
Sync-DRAW: Automatic GIF Generation using Deep Recurrent Attentive
Architectures

Gaurav Mittal∗

gaurav.mittal.191013@gmail.com

Tanya Marwah∗

IIT Hyderabad
ee13b1044@iith.ac.in

Vineeth N. Balasubramanian
IIT Hyderabad

vineethnb@iith.ac.in

Abstract

This paper introduces a novel approach for generating
GIFs called Synchronized Deep Recurrent Attentive Writer
(Sync-DRAW). Sync-DRAW employs a Recurrent Varia-
tional Autoencoder (R-VAE) and an attention mechanism in
a hierarchical manner to create a temporally dependent se-
quence of frames that are gradually formed over time. The
attention mechanism in Sync-DRAW attends to each indi-
vidual frame of the GIF in sychronization, while the R-VAE
learns a latent distribution for the entire GIF at the global
level. We studied the performance of our Sync-DRAW net-
work on the Bouncing MNIST GIFs Dataset and also, the
newly available TGIF dataset. Experiments have suggested
that Sync-DRAW is efficient in learning the spatial and tem-
poral information of the GIFs and generates frames where
objects have high structural integrity. Moreover, we also
demonstrate that Sync-DRAW can be extended to even gen-
erate GIFs automatically given just text captions.

1. Introduction
Naturally occurring images and videos are very complex

high-dimensional data, which makes them hard to model.
Over the years, several generative and discriminative ap-
proaches have been proposed to perform tasks such as clas-
sification and recognition on such data. However, very re-
cently, there has been a significant shift in how generative
models are trained and used in computer vision. Contem-
porary deep generative models not only aim to learn the un-
derlying distribution of the data but also in the process, at-
tempt to endow the network with the capability to discrim-
inate between two sets of input as well as create samples
resembling the training data. Among the generative models
that have been introduced in the last 2-3 years, Variational
Autoencoders (VAEs) [16] and Generative Adversarial Net-
works (GANs) [7] have emerged to be the most promising
deep learning-based approaches for image generation.

∗Equal Contribution

Figure 1. GIF frames automatically generated by Sync-DRAW us-
ing single-digit and two-digit bouncing MNIST GIFs datasets.

Existing efforts (described further in Section 2) in the
last couple of years have primarily focused on generation
of images using the aforementioned methods, by modeling
the spatial structure of a given training dataset [9][19][26],
as well as extending these methods to more novel applica-
tions such as adding texture/style to images [6]. Very lim-
ited work has been carried out in extending such genera-
tive models to videos, with most existing efforts focusing on
video prediction [24]. Instead, we propose a novel network
called Sync-DRAW which uses a Recurrent VAE to auto-
matically generate animated GIF sequences that are similar
to training GIF data. Sync-DRAW also takes a step further
by learning to associate GIFs with captions, and thus learn-
ing to generate GIF sequences conditioned on a human-
understandable stimulus such as text caption. To the best
of our knowledge, this work is the first effort to automat-
ically generate image sequences (GIFs) of this kind. Fig-
ure 1 shows examples of GIF frames generated by a trained
Sync-DRAW model.

In recent prior work, image generation using a VAE has
been performed using the Deep Recurrent Attentive Writer
(DRAW) architecture [9]. DRAW uses a Recurrent Vari-
ational Autoencoder (R-VAE) to generate an image as a
sequence of canvases over time, and an intriguing atten-
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tion mechanism which allows the generation to follow the
foveation of a human eye. The proposed Sync-DRAW com-
bines these two components in a novel hierarchical fash-
ion to allow the R-VAE to learn the entire video at a global
level, while having a local attention mechanism that attends
to each frame separately in ‘synchronization’; and hence,
the name Sync-DRAW. While the proposed work is relevant
to videos in general, we focus on the generation of animated
GIFs in this work primarily owing to the reason that consid-
ering such an effort has not been done before, GIFs provide
us with short well-defined image sequence settings to test
and validate the proposed ideas of this work. Besides, the
growth of social media has led to an increased use of ani-
mated GIFs, thus making generation of GIFs an interesting
application area by itself. Further, the increasing popular-
ity in the use of animated GIFs has also resulted in public
availability of GIF-based datasets such as [18].

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the background and earlier efforts related
to our work, Section 3 describes the proposed Sync-DRAW
methodology, Section 4 describes the experimental results
including the datasets used in this work, and Section 5 con-
cludes the paper with pointers to future work.

2. Background and Related Work
Over the last decade, deep learning models have seen

a rapid evolution in the way they are used for video pro-
cessing and understanding. While early efforts focused on
traditional feature learning and classification using Con-
volutional Neural Networks (CNNs) [13, 14, 23], subse-
quent efforts attempted to solve more interesting problems
such as semantic segmentation in videos of natural scenes
[4, 5, 20]. This was soon followed by the rise of Recurrent
Neural Networks (RNNs), which allowed deep models to
learn sequential information. The popularity of RNNs led
to several models of CNNs combined with RNNs to model
videos and their respective understanding, such as [2]. An
exciting phase in this evolution of deep learning models
over the last few years stands in our midst today, which
is the recent focus towards automatic generation of data
including applications such as handwriting generation [8],
character prediction [25], and image generation [9, 21].
This work is a contribution to this new and developing sub-
area of deep learning.

In order to effectively generate any meaningful informa-
tion such as an image, a learning model should be capable
of learning the latent hierarchy of feature representations for
any given data, thus explaining the success of deep archi-
tectures [1] in this regard. Initial efforts in generating such
data were based on Deep Belief Networks [10] and Deep
Boltzmann Machines [22], which contained many layers
of latent variables and millions of parameters. However,
their overwhelming dependence on Markov Chain Monte

Carlo-based sampling methods made them difficult to scale.
Over the last few years, these models have been replaced by
newer approaches such as Generative Adversarial Networks
(GANs) [7] and Variational Auto-Encoders (VAEs) [16],
which have proven to perform quite effectively on genera-
tive tasks, and have been shown to scale to large datasets. A
GAN comprises of a generator and a discriminator network
pitted against each other, where the generator network at-
tempts to fool the other by generating samples resembling
the dataset, and the discriminator attempts to differentiate
between these sampled images and classify them as real
or artificial. VAEs, on the other hand, have been devel-
oped based on principles from variational Bayesian infer-
ence [16], where a directed graphical model learns the latent
distribution of the data, and data is generated by sampling
from this latent distribution. The proposed work is built on
the VAE approach to data generation.

The Deep Recurrent Attentive Writer (DRAW) [9] was
the earliest work to utilize a Recurrent-VAE (R-VAE) to
learn to generate images by progressively refining an im-
age canvas over time using a sequence of samples gener-
ated from a learnt latent distribution. DRAW further com-
bines this R-VAE with an attention mechanism [17], which
allows the generated image to focus on one part of the im-
age at each timestep. This notion of attention resembles
human visual perception, and hence, has generated inter-
est and been used recently for related applications such as
generating captions for images [28] or even generating im-
ages from captions [19]. However, there has been no ef-
fort, to the best of our knowledge, on using such VAE-based
approaches to model spatio-temporal latent representations,
thereby generating image sequences/videos, which we ad-
dress in this work.

In the unsupervised domain, there have been a few recent
efforts that attempt to model videos using such generative
models, which primarily focus on video prediction. For ex-
ample, one of the earliest efforts in this regard, [24], seeks to
learn unsupervised video representations using Long Short-
Term Memory units (LSTMs) [11] to predict future frames
in videos. However, these approaches are fundamentally
different from the objectives of this work, since they do not
attempt to generate complete videos or GIFs from scratch.

As mentioned earlier, the efforts closest to this work
are DRAW [9] and AlignDRAW [19]. While we use a R-
VAE similar to the above efforts, our work uses the atten-
tion mechanism and the R-VAE differently in a hierarchi-
cal manner, where a single R-VAE is used at a GIF level
to capture spatiotemporal relationships, while we embed a
separate attention mechanism in each frame of the GIF to
capture local saliency. Further, we demonstrate that our ap-
proach holds the potential to automatically generate GIFs
from captions alone. We now describe the methodology be-
hind Sync-DRAW.



Figure 2. Sync-DRAW architecture: (a) depicts the architecture of Sync-DRAW highlighting the read and write mechanisms and the R-
VAE; (b) depicts the extensibility of Sync-DRAW to incorporate the sentence alignment mechanism for generation of GIFs from captions.

3. Sync-DRAW Methodology
To the best of our knowledge, our proposed Sync-DRAW

(Synchronized Deep Recurrent Attentive Writer) method-
ology is the first to use recent developments in Variational
Auto-Encoders to go beyond the generation of still images
and automatically learn to generate an animated GIF, which
is a sequence of temporally related frames. Our methodol-
ogy builds on the recently developed Deep Recurrent Atten-
tive Writer (DRAW) architecture [9], which however is only
restricted to generation of still images. DRAW comprises
of a Recurrent Variational Auto-Encoder (R-VAE) coupled
with an attention mechanism. These work together to gener-
ate an image by accumulating a sequence of canvases using
the attention mechanism that works well in the spatial do-
main. However, in order to generate a temporally related
sequence of frames, while it is trivially possible to have
separate R-VAEs for drawing each frame, this approach is
not practically feasible: (i) the number of frames in an im-
age sequence may not be fixed, thus making it infeasible
to decide the number of R-VAEs; and (ii) the number of
parameters to be learnt across the VAEs may explode expo-
nentially. Besides, this approach ignores the temporal rela-
tionship between the frames. In order to harness the spatio-
temporal relationships, we propose a hierarchical approach
where we have an R-VAE at the video level and an atten-
tion mechanism working at the frame level. We will later
see that keeping a different attention mechanism for every
frame is essential to ensure the objects in the GIFs have a

well defined structure and boundaries. We now describe the
architecture of Sync-DRAW.

3.1. Sync-DRAW Architecture

Let X = {x1, x2, · · · , xN} be a GIF comprising of
frames xi, i = 1, · · · , N where N is the number of frames
in the GIF. Let the dimensions for every frame be denoted
by A×B. We generate X over T timesteps, where at each
timestep t, canvases for all frames are generated in synchro-
nization. The Sync-DRAW architecture comprises of: (i) a
read mechanism which takes a “glimpse” (portion of im-
portance) from each frame of the GIF (Section 3.1.1); (ii)
the R-VAE, which is responsible to learn a latent distribu-
tion from these glimpses (Section 3.1.2); and (iii) a write
mechanism which finally generates a canvas for each frame
(Section 3.1.3). Additionally, our approach is extensible to
generate GIFs from just text captions, using the alignment
approach introduced in [19] (Section 3.2). The complete
network architecture in shown in Figure 2. Each of these
components of Sync-DRAW is described individually be-
low.

3.1.1 Read Mechanism

The read attention mechanism in Sync-DRAW is respon-
sible for reading a particular patch (“glimpse”) from each
frame xi at every timestep t. Similar to [9], the patch is read
by dynamically computing F tip and F tiq , which correspond



to a set (of size K, a user-defined parameter) of 1 × A and
1 × B-dimensional Gaussian filters respectively, for each
frame xi at timestep t, with ip and iq being the two spatial
dimensions of frame xi. (For convenience, we will refer
to F tip and F tiq as being of sizes K × A and K × B re-
spectively.) In order to compute these filters, we obtain the
following set of read attention parameters for each frame,
g̃tip , g̃

t
iq
, σti , δ̃

t
i , β

t
i where i ∈ {1, · · · , N}.

To ensure that g̃tip , g̃
t
iq

and δ̃ti lie within the frame dimen-
sions they are modified using the following equations:

gtip =
A+ 1

2
(g̃tip + 1); gtiq =

B + 1

2
(g̃tiq + 1)

δti =
max(A,B)− 1

N − 1
δ̃ti

gtip and gtiq are used to calculate the centers for the horizon-
tal and vertical filterbanks, F tip and F tiq , using the following
equations:

µtipu = gtip + (u−N/2− 0.5)δti (1)

µtiqv = gtiq + (v −N/2− 0.5)δti (2)

for u, v ∈ {1, · · · ,K}. σti serves as the standard deviation
for all filterbanks at timestep t and ith frame. F tip and F tiq
are hence obtained as follows:

F tip [u, a] =
1

Zip
exp

(
−

(a− µtipu )
2

2(σti)
2

)
(3)

F tiq [v, b] =
1

Ziq
exp

(
−

(b− µtiqv )
2

2(σti)
2

)
(4)

where a ∈ {1, · · · , A}, b ∈ {1, · · · , B}, u, v ∈
{1, · · · ,K} and Zip , Ziq are the normalization constants.

The last parameter, βti , plays a pivotal role in allowing
the network to learn the temporal relationships between the
patches read from the frames. It lets the model decide the
level of importance to be given to each frame for generating
the GIF at any time step. Before feeding to the R-VAE, the
patch read from each frame of the input GIF is scaled by its
respective βti , i ∈ {1, · · · , N} as follows:

read(xi) = βti (F
t
ip)xi(F

t
iq )

T (5)

where read(xi) is of size K ×K.

3.1.2 R-VAE

The R-VAE forms the core of the Sync-DRAW architecture,
and is responsible to generate a single sample from the la-
tent distribution of the entire GIF at each time step. The core
components of a standard R-VAE are the encoder LSTM,
LSTMenc (which outputs henc), the latent representation,
z, and the decoder LSTM, LSTMdec (which outputs hdec)

[3]. We now describe how we derive each of these compo-
nents in Sync-DRAW.

As mentioned earlier, the DRAW architecture [9] uses
an R-VAE along with an attention mechanism to draw a se-
quence of canvases (over T time steps) to finally generate a
still image. Instead, in the proposed Sync-DRAW architec-
ture, the R-VAE runs for T time steps and generates a set of
canvases Ct = {ct1, ct2, · · · , ctN} at every timestep t, where
σ(Ct) is the GIF generated after t timesteps. The fact that
the R-VAE works at the GIF level ensures that the canvases
for the frames across the GIF are generated in synchroniza-
tion and by doing so, the temporal dependencies between
the frames are preserved. At every t, we define a new quan-
tity, X̂t, which represents the error, as follows:

X̂t = X − σ(Ct−1) (6)

where σ is the sigmoid function, and X is the input GIF.
The LSTM-encoder at time t is then processed as follows:

htenc = LSTMenc

(
ht−1enc ,

[
Rt, ht−1dec

])
(7)

where Rt = [rt1, r
t
2, · · · , rtN ] with rti =

[read(xi), read(x̂
t
i)]. Next, htenc is used to compute

the variable zt which is sampled from the latent distribution
Q (Zt|htenc) (as in [9]). This sampling is carried out using
the reparameterization technique described in [9] and [19]:

zt ∼ Q
(
Zt|htenc

)
(8)

where zt is the global latent representation for the entire
GIF at time t. zt is used to generate the entire GIF, while
the local attention parameters (per frame) capture the tem-
poral intricacies and also the structure of the digits is main-
tained between the frames. zt is fed to the LSTM-decoder,
LSTMdec, producing htdec:

htdec = LSTMdec

(
ht−1dec , z

t
)

(9)

htdec is used to compute parameters for the write attention
mechanism as described in the next section. We note that
the read attention parameters (in Section 3.1.1) at time t
are computed using a linear function of ht−1dec , whose co-
efficients are learnt during training, and σ, δ̃, and β are de-
fined in the logarithm scale to ensure that values are always
positive.

3.1.3 Write Mechanism

As part of the write mechanism, we need two things per
frame: what to write, and where to write. The former is
obtained using an attention window, wt, which is computed
as a linear function of htdec, whose co-efficients are learnt
during training. The latter is obtained by defining a new set
of parameters (mirroring the parameters in the read mecha-
nism), which are now computed using htdec (as against using



ht−1dec for the read parameters). Next, a set of filterbanks F̂ tip ,
F̂ tiq are computed using these write attention parameters in
a similar fashion as in Section 3.1.1. Finally, the canvas cti
corresponding to every frame is created as follows:

write(htdec) =
1

β̂ti
(F̂ tip)

Twti(F̂
t
iq ) (10)

cti = ct−1i + write(htdec) (11)

For more information regarding the read and write mecha-
nisms, we refer the interested reader to [9].

3.2. Sync-DRAW with Text Alignment: Generating
GIFs from Captions

We can further extend Sync-DRAW to generate GIFs
given a caption by following the methodology in [19]. We
first train a separate bidirectional LSTM, LSTMlang (Fig-
ure 2b) on the captions. The encoding from LSTMlang,
hlang, is then used to generate an alignment of the captions
with ht−1dec to give a vector of alignment probabilities, αtk
(which capture the weight assigned to each word in the cap-
tion). Using these α’s, a sentence representation, st, for
each time step t, pertaining to the entire GIF, is computed
as:

st = αt1h
lang
1 + αt2h

lang
2 + . . .+ αtNh

lang
N (12)

αti =
exp(v> tanh(Uhlangi +Whgent−1 + b))∑N
k=1 exp(v

> tanh(Uhlangk +Whgent−1 + b))
(13)

Equation 9 is then modified by concatenating zt with st to
give the new LSTM-decoder:

htdec = LSTM t
dec

(
ht−1dec ,

[
zt, st

])
(14)

The rest of the components, read and write mechanisms,
remain the same.

3.3. Loss Function

The loss function for Sync-DRAW is composed of two
types of losses, both of which are computed at the GIF
level. The first is the reconstruction loss, LX , that is de-
fined as the binary cross-entropy loss between the pixels
comprising of the original GIF X and the corresponding
ones in the generated GIF, σ(CT ). Since the GIFs in
TGIF have been normalized to be between 0 and 1, they
are assumed to be color emission probabilities and hence
the same loss function can be used. The second is the
KL-divergence loss, LZ , defined between some latent prior
P (Zt) and Q(Zt|htenc) ∼ N (µt, (σt)2) and summed over
all T timesteps. We assume prior P (Zt) as a standard nor-
mal distribution and thus, LZ is given by (similar to [9]):

LZ =
1

2

(
T∑
t=1

µ2
t + σ2

t − log σ2
t

)
− T/2 (15)

The final loss is the sum of the two losses, LX and LZ .
When caption-based alignment is included, the loss

function for KL-divergence changes as the prior P can no
longer be assumed to a standard normal distribution. The
prior has to be conditioned on the sentence representation,
st, and the resulting loss will hence be:

LZ =

T∑
t=1

(µ− µprior)2 + σ2

σ2
prior

− 2 log
σ

σprior
(16)

where µprior = tanh
(
Wµh

t−1
dec

)
and σprior =

exp
(
tanh

(
Wσh

t−1
dec

))
, Wµ and Wσ being weight matrices

that are learnt during training.

Figure 3. Examples from GIF datasets used in this work:. (a)
Single-Digit Bouncing MNIST GIFs; (b) Two-Digit Bouncing
MNIST GIFs; (c) TGIF Dataset [18]

3.4. Testing Phase

To generate a GIF using Sync-DRAW during testing, a
sequence of zts are sampled from the learned latent distribu-
tion, Q(Zt|htenc), for T timesteps and fed to the LSTMdec

to generate the canvases which are accumulated to form the
final GIF (as in Equation 11).

4. Experimental Results
We now describe the experimental results of Sync-

DRAW. Considering the limited availability of GIF-based
datasets, we studied the performance on the follow-
ing datasets with increasing complexity: (i) Single-Digit



Bouncing MNIST GIFs (which has been used in similar ear-
lier efforts [12][24][27]), (ii) Two-digit Bouncing MNIST
GIFs; and (iii) TGIF, a recently developed GIF dataset [18].
Figure 3 shows sample GIFs from each of the datasets. The
Bouncing-MNIST dataset was created with text captions (as
described later in this section) to study the usefulness of
Sync-DRAW in generating GIFs from captions.

For all our experiments, the number of timesteps T is
taken to be 10. The choice of T is independent of the num-
ber of frames forming the GIFs. Further, the K for read and
write attention parameters was chosen to be 8. Stochastic
Gradient Descent with Adam [15] is used for training with
initial learning rate as 10−3, β1 as 0.5 and β2 as 0.999. Ad-
ditionally, to avoid gradient from exploding, a threshold of
10.0 was used.1

4.1. Baseline Methodology

Considering this is the first work, to the best of our
knowledge, on automatic GIF generation, there was no ex-
isting baseline methodology to compare against the per-
formance of Sync-DRAW. Hence, as our baseline method,
we designed another methodology to extend [9] to gener-
ate GIF images, by modeling the GIF as a spatio-temporal
cuboid and adding a set of filterbanks F tZ of size K × N
to operate over the temporal dimension (in addition to the
two filterbanks in the spatial dimensions). We present these
results for comparison later in this section.

4.2. Results on Single-Digit Bouncing MNIST

As in earlier work [12][24][27], we generated the Single-
Digit Bouncing MNIST GIF dataset by having the MNIST
handwritten digits move over time across the frames of the
sequence, as shown in Figure 3a. Each GIF contains 10
frames each of size 64 × 64 with a single 28 × 28 digit
either moving left-right or up-down. The initial position
for the digit in each GIF is chosen randomly in order to
increase variation among the samples. The training set con-
tains 12, 000 such GIFs.

The results of Sync-DRAW on Single Digit MNIST
GIFs are shown in Figures 4 and 6. The figures illustrate the
usefulness of the proposed Sync-DRAW methodology (an
R-VAE working at the video level and an attention mech-
anism working separately at the frame level) in gracefully
generating the final GIF as a sequence of canvases. When
compared to the baseline methodology results in Figure 5,
the quality of the generated digits is clearly superior with
the digits having well-defined structure and boundaries. An
interesting observation to point out is that while each frame
has its own attention mechanism in the proposed frame-
work, it can be seen that the same area of the digit is being
attended to at every timestep t in a synchronized manner,

1The codes and the relevant material can be found at https://
github.com/syncdraw/Sync-DRAW

Figure 4. Sync-DRAW results on Single-Digit Bouncing MNIST
GIFs (showing evolution of GIF over the timesteps). x-axis de-
notes the different frames of the GIF, while y-axis denotes the
evolution of the GIF over the T time steps.

Figure 5. Results of the baseline method (Section 4.1) on Single-
Digit bouncing MNIST GIFs

Figure 6. More results using Sync-DRAW results on Single-Digit
Bouncing MNIST GIFs

Figure 8. Results of the baseline method (Section 4.1) on Two-
Digit Bouncing MNIST GIFs

https://github.com/syncdraw/Sync-DRAW
https://github.com/syncdraw/Sync-DRAW


Figure 7. (a) Sync-DRAW results on Two-Digit Bouncing MNIST GIFs; (b) Sync-DRAW results on Two-Digit Bouncing MNIST GIFs
when captions are included. Clearly, the additional information helps in better capturing the ‘objectness’ of the digits.

Figure 9. More results using Sync-DRAW results on Two-Digit
Bouncing MNIST GIFs

even though they are present at different pixel locations in
each frame, thus validating the proposed methodology. This
observation is pivotal in emphasizing the need for the pro-
posed hierarchical approach (local attention-global genera-
tion) to GIF generation. More results pertaining to single-
digit Bouncing MNIST can be seen in Figure 6.

4.3. Results on Two-Digit Bouncing MNIST

Extending the Bouncing MNIST GIF dataset, we gener-
ated the two-digit Bouncing MNIST GIF dataset where two
digits move independent of one another, either up and down
or left and right, as shown in Figure 3b. The dataset consists
of a training set of 12, 000 GIFs, with each GIF containing
10 frames of size 64× 64 with two 28× 28 digits. In order
to ensure variability, the initial positions for both the digits
were chosen randomly. In case of an overlap, the intensities
are added, clipping the sum if it goes beyond 12.

The results of applying Sync-DRAW to this two-digit
Bouncing MNIST dataset are shown in Figures 7a and 9.

2All the Bouncing MNIST datasets are normalized to values lying be-
tween 0 and 1.

The figures show that Sync-DRAW attends to both the digits
at every time step simultaneously. In the initial time steps,
a single structure is formed which then breaks down to give
the two digits in the subsequent time steps. We believe that
this is the reason that though the digits that are generated
have a well defined structure and a boundary, they are still
not as clear as when compared to results on the Single-Digit
Bouncing MNIST GIFs. We infer that there is a need for a
“stimulus” for the attention mechanism to know that there
are two digits that need to be attended to. This claim is
substantiated in the subsequent sections where we include
alignment with captions in the Sync-DRAW approach, giv-
ing the attention mechanism this required stimulus. Once
again, the baseline method performs rather poorly as shown
in Figure 8.

4.4. Results on TGIF Dataset

The recently released TGIF dataset [18] is perhaps the
only publicly available GIF dataset, to the best of our
knowledge, containing around 100,000 GIFs. As shown in
Figure 3c , these GIFs vary significantly in complexity. We
studied the performance of Sync-DRAW on a subset from
the TGIF dataset, where each of the GIFs contained one
person. The frames were converted to grayscale, and the in-
tensity values were normalized to lie between 0 and 1. The
frames are resized to 128× 128 after appropriately padding
with zeros. We then chose 10 random frames from each GIF
(maintaining their sequence), which were then used for our
experiments. Figure 10 shows some of the GIFs generated
by Sync-DRAW. These results suggest that even for a highly
complex input data, the proposed approach is able to under-



stand the scene and its intricacies and therefore, preserves
the structural integrity of the objects across the frames to a
good extent.

Figure 10. Sync-DRAW results on TGIF dataset: Three different
GIFs generated from the trained model at test time (we don’t show
the evolution over the timesteps due to space constraints).

4.5. Generating GIFs from Captions

As discussed in Section 3, the proposed Sync-DRAW
methodology can be easily extended to generate GIFs from
captions, building on earlier work which was proposed to
generate images from captions [19]. For every GIF in the
MNIST GIFs dataset, a sentence caption describing the GIF
was included in the dataset. For the Single-Digit Bounc-
ing MNIST GIFs, the concomitant caption was of the form
’The digit 0 is moving left and right’ or ’The digit 9 is mov-
ing up and down’. We restricted to these two motions in
our dataset. Hence, for the single-digit dataset, we have 20
different combinations of captions. In order to challenge
Sync-DRAW, we split our dataset in such a way that for all
the digits, the training and the test sets contained different
motions for the same digit, i.e. if a digit occurs with the mo-
tion involving up and down in the training set, the caption
for the same digit with the motion left and right (which is
not used for training) is used in the testing phase. Figure 11
shows some of the GIFs generated from captions present in
the test set. It can be observed that even though the caption
was not included in the training phase, Sync-DRAW is able
to capture the implicit alignment between the caption, the
digit and the movement fairly impressively.

Figure 11. Sync-DRAW generates GIFs from just captions on the
Single-Digit Bouncing MNIST: Results above were automatically
generated by the trained model at test time.

Figure 12. Sync-DRAW generates GIFs from just captions on the
Two-Digit Bouncing MNIST: Results above were automatically
generated by the trained model at test time.

We conducted similar experiments for the Two-Digit
Bouncing MNIST GIFs, where the captions included the
respective motion information of both the digits, for ex-
ample ’The digit 0 is moving up and down, and digit 1 is
moving left and right’. Figure 12 shows the results on this
dataset. Interestingly, in Figure 7b, we notice that when
Sync-DRAW is conditioned on captions, the quality of the
digits is automatically enhanced, as compared to the results
in Section 4.3 (Figure 7a). These results give the indica-
tion that in the absence of captions (or additional stimuli),
the attention mechanism in Sync-DRAW focuses on a small
patch of a frame at a time, but possibly ignores the presence
of different objects in the scene and visualizes the whole
frame as one entity. However, by introducing the alignment
w.r.t. captions, the attention mechanism receives the much
needed “stimulus” to differentiate between the different ob-
jects and thereby cluster their generation, resulting in GIFs
with better resolution. This is in concurrence with the very
idea of an attention mechanism, which when guided by a
stimulus, learns the spatio-temporal relationships in the GIF
in a significantly better manner3.

5. Conclusions and Future Work
This paper presents Sync-DRAW, a new approach to au-

tomatically generate animated GIFs using a Recurrent Vari-
ational Auto-Encoder and an attention mechanism, com-
bined together in a hierarchical manner. We demonstrate
Sync-DRAW’s capability to generate increasingly complex
GIFs starting from Single-Digit Bouncing MNIST to more
complex GIFs from the TGIF dataset. We also demon-
strate the capability of Sync-DRAW to be easily extended
to generate GIFs for a given caption. The results show great
promise in this approach. Our ongoing/future efforts in-
clude extending this work longer video sequences as well

3More results and analysis are included in the Supplementary Materials
due to space constraints



as creating natural videos from captions.
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