local outliers will be detected because
of many communities. An appropriate K can be set using a
variety of methods like Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), etc.

Initialization of labels: Instead of initializing Z randomly, we
initialize Z values by clustering the nodes without considering

outliers. To overcome local optima issues, we run the algo-
rithm multiple times with different initialization, and choose
the one with the largest data likelihood value.

VI. EXPERIMENTS

Evaluation of outlier detection algorithms is difficult in
general due to lack of ground truth. Hence, we perform
experiments on multiple synthetic datasets. We evaluate outlier
detection accuracy of the proposed algorithm based on outliers
injected in synthetic datasets. We evaluate the results on real
datasets using case studies. We perform comprehensive anal-
ysis of objects to justify the top few outliers returned by the
proposed algorithm. The code and the data sets are available
at [XYZ] (link not shared now for anonymity purposes). All
experiments are performed on a machine with Intel core i3-
2330M processor running at 2.20GHz and 4GB RAM.

We compare our algorithm with Community Outlier Detec-
tion Algorithm (CODA) [12]. CODA is also an algorithm for
community-based outlier detection which performs commu-
nity detection using node data and linkage; but ignores edge-
data completely.

A. Synthetic Datasets

We synthetically generate three graphs: Graph A
(|V |=1000), Graph B (|V |=10000) and Graph C (|V |=100000).
The node data is generated using 5 different Gaussian
distributions and similar procedure is followed to generate
edge data as well. Then for each of these graphs, different
percentage of outliers are injected by randomly changing the
data associated with 1%, 5% and 10% of the nodes.

We generate a variety of synthetic datasets by varying the
number of nodes in the graph, percentage of outliers injected
in the graph and percentage of outliers to be extracted by
the algorithm. Table I shows the synthetic dataset results
for the baseline (CODA) as well as the proposed algorithm
(HCODA). We set the number of clusters (K) to 5 for these
experiments (based on the generation process). We measure
the performance of the two algorithms from two perspectives:
firstly, accuracy of extraction of the injected outliers (OD
Acc.) and secondly, how well it assigns the community label
to all the nodes of the graph (CA Acc.). Note that each
cell of the table corresponds to average over five runs of
the algorithm. As the table shows, the proposed algorithm
(HCODA) is 6.2% more accurate than the baseline on average
in terms of outlier detection accuracy. Similarly, HCODA
is 2.2% better than CODA on average. The performance
is consistent across various graph sizes as well as across
different degrees of outlierness in the graph.

Hyperparameter Sensitivity: To understand the impact of var-
ious hyperparameters (λ’s), we performed a few experiments.
The results are shown in Figures 3, 4 and 5. Figure 3 shows
the sensitivity of the outlier detection accuracy with respect to
variation of λ3. We plot the curves for Graph A and B for the
case of 10% injected outliers and 10% outliers to be extracted.
Recall that λ3 is the weight for the triangular clique. As can



TABLE I: Synthetic Dataset Results on Graphs A, B and C (K=5; OD Acc.=Outlier Detection Accuracy, CA Acc.=Community
Assignment Accuracy; CODA is Baseline, HCODA is the proposed algorithm)

|V | % injected % extracted CODA [12] OD
Acc.

HCODA OD
Acc.

CODA [12] CA
Acc.

HCODA CA Acc. Average runtime of
HCODA (ms)

1000 1 1 1.000 1.000 0.714 0.713 898.6
1000 5 1 1.000 1.000 0.725 0.735 930
1000 5 5 0.760 0.800 0.739 0.756 899
1000 10 1 1.000 1.000 0.683 0.699 917.2
1000 10 5 0.960 0.980 0.720 0.738 913
1000 10 10 0.760 0.840 0.729 0.762 926
10000 1 1 0.690 0.730 0.770 0.784 9846.6
10000 5 1 0.970 1.000 0.740 0.755 10259
10000 5 5 0.746 0.780 0.758 0.777 10478.8
10000 10 1 1.000 1.000 0.705 0.718 10026.8
10000 10 5 0.958 1.580 0.741 0.757 9840.4
10000 10 10 0.795 0.814 0.759 0.777 9626.8

100000 1 1 0.722 0.735 0.773 0.787 120587
100000 5 1 0.995 0.996 0.747 0.762 113171.5
100000 5 5 0.751 0.789 0.764 0.783 113749.2
100000 10 1 0.997 0.999 0.698 0.714 104812.4
100000 10 5 0.946 0.974 0.733 0.751 103004
100000 10 10 0.784 0.808 0.750 0.770 100314
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Fig. 3: Sensitivity of λ3

be seen from the figure, higher values of λ3 are preferable but
in general any value greater than 0.5 is reasonable.

Figures 4 and 5 show the sensitivity of the outlier detection
accuracy with respect to variation of λ1 for both the proposed
algorithm (HCODA) and the baseline (CODA). Figures 4 is
the plot for Graph A while Figures 5 is the one for Graph B.
Both the plots are for the case of 10% injected outliers and
1% outliers to be extracted. Recall that λ1 is the weight for
the linkage in the original graph. As can be seen from the
figure, lower values of λ1 are preferable both in the case of
CODA as well as HCODA.

We noticed that the algorithm is not significantly sensitive to
the parameter λ2 and hence we do not show the corresponding
plot.

B. Four Area Dataset

DBLP (http://dblp.uni-trier.de/) contains information about
computer science journals and proceedings. Four Area is a sub-
set of DBLP for the four areas of data mining (DM), databases
(DB), information retrieval (IR) and machine learning (ML). It
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Fig. 4: Sensitivity of λ1 (Graph A)
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http://dblp.uni-trier.de/


consists of papers from 20 conferences (five per area): KDD,
PAKDD, ICDM, PKDD, SDM, ICDE, VLDB, SIGMOD,
PODS, EDBT, SIGIR, WWW, ECIR, WSDM, IJCAI, AAAI,
ICML, ECML, CVPR, CIKM. Thus, we consider the authors
who have published papers in these conferences, and work
with the co-authorship network (edge weight = co-authorship
frequency). The edge data consisted of a vector of size four
representing the count of papers co-authored in a particular
research area.

The graph contains a total of 42844 author nodes. Each
author is associated with a vector of size 20 containing
the count of papers published by an author in the twenty
conferences. There is an edge between two authors if they co-
authored a paper together and the count of such co-authored
papers is the weight Wvivj between two nodes.

The graph contains 118618 co-authorship edges. The
weight of the link between the author-vertex and the co-
authorship-edge-vertex in the HMRF (i.e., Wvieij ) is set to
the inverse of the number of co-authors of author vi in the
graph. Wvi,vj ,eij is set to ratio of number of papers where
authors vi and vj are co-authors to the total number of papers
on which either vi or vj are authors. We set the number
of communities to K=4 (i.e., four normal communities
and an outlier community). Also, we set the percentage of
outlier parameter r as 1%. The average execution time of the
lgorithm is 30.32 seconds.

Case Studies: Result of algorithm show that it is able to
identify interesting nodes(authors) and edges(co-authorship).
We validate the result produced by algorithm by manually
visiting the authors’ homepages. For example, work by Sameer
K. Antani is mainly in Clinical data standards and electronic
medical records, but he published a paper with authors work-
ing in information retrieval i.e. node data of Sameer K. Antani
is different from the fellow co-authors but the relationship is
similar to what two authors from information retrieval should
have and hence the algorithm has identified this node as
interesting one. Similarly, Ivo Krka mainly focuses on software
engineering and system modeling, however, he has published
a paper on data mining and hence identified by the algorithm.

The proposed algorithm also identified authors based on
the edge information. We discuss a few cases now. Anindya
Datta usually publishes in information systems, and Debra E.
VanderMeer usually publishes work related to design science
research, but their co-authored work is published on data
management and very large databases topics. Sabyasachi Saha
has co-authored papers with Sandip Sen on topics related
to artificial intelligence and he has also published work on
information and knowledge management with Pang-Ning Tan.
The algorithm was able to identify him because of his work
in multiple research areas.

VII. CONCLUSION

In this paper, we introduced a method (HCODA) that detects
novel Holistic Community Outlier graph nodes by taking into
account the node data and edge data simultaneously to detect

anomalies. We modeled the problem as a community detection
task using a Hidden Random Markov Model, where outliers
form a separate community. We used ICM and EM to infer
the hidden community labels and model parameters iteratively.
Experimental results show that the proposed algorithm con-
sistently outperforms the baseline CODA method on synthetic
data, and also identifies meaningful community outliers from
the Four Area network data.
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