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Abstract

In this paper, we consider the problem of preserving acyclicity in a directed graph (for
shared memory architecture) that is concurrently being updated by threads adding/deleting
vertices and edges. To the best of our knowledge, no previous paper has presented a con-
current graph data structure. We implement the concurrent directed graph data-structure
as a concurrent adjacency list representation. We extend the lazy list implementation of
concurrent linked lists for maintaining concurrent adjacency lists. There exists a number of
graph applications which require the acyclic invariant in a directed graph. One such example
is Serialization Graph Testing Algorithm used in databases and transactional memory. We
present two concurrent algorithms for maintaining acyclicity in a concurrent graph: (i) Based
on obstruction-free snapshots (ii) Using wait-free reachability. We compare the performance
of these algorithms against the coarse-grained locking strategy, commonly used technique
for allowing concurrent updates. We present the speedup obtained by these algorithms over
sequential execution. As a future direction, we plan to extend this data structure for other
progress conditions.

Keywords: concurrent graphs; acyclicity; lazy list; directed graph; obstruction free; wait-
free

1 Introduction

As we know, graphs are present everywhere and many common real world objects can be
modeled as graphs. The graphs represent pairwise relationships between objects along with
their properties. Graphs are being used in various fields like: genomics, networks, coding theory,
scheduling, computational devices, networks, organization of similar and dissimilar objects, etc.
The current trends of research on graphs are on: social networks, semantic networks, ontology,
protein structure [12], etc. Generally, these graphs are very large and dynamic in nature.
Dynamic graphs are those which are subjected to a sequence of updates like insertion or deletion
of vertices or edges [9]. Online social networks (facebook, linkedin, google+, twitter, quora, etc.),
are dynamic by nature. The problems being addressed in the context of dynamic graphs are:
finding cycles, graph coloring, minimum spanning tree, shortest path between a pair of vertices,
strongly connected components, etc. There are many efficient well-known algorithms for solving
these problems in the sequential world. This problem has been well explored even in the area of
distributed systems. Distributed graph analytics are used to perform computations on extremely
large graphs with billions of vertices and hundreds of billions of edges in a distributed manner.
However, in the concurrent setting (where multiple threads access the shared memory data
structure concurrently allowing synchronization via locks), to the best of our knowledge, there
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is no efficient concurrent data structure that captures this inherent nature of concurrent updates
to a graph.

We have been specifically motivated by the problem of Serialization Graph Testing (SGT)
[16, 28, 30] in the context of Software Transactional Memory (STM) systems. A STM system
handles the concurrency control over set of software transactions running concurrently. A trans-
action is a block of code accessing shared memory variables, which should execute atomically.
SGT is a scheduling algorithm which maintains a conflict graph over all transactions. A conflict
graph characterizes every transaction as a vertex and all conflicts as directed edges that respect
the ordering of the conflicting transactions [30]. The conflict graph gets modified dynamically
by addition or deletion of vertices and edges arriving at the scheduler.

Figure 1: An example of a directed acyclic graph in the shared memory which is being accessed
by multiple threads. Thread 1 is trying to add a vertex 10 to the graph. Thread 2 is concurrently
invoking a remove vertex 3 call. Thread 3 is also concurrently performing an addition of directed
edge from vertex 9 to vertex 8 and which will later create a cycle.

The correctness - opacity [13] property is maintained by ensuring that the conflict graph
remains acyclic. When a set of transactions arrive concurrently at the scheduler, then the dy-
namic conflict graph can be tested for cycles by its global synchronization (coarse locks). This
implementation can be speeded up by improving the concurrency among threads by providing
finer granularities of synchronization. However, to the best of our knowledge, no previous work
has explored this problem in the concurrent world.

A conceivable solution to the sequential cycle detection in directed graphs is to use depth first
search and check for any back edges. This gives linear time complexity for static graphs, which
performs well even for large graphs. This gets complicated if the graph is huge and multiple
threads are concurrently accessing the graph and performing some operations as depicted in
Figure 1. Hence, there is a need to define a correct concurrent graph data-structure to support
dynamism with proper synchronization. Therefore, in this paper, we show how to construct a
fully dynamic concurrent graph data structure, which allows threads to concurrently add/delete
vertices/edges. Moreover, we also present two algorithms for preserving acyclicity of this con-
current graph.

The main contributions of this paper are as follows:

• A concurrent directed graph data structure represented by adjacency list that has been
implemented as a concurrent set based on linked list [17].

• Two algorithms: obstruction-free snapshots & wait-free reachability for detecting cycle in
the fully dynamic concurrent graph.
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• Experimental analysis of the presented concurrent data structure under varying work-
load distributions which demonstrate the concurrency obtained against the coarse locking
strategy.

• A proof sketch for proving the linearizability of all the presented methods by using lin-
earization points and using invariants. The proof-sketches illustrate the properties of the
concurrent graph and its acyclicity. We also give a proof-sketch of the progress conditions
of our methods.

The organization of the paper is as follows: The section 2 describes the system model and some
related work. In the section 3, we define the problem being addressed along with the underlying
assumptions. The section 4 describes the construction of a fully dynamic concurrent list based
adjacency list data structure along with the working of each of its methods. Section 5 presents
the solution approaches for preserving acyclicity of this dynamically changing graph. Here,
we also provide a proof sketch of the progress guarantees these methods provide. Results and
experimental analysis are given in the section 6 and finally we conclude and present the future
direction in the section 7. The Appendix at the end of the paper describes the proof sketch
of the correctness of the presented algorithms and also furnishes the pseudo-codes of all the
described algorithms.

2 Preliminaries

2.1 System Model

In this paper, we assume that our system consists of n processors, accessed by p threads that run
in a completely asynchronous manner and communicate using shared memory. Consequently,
we make no assumption about the relative speeds of the threads. We also assume that none of
these processors and threads fails.

2.2 Linearizability

To prove a concurrent data structure to be correct, linearizability is a popular correctness
criterion in the concurrent world. The history is defined as a collection of set of invocation
and response events. Each invocation of a method call has a subsequent response. Herlihy and
Wing [21] define a history to be linearizable if,

1. The invocation and response events can be reordered to get a valid sequential history.

2. The generated history satisfies the object’s sequential specification.

3. If a response event precedes an invocation event in the original history, then this should
be preserved in the sequential reordering.

A concurrent object is linearizable iff each of its histories is linearizable.

2.3 Progress Conditions

In this subsection, we briefly describe various progress conditions for the methods of a concurrent
object as defined in the literature [20]. Some of the progress guarantees which are used in this
paper are mentioned as follows:

(1) Blocking : In this, an arbitrary and unexpected delay by any thread (say, one holding a
lock) can prevent other threads from making progress.
(2) Deadlock-Free : This is a weak blocking condition which ensures that some thread trying
to acquire the lock, eventually succeeds.
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(3) Non-blocking : This condition ensures that threads competing for a shared resource do
not have their execution indefinitely postponed by mutual exclusion.
(4) Wait-free : This is a non-blocking condition in which a method is wait-free if every thread
that calls that method eventually returns within a bounded number of its own time steps.
(5) Obstruction-free : A method is obstruction-free if every thread that calls that method
returns if that thread executes in isolation (uninterrupted) for long enough.

Some research suggests that obstruction-free is often sufficient condition to many practical
systems, and is much easier to achieve [18]. In this paper, we describe an Obstruction-free
atomic snapshot based and Wait-free cycle detection on a concurrent directed graph.

2.4 Related Work

There has been a lot of work on incremental cycle detection [15,27] in the sequential environment.
A nice classical result of graph theory is that a directed graph is cycle-free if and only if it has
a topological order [8], or rather if the strong components of a directed graph can be ordered
topologically. For static directed graphs, there are two O(m)-time algorithms to find a cycle
or a topological order and depth-first search [22, 24]:the reverse postorder defined by such a
search is a topological order if the graph is acyclic. Depth-first search extends to find the strong
components in a directed graph and a topological order of them in O(m) [24].

The problem of cycle detection has also been well explored in distributed systems. The
problem was proposed by Chandy, et al. [7] and it has also been explored by [2, 10, 23, 25, 26].
They use local wait-for-graphs(WFG) [29] to detect cycle in the local copy and then probe to
confirm the existence of cycle in the global WFG.

The snapshot problem was discussed by Guerraoui and Ruppert [14]. Snapshots will not
be consistent if we read one value at a time [11]. The problem lies in the fact that the first
value read might have become outdated by the time later values are read. Therefore there is a
need of an atomic implementation of snapshot [1]. Snapshots have been well explored even in
distributed systems [4, 5].

3 Problem Definition

The problem addressed in this paper is defined as here:

1. A concurrent directed graph G = (V,E) is dynamically being modified by a fixed set of
concurrent threads. In this setting, threads may perform insertion / deletion of vertices
or edges to the graph.

2. We also maintain the invariant that the concurrent graph G updated by concurrent threads
should be acyclic. This means that the graph should preserve acyclicity at the end of every
operation in the generated equivalent sequential history.

An important assumption here is that the key size of vertices is finite. Also, all the vertices
are assigned unique keys. Since the motivation for maintaining such a concurrent graph is
Serialization Graph Testing Algorithm, we impose a constraint of not allowing same vertex
id’s to come again because transactions always come with increasing id’s. This means that if a
vertex id has been removed then it will not be added again to the concurrent graph G. However,
this constraint can be lifted after making minor modifications (like using timestamps for the
cycle detection method using snapshots) to the algorithm.
In this section, we describe the interface of the fully dynamic concurrent graph data structure.
We represent a graph using adjacency list representation, which is a list of linked lists as depicted
in the Figure 2 and 3. The underlying concurrent linked list implementation is an adaptation
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Figure 2: An example of a directed graph

Figure 3: Adjacency List corresponding to the graph depicted in Figure 2

of the concurrent set. Each vertex list and edge list corresponding to each vertex is stored in
sorted manner, similar to the set implementation.
Our concurrent directed adjacency list exports the following methods:

1. The AddVertex(u) method adds a vertex u to the graph, returning true if, and only if
vertex u was not already there else returns false.

2. The RemoveVertex(u) method deletes vertex u from the adjacency list, returning true if,
and only if u was already there else it returns false.

3. The AddEdge(u, v) method adds a directed edge (u, v) to the concurrent graph, returning
true if, and only if (u, v) was not already present in the graph else returns false. It then
invokes the CycleDetect method to verify if the inserted edge caused a cycle. If a cycle
has been detected then the edge is deleted by invoking RemoveEdge(u,v).

4. The RemoveEdge(u,v) method deletes the directed edge (u, v) from the concurrent adja-
cency list, returning true if, and only if (u, v) was already there else it returns false.

5. The ContainsEdge(u,v) returns true if, and only if the lazy list contains the edge (u, v)
else returns false.

6. The ContainsVertex(u) returns true if, and only if the lazy list contains the vertex u else
returns false.

A typical application uses significantly more ContainsEdge(u,v) and ContainsVertex(u) calls
than the update calls.

5



4 Construction of Concurrent List based Directed Graphs

Till now, to the best of our knowledge, no concurrent adjacency list data structure has been
proposed. Hence, when multiple threads simultaneously update the graph data structure, it is
done by using coarse locks on the method calls. The problem with this is that when multiple
threads try to access the concurrent data structure at the same time, then the data structure
becomes a sequential hold-up, forcing threads to wait in line for access to the lock. This graph
data structure can be used as a fundamental building unit for different granularities of synchro-
nization. In this paper, we consider lazy synchronization of concurrent set implemented using
linked lists [17] to implement dynamically changing adjacency lists data structure1. Instead of
maintaining a coarse lock on the adjacency list as a whole, we maintain locks for individual
vertex and edge nodes in the adjacency list to increase the concurrency. Lazy synchronization
further increases concurrency by allowing traversals to occur without acquiring locks. Once the
correct nodes have been found and locks have been acquired, then the thread validates if the
locked nodes are indeed correct. If before acquiring locks, some other thread has updated the
data structure and wrong nodes were locked, then the locks are released and traversals start
over.

4.1 Working of the Add methods

The AddV ertex(u) method is blocking, with its implementation being no different from the
add method in the concurrent lazy linked list. When a thread wants to add a vertex to the
concurrent graph, then it traverses the vertex list without acquiring any locks until it finds a
vertex with its key greater than u, say curr. It then acquires lock on the vertex preceding curr
and curr itself and validates to check if curr is reachable from its predecessor, say pred, and
both the nodes have not been deleted (marked). The algorithm maintains an invariant that all
the unmarked vertex and edge nodes are reachable. If the validation succeeds, then the thread
adds the vertex u between pred and curr in the vertex list and returns true after unlocking the
vertices. If it fails, then the thread starts the traversal over after unlocking the locked vertices.

The AddEdge(u, v) method has now been extended to first check the vertex list for ContainsV ertex(u)
and Contains-V ertex(v). Once the vertices u and v are validated to be reachable and unmarked
in the vertex list, the thread then traverses the adjacency list of vertex u to add a edge node for
the vertex v without acquiring locks. Once a edge node with key greater than v is encountered,
say curr, locks are obtained on the predecessor of the curr edge node and curr node itself. After
this, validation is performed to check if the respective edge nodes are unmarked and reachable.
If the validation is successful, then the new edge node is added in between pred and curr in the
edge list of u. If this method returns true, then the graph acyclic property maybe violated. To
identify this, the method invokes CycleDetect. In section 5, we provide two solution approaches
for cycle detection in the concurrent graph environment. At any instant, when a new directed
edge is added to the graph, the concurrent graph is checked for maintaining acyclicity. If it does
not preserve, then the edge is removed.

4.2 Working of the Remove methods

The RemoveEdge(u,v) method proceeds similar to the Add-Edge(u, v) by traversing the vertex
list in the adjacency list, without locks and then verifying that the vertices u and v are indeed
present in the graph. The thread then traverses the edge list of u without acquiring locks and
then validating them. Once the edge node to be deleted and its predecessor have been locked,
then logical removal occurs. Logical removal involves setting the marked field of the node to
true. Physical deletion of edge nodes can take place along with logical removal. This is because

1The complete pseudo code of the algorithms are given in the Appendix in Listings 1 - 10
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the edges in the concurrent graph are directed and a edge needs to be removed only from one
list. Physical deletion involves changing the pointer of the predecessor of the marked node to
its successor so that the deleted node is no longer reachable in the edge list.

The RemoveV ertex(u) method proceeds similar to the AddVertex(u). Once the vertex to be
deleted and its predecessor have been locked, then logical removal occurs. This ensures that
if any edge is being added or removed concurrently corresponding to that vertex, then it will
fail in the validation process after checking the marked field. Physical deletion of a vertex node
is more complicated as all edges corresponding to that vertex also need to be deleted from
the concurrent graph. This is done by performing a traversal to check if the deleted vertex is
contained in the adjacency list of any other vertex node. If the vertex is found, then locks are
obtained on the pred and curr edge nodes respectively and the deleted edge node is marked
(Logical removal). Consequently, the edge nodes are also physically deleted while locks have
been acquired.

4.3 Working of the Contains methods

Methods ContainsV ertex(u) and ContainsEdge(u, v) are wait-free and traverse the adjacency
list without acquiring locks. These methods return true if the vertex/edge node it was searching
for is present and unmarked in the adjacency list and false otherwise.

It can be seen that all the update calls are blocking (use locks) and they are deadlock-free. All
the methods described above are linearizable. The proof sketch is described in the Appendix
Section.

5 Maintaining Graph Acyclicity

In this section, we consider the problem of maintaining an invariant of acyclicity in this con-
current dynamic graph data structure. For a concurrent graph to be acyclic, it means that
the graph should maintain the acyclic property at the end of each operation in the equivalent
sequential history constructed after the linearization of the concurrent history. For this, we
present two algorithms for concurrent cycle detection providing different progress guarantees.
It is easy to see that a cycle can be created only on addition of edge to the graph. After the
edge has been added to the graph (in the shared memory), we then verify if the resulting graph
is acyclic. If it is, we leave the edge. Otherwise, we delete the edge from the shared memory.
The subsections here present approaches for detecting cycle in this concurrent setting of graph.

5.1 Obstruction-Free Snapshot

The atomic snapshot-object based problem was first introduced by Anderson [3] and Afek, et
al. [1] in 1990, and since then substantial research work has been done in the fields of both
shared and distributed memory environments. In a concurrent setting, when multiple threads
are acting upon the shared memory graph data structure consisting of m components, shared
by upto n concurrent threads, a thread can invoke the update method for adding or deleting
vertices/edges. The CycleDetect method invokes scan which returns an atomic snapshot of the
graph data structure. In this context, the method captures the snapshot of the entire shared
memory adjacency list. Here, we consider the obstruction-freedom snapshot, which ensures
termination only for threads that eventually execute uninterrupted by any other threads. This
approach has been inspired from [4, 5] which identifies a stable property by taking consistent
snapshots over a period of collected states of the computation.

The atomic obstruction-free method is described by the scan which invokes the collect
method. The collect is the non-atomic act of copying the entire adjacency list values one-
by-one into a local copy. Since the key size if finite, the adjacency lists are finite. Hence a single
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Figure 4: An execution of obstruction-free snapshot. Figure (a) is the initial snapshot collected
by a thread. Figure (b) is the second snapshot by the same thread. It is seen that this snapshot
and one collected before are different. Figure (c) The thread takes a snapshot for the third time
and this time the snapshot is the same as the second one. Now, sequential cycle detection can
be invoked on the third snapshot and a cycle is detected.

collect will terminate in finite number of steps. The scan method repeatedly performs two col-
lects: oldCopy and newCopy one after the other with some time interval. If both collects read
the same set of values as well as marked field, then we know that there was an interval during
which no other thread updated the data structure, so the result of the collect is a snapshot of
the system state immediately after the end of the first collect. Such a pair of collects is called
a clean double collect.

A clean double collect is also correct because the data structure maintains the underlying as-
sumption that the keys of the vertices are unique and a vertex which was once removed will
never get added back with the same key. Hence this collect would exist into the shared memory
at some instant. Since, a clean double collect can only be collected if the snapshot thread runs
in isolation (without being interrupted by any other thread invoking updates) for the duration
of two collects, this method is obstruction-free. After getting a valid collect, we invoke any
sequential cycle detection algorithm (for example, one-way search algorithm [6]) on that col-
lect. If a cycle is found, then the edge which caused the cycle is removed from the concurrent
graph else the algorithm continues normally. An example of this is depicted in Figure 4 and
the complete pseudo code is described in Listing 11 in the Appendix Section respectively.

5.2 Wait-Free Reachability

Definition (Reachability). Given a directed graph, G = (V,E) and two vertices u, v ∈ V , a
vertex v is reachable from another vertex u, iff there exists a path from the vertex u to v in G.

By using this reachability definition, we define a method for cycle detection in concurrent
directed graphs. Before invoking this method, AddEdge has already returned true. So this is to
check if there exists a path from v to u in the concurrent graph. The reachability method creates
a local ReachSet of all vertices reachable from v, with a explored boolean field corresponding to
each vertex in this set. The reachability method begins by traversing the adjacency list of v to
find u in the concurrent graph, without acquiring locks. All these traversed vertices edge nodes
are added to the local ReachSet and the vertex v is marked to be explored. Now, the method
recursively visits (similar to breadth first traversal) the outgoing edges from the neighbours of
v to find u. Clearly, this is done until all the vertices in all the paths from v to u in G have
been explored or a cycle has been detected in the graph.

However, in the concurrent setting, the set of vertices in the path keep varying dynamically.
Since the key size is finite and all keys are unique, the adjacency list will be traversed in finite
number of steps. Also, since there can only be a finite number of vertices in the path from v
to u, this method will terminate in a finite number of steps. We define reachability without

8



acquiring any locks and it terminates in a finite number of steps, so it satisfies wait-freedom
guarantee. A side-effect to be observed here is that this method may allow false positives. This
means that the algorithm may detect a cycle even though the graph does not contain one. This
can happen in the following scenario: Two threads T1 and T2 are adding edges corresponding
to a single cycle. In this case, both threads detect that the added edge has lead to formation of
a cycle and both may invoke remove edge. However, in a sequential execution, one of the edge
would have not been needed to be removed.

Figure 5: An execution of wait-free reachability for concurrent cycle detect. Figure (a) is the
initial graph when a thread 1 is trying to concurrently add edge (3,7) to the graph. Figure (b)
depicts the graph when thread 1 has finished adding edge (3,7) and is invoking cycle detect.
Concurrently, thread 2 is trying to add edge (4,7). Figure (c) shows the reachability path from
vertex 7 to 3 as computed by thread 1. A cycle has now been detected and hence the edge
(3,7) will now be removed. Similarly, the thread adding edge (4,7) will also invoke cycle detect
afterwards and remove it.

It can be easily seen that this method is a straight forward extension of the wait-free contains
call of lazy concurrent linked list implementation. Once a cycle has been detected, then the
edge which caused the cycle is removed from the concurrent graph else the algorithm proceeds
normally. An execution of the algorithm is illustrated in Figure 5 and the complete pseudo code
is described in Listing 12 in the Appendix Section respectively.

6 Simulation Results & Analysis

We performed our tests on 24 core Intel Xeon server running at 3.07 GHz core frequency. Each
core supports 6 hardware threads, clocked at 1600 MHz.

In the experiments conducted, we start with an empty graph initially. When the program
starts, it creates 150 threads and each thread randomly performs a set of operations chosen
by a particular workload distribution. Here, the evaluation metric used is the time taken to
complete all the operations. The update calls are implemented using lazy synchronization of
concurrent linked lists whereas the cycle detection method is implemented via snapshot and
reachability methods as described in the previous section. These are compared against a coarse
lock implementation of the update and cycle detection methods. We do not independently invoke
RemoveEdge method in the performance results presented here. This is invoked internally when
a cycle has been detected.

Speedup is computed as the ratio of the time taken by a parallel algorithm to the sequential
one. Higher the speedup, higher is the throughput. We measure speedup obtained against
the sequential implementation and present the results for the following workload distributions:
(a) AddEdge-dominated : 55% AddEdge, 25% AddVertex, 20% RemoveVertex and (b) semi-
balanced : 30% AddEdge, 50% AddVertex, 20% RemoveVertex and the performance results are
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depicted in Figure 6 and 7 respectively. Each data point is obtained after averaging for 5
iterations.

Figure 6: Speedup obtained against sequential v/s Number of operations/thread for AddEdge-
dominated workload

Figure 7: Speedup obtained against sequential v/s Number of operations/thread for semi-
balanced workload

The Figure 6 shows the performance results for the increasing number of operations per thread
where the larger percentage of operations comprise of addition of edges in the graph. The
results depict that all the approaches perform better than the sequential approach. It is evident
that lazy update calls with snapshot and reachability based cycle detection gives a significant
speedup and scales well with the increasing number of operations. The Figure 7, on the other
hand shows the performance results for a semi-balanced workload. As is evident, coarse locking
strategy gives fixed speedup in both Figure 6 and 7. Also, reachability based method for cycle
detection outperforms the snapshot based method. As can also be seen, not as much speedup is
obtained in Figure 7 as in Figure 6 because of the percentage of AddV ertex calls being relatively
more than AddEdge. This means that the time taken to traverse the vertex list is high in all
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the algorithms (including sequential).

7 Conclusion & Future Direction

In this paper, we have shown how to construct a fully dynamic concurrent graph data struc-
ture, which allows threads to concurrently add/delete vertices/edges. To the the best of our
knowledge, this is the first work to propose a concurrent data structure for an adjacency list
representation of the graphs. We believe that there are many applications that can benefit from
this concurrent graph structure. An important example being SGT in databases and Transac-
tional Memory. Furthermore, on this concurrent graph data-structure, we pose the constraint
that the graph should be acyclic. We ensure this by checking graph acyclicity whenever we add
an edge. To detect the cycle efficiently we have proposed two algorithms, the Obstruction-free
based atomic snapshot and Wait-free reachability. Among these both, the latter one performs
better. We have compared the performance of both algorithms with the coarse-gained lock-
ing implementation and both of performed relatively good. For proving the correctness of
our algorithm, we have used the linearizability property and illustrated the proof sketch using
linearization points in the Appendix section.

In the future, we plan to develop a concurrent graph data structure satisfying wait-free
progress conditions. We also plan to test the results by lifting the constraint of not allowing
vertices and edges to come again with the same key, once they have been deleted. This can be
easily achieved by using the notion of timestamps. The concurrency in wait-free reachability
algorithm can be further increased by using two-way searching technique. We also plan to think
of other ways of cycle detection by extending ideas of incremental cycle detection algorithms [6]
to the concurrent setting. Furthermore, the obstruction-free snapshot based cycle detection can
also be extended to wait-free atomic snapshot and provide stronger progress conditions.
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Correctness

In this section, we present a proof sketch of the correctness of our proposed concurrent graph
data structure and the cycle detection algorithms. Here, we prove the following properties:
(1) the concurrent graph implementation is linearizable,
(2) it is deadlock-free,
(3) the cycle detection algorithm proposed in section 5.1 is obstruction-free and in section 5.2
is wait-free

The following subsections provide a proof sketch of each one in detail.

Linearizability

To prove a concurrent data structure to be correct, linearizability is a popular correctness
criterion in the concurrent world. The history is defined as a collection of set of invocation
and response events. Each invocation of a method call has a subsequent response. Herlihy and
Wing [21] defines a history to be linearizable if,

1. The invocation and response events can be reordered to get a valid sequential history.

2. The generated history satisfies the object’s sequential specification.

3. If a response event precedes an invocation event in the original history, then this should
be preserved in the sequential reordering.

A concurrent object is linearizable iff each of their histories is linearizable. Linearizability en-
sures that every concurrent execution can be proven by sequential execution of that object and
it helps to determine the order of linearization points in the concurrent execution.

Linearization Point: We prove the linearizability of a concurrent history by defining a lin-
earization point for each method call at some instant between invocation and response event [19].
This means that each method appears to occur instantly at its linearization point, and the be-
haviour is exactly same as defined by the sequential specification.

The linearization point for all the methods are given as below:

• The linearization point for the AddEdge(u, v) (Listing 7) call depends on whether the
method returned successfully by the thread. In each case, the linearization point is dif-
ferent. If the vertex u is absent from the vertex list, then linearization point is Line8. If
the vertex v is absent from the vertex list, then point is Line16. And if the edge (u, v)
was already present in the graph, then the linearization point for this method happens
at Line30. Also if the edge (u, v) is absent, then the linearization point occurs when the
node with the subsequent greater key has been locked i.e. Line24.

• The linearization point for the RemoveEdge(u, v) (Listing 8) depends on whether the call
was unsuccessful by a thread. It has four possibilities of linearization point first one, if
the vertex u is absent in the list, then linearization occurs at Line9. If the vertex v is
absent in the vertex list, then linearization occurs at Line17 third one. However, if the
edge (u, v) is absent in the list, then the linearization point is Line31. And if the edge
(u, v) is present, then the linearization point is when the node with the subsequent greater
key has been locked i.e. Line25 or the marked field is set to true is Line34.

• The linearization point for the AddV ertex(u) (Listing 9) depends on whether the call
was successful by a thread. If the vertex u is present in the list, then the linearization is
Line15 second one, the vertex u is absent in the list is the linearization point when the
node with the subsequent greater key has been locked Line9.
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• The linearization point for the RemoveV ertex(u) (Listing 10) call depends on whether it
was an unsuccessful called by a thread. It has two possibilities of linearization point first
one, whether the vertex u is absent in the list is Line15 second one, the vertex u is present
when the node with the subsequent greater key has been locked Line9 or the marked field
is set to true is Line19.

• The linearization point for the ContainsEdge(u, v) (Listing 5) method varies according to
whether the vertex u is present and it’s marked field set to true. If so, then linearization
occurs at Line7. However, if the vertex v is present and it’s marked field set to true is
Line13. For a successful call, the edge (u, v) is present and the vertex v is not marked,
then linearization occurs at Line17.

• The linearization point for the ContainsV ertex(u) (Listing 6) method depends on whether
the call was successfully returned by the thread. The linearization point of this method
occurs at return step i.e. Line5.

Deadlock freedom

The blocking update methods to the concurrent graph data structure proposed in section 4 are
deadlock-free. This is because the underlying list data structure is implemented using a set
which maintains the keys in sorted order. This means that a thread will always acquires locks
either on a ENode or a V Node with smaller keys first. That means, when a thread is trying
to acquire a lock on a node (either in the vertex list or in the edge list) with a key x, then
this thread has never tried to obtain a lock on a node which has a key greater than x. From
this, we can see that all the methods (AddEdge, RemoveEdge, AddVertex or RemoveVertex)
can only acquire the locks on their predecessor node and then its successor. Some thread can
progress to carry out it’s operation and eventually succeeds. Hence, the presented algorithms
are deadlock-free.

Obstruction-free and Wait-free cycle detection

Lemma 1: If a thread which has a scan method and it makes a successfully clean double collect
in case of obstruction free atomic snapshot, then the result it returns are the values that exist
in the concurrent graph data structure in some state of the execution.

Proof: The scan method repeatedly performs two collects: oldCopy and newCopy one after
the other with some time interval. Consider a time interval between the last reads of oldCopy
collect, and the first read of newCopy collect. If any thread were updated the graph data struc-
ture in that time interval, the oldCopy and newCopy would not match, and hence the clean
double collect would not be true.

Lemma 2: If a thread A has scan method and it notices that there is a change by thread
B during two consecutive double collects, then the B′s reading value during the last collect
was written by an update method call which began only after the the first of the four collects
started.

Proof: As thread A has scan method and it is reading B′s update values. In the two consec-
utive reads of A, B written at least once between A′s pair of reads. As thread B is updating
the data structure, it writes it’s value in it’s final step, hence some B′s update method calls
ends after the first read by thread A. Then the write step of the other happened in between
the last pair of reads by thread A. The proof follows because only the thread B is writing to
the data structure.
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Lemma 3: The result returned by a scan in obstruction-free snapshot method were in the
graph data structure at some state in between the invocation and response call.

Proof: If the a thread A has a scan method and it’s call have a successful clean double collect,
than the claim follows from Lemma 1. And if this call took the scan values from another thread
B′s update, then by Lemma 2, the scan value found in the B′s data structure was acquired
by the scan call of the thread B whose interval lies between A′s first and second read of B′s
data structure. In the above case either B’s scan call had a clean double collect, in which the
result follows form Lemma 1 or there may be another thread C doing it’s operation within the
intervals of B′s scan call. Inductively we can apply the above argument and not more than
n − 1 nested call, where n is the maximum number of threads. At the end some nested scan
call must have a clean double collect.

Lemma 4: In case of obstruction-free snapshot every scan method returns after at most O(k)
steps, where k is the key size of the graph.

Proof: As we have fixed number of threads n, for a given scan a thread try to get double
collects, if two consecutive collects are matched then it will return clean double collect, if not
it will scan all the keys present in the list. As we are using the fixed key size k, so the scan
method returns at most O(k) steps.

Lemma 5: The wait-free reachability cycle detection returns after at most O(V + E) steps,
where V , is the number of vertices and E is the number of edges in the graph.

Proof: The reachability wait-free cycle detection method called only after AddEdge returns
true. There are at most V vertices in the graph and E edges in the graph. In the worst case
each thread needs to visit all the vertices and edges. So the worst case running time be O(V +E).

Lemma 6: The readonly methods:ContainsEdge and ContainsVertex returns after at most
O(V ) steps.

Proof: As the ContainsEdge and ContainsVertex were wait-free. Neither of these methods
were using locks nor they were updating the data structure. So, ContainsVertex returns after
at most O(V ) and ContainsEdge returns after at most V −1 steps. so the running time is O(V ).

Pseudo Codes: Lazy Synchronization of Concurrent Graphs

Listing 1: NodeInfo Class

1 class NodeInfo{

2 public int key;

3 public volatile boolean marked;

4 }

Listing 2: EdgeNode Class

1 class ENode{

2 NodeInfo info;

3 ENode next;

4 Lock lock;

5 ENode(int key){// initial constructor

6 this.info.key = key;
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7 this.info.marked = false;

8 this.next = null;

9 this.lock = new ReentrantLock ();

10 }

11 void lock(){

12 lock.lock();

13 }

14 void unlock (){

15 lock.unlock ();

16 }

17 }

Listing 3: VertexNode Class

1 class VNode{

2 NodeInfo info;

3 ENode listhead;/* holding edge node*/

4 VNode next;/* holding next vertex node*/

5 Lock lock;

6 VNode(int key){// initial constructor

7 this.info.key = key;

8 this.info.marked = false;

9 this.next = null;

10 this.listhead = null;

11 this.lock = new ReentrantLock ();

12 }

13 void lock(){

14 lock.lock();

15 }

16 void unlock (){

17 lock.unlock ();

18 }

19 }

Listing 4: Validation Class

1 private boolean validateVertex(VNode pred , VNode curr){

2 return !pred.info.marked && !curr.info.marked && pred.next == curr;

3 }

4

5 private boolean validateEdge(ENode pred , ENode curr){

6 return !pred.info.marked && !curr.info.marked && pred.next == curr;

7 }

Listing 5: Wait-Free Contains (Edge)

1 public boolean ContainsEdge(int keyu , int keyv){

2 VNode curru = head;

3 while (curru.key < keyu)

4 curru = curru.next;

5 /* searching for vertex keyu*/

6 if(curru.info.key != keyu || curru.info.marked)

7 return false;

8 VNode curr = head;

9 while (curr.key < keyv)

10 curr = curr.next;

11 /* searching for vertex keyv*/

12 if(curr.info.key != keyv || curr.info.marked)

13 return false;

14 ENode currv = curru.listhead;

15 while (currv.keyv < keyv)
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16 currv = currv.next;

17 return currv.keyv == keyv && !currv.marked;

18 }

Listing 6: Wait-Free Contains (Vertex)

1 public boolean ContainsVertex(int keyu){

2 VNode curru = head;

3 while (curru.info.key < keyu)

4 curru = curru.next;

5 return curru.info.key == keyu && !curru.info.marked;

6 }

Listing 7: Add Edge

1 public boolean AddEdge(int keyu , int keyv){

2 while(true) {

3 VNode curru = head;

4 while (curru.info.key <keyu){/* traversing vertex list*/

5 curru = curru.next;

6 }

7 if(curru.info.key != keyu || curru.info.marked)

8 return false; /* vertex keyu is not present , stop adding edge*/

9 VNode currv = head;

10 /* traversing vertex list */

11 while(currv.info.key < keyv){

12 currv = currv.next;

13 }

14 /* check if vertex keyv is present in the vertex list */

15 if(currv.info.key != keyv || currv.info.marked)

16 return false; /*v is not present , stop adding edge*/

17 /* traversal through edge list of vertex keyu*/

18 ENode predv = curru.listhead;

19 ENode currv = curru.listhead.next;

20 while (currv.info.key < keyv){

21 predv = currv;

22 currv = currv.next;

23 }

24 predv.lock();

25 try {

26 currv.lock();

27 try {

28 if(validateEdge(predv , currv)) {

29 if (currv.info.key == keyv) {/* already present */

30 return false;

31 } else { /*not present */

32 ENode newNode = new ENode(keyv);

33 newNode.next = currv;

34 predv.next = newNode;

35 return true;

36 /* Invoke the cycle detect

37 if the CycleDetect () returns true invoke the remove edge

RemoveEdge(keyu ,keyv)

38 else addEdge succeeds.

39 */

40 }

41

42 }

43 }

44 } finally {/* always unlock */

45 currv.unlock ();

46 }
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47 } finally { /* always unlock */

48 predv.unlock ();

49 }

50 } /*end of while(true)*/

51 }

Listing 8: Delete Edge

1 public boolean RemoveEdge(int keyu , int keyv){

2 while (true) {

3 VNode curru = head;

4 /* traversing vertex list */

5 while (curru.info.key < keyu){

6 curru = curru.next;

7 }

8 if(curru.info.key != keyu || curru.info.marked)

9 return false;/* vertex keyu is not present , stop deleting edge*/

10 VNode currv = head;

11 /* traversing vertex list */

12 while(currv.info.key < keyv){

13 currv = currv.next;

14 }

15 /* check for v is present the the list*/

16 if(currv.info.key != keyv || currv.info.marked)

17 return false;/* vertex keyv is not present , stop deleting edge*/

18 /* traversal through edge list*/

19 ENode predv = curru.listhead;

20 ENode currv = curru.listhead.next;

21 while (currv.info.key < keyv){

22 predv = currv;

23 currv = currv.next;

24 }

25 predv.lock();

26 try{

27 currv.lock();

28 try{

29 if(validateEdge(predv , currv)){

30 if(currv.info.key != keyv) {/*edge not present */

31 return false;

32 }else {

33 currv.info.marked = true;/* logical removal */

34 predv.next = currv.next;/* physical removal */

35 return true;

36 }

37 }

38 } finally{/* always unlock */

39 currv.unlock ();

40 }

41 } finally {/* always unlock */

42 predv.unlock ();

43 }

44 }/*end of while(true)*/

45 }

Listing 9: Add Vertex

1 public boolean AddVertex(int keyu){

2 while(true) {

3 VNode predu = head;

4 VNode curru = head.next;

5 while (curru.info.key < keyu){

6 predu = curru;
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7 curru = curru.next;

8 }

9 predu.lock();

10 try {

11 curru.lock();

12 try {

13 if(validateVertex(predu , curru)) {

14 if(curru.info.key == keyu){/* present */

15 return false;

16 } else {/*not present */

17 ENode newnode = new ENode(u);

18 newnode.next = curru;

19 predu.next = newnode;

20 return true;

21 }

22 }

23 } finally{ /* always unlock */

24 curru.unlock ();

25 }

26 } finally {/* always unlock */

27 predu.unlock ();

28 }

29 }/*end of while(true)*/

30 }

Listing 10: Remove Vertex

1 public boolean RemoveVertex(int keyu){

2 while (true) {

3 VNode predu = head;

4 VNode curru = head.next;

5 while (curru.info.key < keyu){

6 predu = curru;

7 curru = curru.next;

8 }

9 predu.lock();

10 try {

11 curru.lock();

12 try{

13 if(validateVertex(predu , curru)){

14 if (curru.info.key != keyu){/* absent */

15 return false;

16 }else {/* vertex keyu present */

17 curru.marked = true;/* logical removal */

18 predu.next = curru.next;/* physical removal of vertex */

19 /* physical removal of edges to the vertex keyu*/

20 VNode temp = head;

21 while(temp != null) {

22 RemoveEdge(temp.info.key , keyu);

23 temp = temp.next;

24 }

25 return true;

26 }

27 }

28 }finally{/* always unlock currv*/

29 curru.unlock ();

30 }

31 } finally {/* always unlock predv*/

32 predu.unlock ();

33 }

34 }/*end of while(true)*/

35 }
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Listing 11: Obstruction-Free Snapshot

1

2 import java.util.Arrays;

3 public NodeList collect (){/*get the snapshot of the graph */

4 public NodeList snap_head = NULL;

5 public NodeList temp_snap , original , snap_new;

6 public Node snap_node , original_node , new_node;

7 original = graph;

8 while(original != NULL){

9 if(original.listhead.marked.load() == true)

10 break next1;

11 snap_new = new NodeList ();

12 snap_new.listhead.key = original.listhead.key;

13 snap_new.listhead.next = NULL;

14 snap_new.listhead.marked.store(false);

15 snap_new.next = NULL;

16 if(snap_head == NULL){

17 temp_snap = snap_new;

18 snap_head = snap_new;

19 }

20 else{

21 temp_snap.next = snap_new;

22 temp_snap = snap_new;

23 }

24 original_node = original.listhead.next;

25 while(original_node != NULL){

26 if(original_node.marked.load() == true)

27 break next2;

28 new_node = new Node();

29 new_node.key = original_node.key;

30 new_node.marked.store(false);

31 new_node.next = NULL;

32 if(temp_snap.listhead.next==NULL){/*1^{st} node*/

33 temp_snap.listhead.next = new_node;

34 snap_node = new_node;

35 }

36 else{

37 snap_node.next = new_node;

38 snap_node = new_node;

39 }

40 next2:original_node = original_node.next;

41 }

42 next1:original = original.next;

43 }

44 return snap_head;

45 }

46 public NodeList scan(){/*get 2 consecutive same snapshot of the graph */

47 public NodeList old_copy , new_copy , temp1 , temp2;

48 public Node node_temp1 , node_temp2;

49 old_copy = collect ();

50 header: new_copy = collect ();

51 temp1 = old_copy;

52 temp2 = new_copy;

53 while(temp1 != NULL && temp2 != NULL){

54 if(temp1.listhead.key == temp2.listhead.key){

55 node_temp1 = temp1.listhead.next;

56 node_temp2 = temp2.listhead.next;

57 while(node_temp2 != NULL && node_temp1 != NULL){

58 if(node_temp1.key == node_temp2.key){

59 node_temp1 = node_temp1 ->next;

60 node_temp2 = node_temp2 ->next;

61 }

62 else{
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63 /*free the old_copy */

64 old_copy = new_copy;

65 break header;

66 }

67 }

68 temp1 = temp1.next;

69 temp2 = temp2.next;

70 }

71 else{

72 /*free the old_copy */

73 old_copy = new_copy;

74 break header;

75 }

76 }

77 return new_copy;

78 }

79

80 public boolean CycleDetect (){

81 public NodeList snapshot;

82 snapshot = scan();

83 boolean cycle = false;

84 cycle = call the DFS algorithm to check the Cycle on the snapshot

85 if cycle detected

86 call the RemoveEdge to delete the edge;

87 return true;

88 else

89 return false;

90 }

Listing 12: Wait-Free Reachability

1 public boolean Reach(int keyu , int keyv){

2 Set local_R ← φ/*Set does not allow duplicates */

3 VNode curru = head;

4 /* traversing vertex list */

5 while (curru.info.key < keyu){

6 curru = curru.next;

7 }

8 if(curru.info.key != keyu || curru.info.marked)

9 return false;/* vertex keyu is not present , stop checking */

10 ENode currv = curru.listhead.next;

11 while (currv.next != NULL){

12 if(!currv.info.marked)

13 local_R ← local_R ∪ currv.info.key

14 currv = currv.next;

15 }

16 if(keyv ∈ local_R)

17 return true;

18 end -if

19 Mark keyu as explored in local copy

20 for (each vertex keyw ∈ local_R which is not explored) {

21 VNode curr = head;

22 /* traversing vertex list */

23 while(curr.info.key < keyw){

24 curr = curr.next;

25 }

26 if(curr.info.key != keyw || curr.info.marked)

27 continue;

28 ENode currw = curr.listhead.next;

29 while (currw.next != NULL){

30 if(!currw.info.marked)

31 local_R ← local_R ∪ currw.info.key

32 currw = currw.next;
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33 }

34 if(keyv ∈ local_R)

35 return true /* reachable */

36 end -if

37 Mark keyw as explored

38 }

39 return false; /*path does not exist from keyu to keyv*/

40 }
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