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Abstract: In this paper, we consider hands-off control via minimization of the CLOT
(Combined L-One and Two) norm. The maximum hands-off control is the L0-optimal (or the
sparsest) control among all feasible controls that are bounded by a specified value and transfer
the state from a given initial state to the origin within a fixed time duration. In general, the
maximum hands-off control is a bang-off-bang control taking values of ±1 and 0. For many real
applications, such discontinuity in the control is not desirable. To obtain a continuous but still
relatively sparse control, we propose to use the CLOT norm, a convex combination of L1 and
L2 norms. We show by numerical simulation that the CLOT control is continuous and much
sparser (i.e. has longer time duration on which the control takes 0) than the conventional EN
(elastic net) control, which is a convex combination of L1 and squared L2 norms.

Keywords: Optimal control, convex optimization, sparsity, maximum hands-off control,
bang-off-bang control

1. INTRODUCTION

Sparsity has recently emerged as an important topic in
signal/image processing, machine learning, statistics, etc.
If y ∈ R

m and A ∈ R
m×n are specified with m < n, then

the equation y = Ax is underdetermined and has infinitely
many solutions for x if A has rank m. Finding the sparsest
solution (that is, the solution with the fewest number of
nonzero elements) can be formulated as

min
z

‖z‖0 subject to Az = b.

However, this problem is NP hard, as shown in (Natarajan,
1995). Therefore other approaches have been proposed for
this purpose. This area of research is known as “sparse re-
gression.” One of the most popular is LASSO (Tibshirani,
1996), also referred to as basis pursuit (Chen et al., 1999),
in which the ℓ0-norm is replaced by the ℓ1-norm. Thus the
problem becomes

min
z

‖z‖1 subject to Az = b.

The advantage of LASSO is that it is a convex optimiza-
tion problem and therefore very large problems can be
solved efficiently, for example by using the Matlab-based
package cvx (Grant and Boyd, 2014). Moreover, under
mild technical assumptions, the LASSO-optimal solution
has no more than m nonzero components (Osborne et al.,
2000). However, the exact location of the nonzero compo-
nents is very sensitive to the vector y. To overcome this

deficiency, another approach known as the Elastic Net was
proposed in (Zou and Hastie, 2005), where the ℓ1 norm in
LASSO is replaced by a weighted sum of ℓ1 and squared
ℓ2 norms. This leads to the optimization problem

min
z

λ1‖z‖1 + λ2‖z‖22 subject to Az = b,

where λ1 and λ2 are positive weights such that λ1+λ2 = 1.
It is shown in (Zou and Hastie, 2005, Theorem 1) that the
EN formulation gives the grouping effect ; If two columns of
the matrix A are highly correlated, then the corresponding
components of the solution for x have nearly equal values.
This ensures that the solution for x is not overly sensitive
to small changes in y. The name “elastic net” is meant
to suggest a stretchable fishing net that retains all the big
fish.

During the past decade and a half, another research area
known as “compressed sensing” has witnessed a great deal
of interest. In compressed sensing, the matrix A is not
specified; rather, the user gets to choose the integer m
(known as the number of measurements), as well as the
matrix A. The objective is to choose the matrix A as well
as a corresponding “decooder” map ∆ : Rm → R

n such
that, the unknown vector x is sparse and the measurement
vector y equals Ax, then ∆(Ax) = x for all sufficiently
sparse vectors x. More generally, if measurement vector
y = Ax + η where η is the measurement noise, and the
vector x is nearly sparse (but not exactly sparse), then
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the recovered vector ∆(Ax+η) should be sufficiently close
to the true but unknown vector x. This is referred to as
“robust sparse recovery.”Minimizing the ℓ1-norm is among
the more popular decoders. See the books by (Elad, 2010),
(Eldar and Kutyniok, 2012), and (Foucart and Rauhut,
2013) for the theory and some applications. Due to its
similarity to the LASSO formulation of (Tibshirani, 1996),
this approach to compressed sensing is also referred to as
LASSO.

Until recently the situation was that LASSO achieves
robust sparse recovery in compressed sensing, but did not
achieve the grouping effect in sparse regression. On the flip
side, EN achieves the grouping effect, but it was not known
whether it achieves robust sparse recovery. A recent paper
(Ahsen et al., 2016) sheds some light on this problem. It
is shown in (Ahsen et al., 2016) that EN does not achieve
robust sparse recovery. To achieve both the grouping effect
in sparse regression as well as robust sparse recovery in
compressed sensing, (Ahsen et al., 2016) has proposed the
CLOT (Combined L-One and Two) formulation:

min
z

λ1‖z‖1+λ2‖z‖2 subject to Az = b and λ1 +λ2 = 1.

The difference between EN and CLOT is the ℓ2 norm term;
EN has the squared ℓ2 norm while CLOT has the pure
ℓ2 norm. This slight change leads to both the grouping
effect and robust sparse recovery, as shown in (Ahsen et al.,
2016).

In parallel with these advances in sparse regression and re-
covery of unknown sparse vectors, sparsity techniques have
also been applied to control. Sparsity-promoting optimiza-
tion has been applied to networked control in (Nagahara
et al., 2014), where quantization errors and data rate can
be reduced at the same time by sparse representation of
control packets. Other examples of control applications in-
clude optimal controller placement by (Casas et al., 2012;
Clason and Kunisch, 2012; Fardad et al., 2011), design of
feedback gains by (Lin et al., 2013; Polyak et al., 2013),
state estimation by (Charles et al., 2011), to name a few.

More recently, a novel control called the maximum hands-
off control has been proposed in (Nagahara et al., 2016) for
continuous-time systems. The maximum hands-off control
is the L0-optimal control (the control that has the mini-
mum support length) among all feasible controls that are
bounded by a fixed value and transfer the state from a
given initial state to the origin within a fixed time dura-
tion. Such a control is effective for reduction of electric-
ity or fuel consumption; an electric/hybrid vehicle shuts
off the internal combustion engine (i.e. hands-off control)
when the vehicle is stopped or the speed is lower than a
preset threshold; see (Chan, 2007) for example. Railway
vehicles also utilize hands-off control, often called coast-
ing control, to cut electricity consumption; see (Liu and
Golovitcher, 2003) for details. In (Nagahara et al., 2016),
the authors have proved the theoretical relation between
the maximum hands-off control and the L1 optimal con-
trol under the assumption of normality. Also, important
properties of the maximum hands-off control have been
proved in (Ikeda and Nagahara, 2016) for the convexity of
the value function, and in (Chatterjee et al., 2016) for the
existence and the discreteness.

In general, the maximum hands-off control is a bang-off-
bang control taking values of ±1 and 0. For many real
applications, such a discontinuity property is not desirable.
To obtain a continuous but still sparse control, (Nagahara
et al., 2016) has proposed to use a combined L1 and
squared L2 minimization, like EN mentioned above. Let
us call this control an EN control. As in the case of EN
in the vector optimization, the EN control often shows
much less sparse (i.e. has a larger L0 norm) than the
maximum hands-off control. Then, we proposed to use the
CLOT norm, a convex combination of L1 and non-squared
L2 norms. We call the minimum CLOT-norm control the
CLOT control. We show by numerical simulation that the
CLOT control is continuous and much sparser (i.e. has
longer time duration on which the control takes 0) than
the conventional EN control.

The remainder of this article is organized as follows. In
Section 2, we formulate the control problem considered in
this paper. In Section 3, we give a discretization method
to numerically compute the optimal control. Results of the
numerical computations on a variety of problems are pre-
sented in Section 4. These examples illustrate the advan-
tages of the CLOT control compared with the maximum
hands-off control and the EN control. We present some
conclusions in Section 5.

Notation

Let T > 0 and m ∈ N. For a continuous-time signal
u(t) ∈ R over a time interval [0, T ], we define its Lp (p ≥ 1)
and L∞ norms respectively by

‖u‖p ,

{
∫ T

0

|u(t)|pdt
}1/p

, ‖u‖∞ , sup
t∈[0,T ]

|u(t)|.

We denote the set of all signals with ‖u‖p < ∞ by Lp[0, T ]
for p ≥ 1 or p = ∞. We define the L0 norm of a signal u(t)
on the interval [0, T ] as

‖u‖0 ,
∫ T

0

φ0(u(t))dt,

where φ0 is the L0 kernel function defined by

φ0(α) ,

{

1, if α 6= 0,

0, if α = 0
(1)

for a scalar α ∈ R. The L0 norm can be represented by

‖u‖0 = µL

(

supp(u)
)

,

where supp(u) is the support of the signal u, and µL is the
Lebesgue measure on R.

2. PROBLEM FORMULATION

Let us consider a linear time-invariant system described
by

dx

dt
(t) = Ax(t) +Bu(t), t ≥ 0, x(0) = ξ. (2)

Here we assume that x(t) ∈ R
n, u(t) ∈ R, and the initial

state x(0) = ξ is fixed and given. The control objective is
to drive the state x(t) from x(0) = ξ to the origin at time
T > 0, that is

x(T ) = 0. (3)

We limit the control u(t) to satisfy

‖u‖∞ ≤ Umax (4)



for fixed Umax > 0.

If the system (2) is controllable and the final time T is
larger than the optimal time T ∗ (the minimal time in
which there exist a control u(t) that drives x(t) from
x(0) = ξ to the origin; see (Hermes and Lasalle, 1969)),
then there exists at least one u(t) ∈ L∞[0, T ] that satisfies
equations (2), (3), and (4). Let us call such a control a
feasible control. From (2) and (3), any feasible control u(t)
on [0, T ] satisfies

0 = x(T ) = eAT ξ +

∫ T

0

eA(T−t)Bu(t)dt,

or
∫ T

0

e−AtBu(t)dt+ ξ = 0. (5)

Define a linear operator Φ : L∞[0, T ] → R
n by

Φu ,

∫ T

0

e−AtBu(t)dt, u ∈ L∞[0, T ].

By this, we define the set U of the feasible controls by

U , {u ∈ L∞ : Φu+ ξ = 0, ‖u‖∞ ≤ 1} . (6)

The problem of the maximum hands-off control is then
described by

min
u

‖u‖0 subject to u ∈ U . (7)

The L0 problem (7) is very hard to solve since the L0

cost function is non-convex and discontinuous. For this
problem, (Nagahara et al., 2016) has shown that the L0

optimal control in (7) is equivalent to the following L1

optimal control:

min
u

‖u‖1 subject to u ∈ U , (8)

if the plant is normal, that is, if the (2) is controllable and
the matrix A is nonsingular. Let us call the L1 optimal
control as the LASSO control. If the plant is normal, then
the LASSO control is in general a bang-off-bang control
that is piecewise constant taking values in {0,±1}. The
discontinuity of the LASSO solution is not desirable in real
applications, and a smoothed solution is also proposed in
(Nagahara et al., 2016) as

min
u

‖u‖1 + λ‖u‖22 subject to u ∈ U , (9)

where λ > 0 is a design parameter for smoothness. Let us
call this control the EN (elastic net) control. In (Nagahara
et al., 2016), it is proved that the solution of (9) is a
continuous function on [0, T ].

While the EN control is continuous, it is shown by nu-
merical experiments that the EN control is not sometimes
sparse. This is an analogy of the EN for finite-dimensional
vectors that EN does not achieve robust sparse recovery.
Borrowing the idea of CLOT in (Ahsen et al., 2016), we
define the CLOT optimal control problem by

min
u

‖u‖1 + λ‖u‖2 subject to u ∈ U . (10)

We call this optimal control the CLOT control.

3. DISCRETIZATION

Since the problems (8)–(10) are infinite dimensional, we
should approximate it to finite dimensional problems. For
this, we adopt the time discretization.

First, we divide the time interval [0, T ] intoN subintervals,
[0, T ] = [0, h) ∪ · · · ∪ [(N − 1)h,Nh], where h is the
discretization step (or the sampling period) such that
T = Nh. We assume that the state x(t) and the control
u(t) in (2) are constant over each subinterval. On the
discretization grid, t = 0, h, . . . , Nh, the continuous-time
system (2) is described as

xd[m+ 1] = Adxd[m] +Bdud[m], m = 0, 1, . . . , N − 1,
(11)

where xd[m] , x(mh), ud[m] , u(mh), and

Ad , eAh, Bd ,

∫ h

0

eAtBdt. (12)

Define the control vector

ud , [ud[0], ud[1], . . . , ud[N − 1]]⊤. (13)

Note that the final state x(T ) can be described as

x(T ) = xd[N ] = AN
d ξ +ΦNud, (14)

where

ΦN ,
[

AN−1
d Bd, A

N−2
d Bd, . . . , Bd

]

. (15)

Then the set U in (6) is approximately represented by

UN ,
{

ud ∈ R
N : AN

d ξ +ΦNud = 0, ‖ud‖∞ ≤ 1
}

. (16)

Next, we approximate the L1 norm of u by

‖u‖1 =
∫ T

0

|u(t)|dt

=

N−1
∑

m=0

∫ (m+1)h

mh

|u(t)|dt

≈
N−1
∑

m=0

∫ (m+1)h

mh

|ud[m]|dt

=

N−1
∑

m=0

|ud[m]|h

= ‖ud‖1h.

(17)

In the same way, we obtain approximation of the L2 norm
of u as

‖u‖22 =
∫ T

0

|u(t)|2dt ≈ ‖ud‖22h. (18)

Finally, the optimal control problems (8), (9) and (10) can
be approximated by

min
ud∈RN

h‖u‖1 subject to ud ∈ UN (19)

min
ud∈RN

h‖ud‖1 + hλ‖ud‖22 subject to ud ∈ UN (20)

min
ud∈RN

h‖ud‖1 +
√
hλ‖ud‖2 subject to ud ∈ UN (21)

The optimization problems are convex and can be effi-
ciently solved by numerical software packages such as cvx
with Matlab; see (Grant and Boyd, 2014) for details.

4. NUMERICAL EXAMPLES

In this section we present numerical results from applying
the CLOT norm minimization approach to seven different
plants, and compare the results with those from applying
LASSO and EN.



No. Plant Poles T x(0) λ Figs.

1 P1(s) (0,0,0,0) 20 e4 1 1 , 2

2 P1(s) (0,0,0,0) 20 e4 0.1 3 , 4

3 P2(s) −0.025± j 20 e2 0.1 5 , 6

4 P2(s) −0.025± j 20 (10, 1)⊤ 0.1 7 , 8

5 P3(s) −1± 0.2j,±j 20 e4 0.1 9, 10

6 P4(s) −1± 0.2j, 20 e4 0.1 11, 12
−0.3± j

7 P5(s) −5± j, 20 e6 0.1 13, 14
−0.3± 2j ,

−1± 2
√
2j

8 P6(s) 0, 0, 0, 0,±j 40 e6 0.1 15, 16

9 P7(s) 0, 0, 0, 0,±j 40 e6 0.1 17, 18

Table 1. Details of various plants studied.

4.1 Details of Various Plants Studied

For the reader’s convenience, the details of the various
plants are given in Table 1. The figure numbers show where
the corresponding computational results can be found.
Some conventions are adopted to reduce the clutter in the
table, as described next. All plants are of the form

P (s) =
n(s)

d(s)
, n(s) =

nz
∏

i=1

(s− zi), d(s) =

np
∏

i=1

(s− pi).

To save space in the table, the plant zeros are not shown;
P3(s) has a zero at s = −2, P6(s) has a zero at s = 2,
while P7(s) has zeros at s = 1, 2. The remaining plants
do not have any zeros, so that the plant numerator equals
one.

Once the plant zeros and poles are specified, the plant nu-
merator and denominator polynomials n, d were computed
using the Matlab command poly. Then the transfer func-
tion was computed as P = tf(n,d), and the state space re-
alization was computed as [A,B,C,D] = ssdata(P). The
maximum control amplitude is taken 1, so that the control
must satisfy |u(t)| ≤ 1 for t ∈ [0, T ]. To save space, we
use the notation el to denote an l-column vector whose
elements all equal one. Note that in all but one case, the
initial condition equals en where n is the order of the plant.

Note that, with T = 20, the problems with plants P6(s)
and P7(s) are not feasible (meaning that T is smaller than
the minimum time needed to reach the origin); this is why
we took T = 40.

All optimization problems were solved after discretizing
the interval [0, T ] into both 2,000 as well as 4,000 samples,
to examine whether the sampling time affects the sparsity
density of the computed optimal control.

4.2 Plots of Optimal State and Control Trajectories

The plots of the ℓ2-norm (or Euclidean norm) of the
state vector trajectory and the control signal for all these
examples are shown in the next several plots.

We begin with the plant P1(s), the fourth-order integrator.
Figures 1 and 2 show the state and control trajectories
when λ = 1. The same system is analyzed using a smaller
value of λ = 0.1. One would expect that the resulting
control signals would be more sparse with a smaller λ, and
this is indeed the case. The results are shown in Figures
3 and 4. Based on the observation that the control signal
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Fig. 1. State trajectory for the plant P1(s) with the initial
state (1, 1, 1, 1)⊤ and λ = 1.
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Fig. 2. Control trajectory for the plant P1(s) with the
initial state (1, 1, 1, 1)⊤ and λ = 1.
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Fig. 3. State trajectory for the plant P1(s) with the initial
state (1, 1, 1, 1)⊤ and λ = 0.1.

becomes more sparse with λ = 0.1 than with λ = 1, all
the other plants are analyzed with λ = 0.1.

Figures 5 and 6 display the state trajectory and the
control trajectories of the plant P2(s) (damped harmonic
oscillator) when the initial state is (1, 1)⊤. Figures 7 and
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Fig. 4. Control trajectory for the plant P1(s) with the
initial state (1, 1, 1, 1)⊤ and λ = 0.1.
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Fig. 5. State trajectory for the the plant P2(s) with the
initial state (1, 1)⊤ and λ = 0.1.
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Fig. 6. Control trajectory for the the plant P2(s) with the
initial state (1, 1)⊤ and λ = 0.1.

8 show the state and control trajectories with the initial
state (10, 1)⊤. It can be seen that, with this intial state,
the control signal changes sign more frequently.

To compare the sparsity densities of the three control
signals, we compute the fraction of time that each signal
is nonzero. In this connection, it should be noted that
the LASSO control signal is the solution of a linear pro-
gramming problem; consequently its components exactly
equal zero at many time instants. In contrast, the EN
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Fig. 7. State trajectory for the plant P2(s) with the initial
state (10, 1)⊤ and λ = 0.1.
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Fig. 8. Control trajectory for the plant P2(s) with the
initial state (10, 1)⊤ and λ = 0.1.
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Fig. 9. State trajectory for the plant P3(s) with the initial
state (1, 1, 1, 1)⊤ and λ = 0.1.

and CLOT control signals are the solutions of convex
optimization problems. Consequently, there are many time
instants when the control signal is “small” without being
smaller than the machine zero. Therefore, to compute
the sparsity density, we applied a threshold of 10−4, and
treated a component of a control signal as being zero if
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Fig. 10. Control trajectory for the plant P3(s) with the
initial state (1, 1, 1, 1)⊤ and λ = 0.1.
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Fig. 11. State trajectory for the plant P4(s) with the initial
state (1, 1, 1, 1)⊤ and λ = 0.1.
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Fig. 12. Control trajectory for the plant P4(s) with the
initial state (1, 1, 1, 1)⊤ and λ = 0.1.

its magnitude is smaller than this threshold. With this
convention, the sparsity densities of the various control
signals are as shown in Table 2. From this table it can
be seen that the control signal generated using CLOT
norm minimization has significantly lower sparsity density
compared to that of EN, and is not much higher than
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Fig. 13. State trajectory for the plant P5(s) with the initial
state (1, 1, 1, 1, 1, 1)⊤ and λ = 0.1.
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Fig. 14. Control trajectory for the plant P5(s) with the
initial state (1, 1, 1, 1, 1, 1)⊤ and λ = 0.1.
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Fig. 15. State trajectory for the plant P6(s) with the initial
state (1, 1, 1, 1, 1, 1)⊤ and λ = 0.1.

that of LASSO. Also, as expected, the sparsity density
of LASSO does not change with λ, whereas the sparsity
densities of both EN and CLOT decrease as λ is decreased.
For this reason, in other examples we present only the
results for λ = 0.1.
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Fig. 16. Control trajectory for the plant P6(s) with the
initial state (1, 1, 1, 1, 1, 1)⊤ and λ = 0.1.
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Fig. 17. State trajectory for the plant P7(s) with the initial
state (1, 1, 1, 1, 1, 1)⊤ and λ = 0.1.
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Fig. 18. Control trajectory for the plant P7(s) with the
initial state (1, 1, 1, 1, 1, 1)⊤ and λ = 0.1.

λ LASSO EN CLOT

λ = 1 0.1725 0.6050 0.5900

λ = 0.1 0.1725 0.3795 0.2665

Table 2. Sparsity indices of the control signals
from various algorithms for the plant P1(s)
(fourth-order integrator) with the initial state

(1, 1, 1, 1).

4.3 Comparison of Sparsity Densities

In this subsection we analyze the sparsity densities, that
is, the fraction of samples that are nonzero, using the

No. LASSO EN CLOT

1 0.1690 0.5915 0.4475

2 0.1690 0.3270 0.2480

3 0.0480 0.1155 0.0830

4 0.4055 0.5555 0.4225

5 0.1655 0.3050 0.2180

6 0.0040 0.0395 0.0805

7 0.0595 0.1100 0.0845

8 0.0568 0.1438 0.1125

9 0.0568 0.1438 0.1125

Table 3. Sparsity densities for optimal con-
trollers produced by various methods

three methods LASSO, EN, and CLOT. The advantage
of using the sparsity density instead of the sparsity count
(the absolute number of nonzero entries) is that when the
sample time is reduced, the sparsity count would increase,
whereas we would expect the sparsity density to remain
the same. As explained above, we have applied a threshold
of 10−4 in computing the sparsity densities of various
control signals.

Table 3 shows the sparsity densities for the nine examples
studied in Table 1, in the same order. From this table
it can be seen that the CLOT norm-based control signal
is always more sparse than the EN-based control signal.
Indeed, in some cases the sparsity density of the CLOT
control is comparable to that of the LASSO control.

We also increased the number of samples from 2,000
to 4,000, and the optimal values changed only in the
third significant figure in almost all examples for all three
methods. Therefore the figures in Table 3 are essentially
equal to the Lebesgue measure of the support set divided
by T .

5. CONCLUSIONS

In this article, we propose the CLOT norm-based control
that minimizes the weighted sum of L1 and L2 norms
among feasible controls, to obtain a continuous control
signal that is sparser than the EN control introduced in
(Nagahara et al., 2016). We have shown a discretization
method, by which the CLOT optimal control problem
can be solved via finite-dimensional convex optimization.
Numerical experiments have shown the advantage of the
CLOT control compared with the LASSO and EN con-
trols. Future work includes the analysis of the sparsity
and continuity of the CLOT control as a continuous-time
signal.
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promoting optimal control for a class of distributed
systems. In American Control Conference (ACC), 2011,
2050–2055.

Foucart, S. and Rauhut, H. (2013). A Mathematical
Introduction to Compressive Sensing. Birkhäuser.
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