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Abstract—Cognitive Radio Sensor Networks (CRSN) is state
of the art communication paradigm for power constrained short
range data communication. It is one of the potential technology
adopted for Internet of Things (IoT) and other futuristic Machine
to Machine (M2M) based applications. Many of these applications
are power constrained and delay sensitive. Therefore, CRSN
architecture must be coupled with different adaptive and robust
communication schemes to take care of the delay and energy-
efficiency at the same time. Considering the tradeoff that exists
in terms of energy efficiency and overhead delay for a given
data packet length, it is proposed to transmit the physical
layer payload with an optimal packet size (OPS) depending
on the network condition. Furthermore, due to the cognitive
feature of CRSN architecture overhead energy consumption
due to channel sensing and channel handoff plays a critical
role. Based on the above premises, in this paper we propose
a heuristic exhaustive search based Algorithm-1 and a com-
putationally efficient suboptimal low complexity Karuh-Kuhn-
Tucker (KKT) condition based Algorithm-2 to determine the
optimal packet size in CRSN architecture using variable rate
m-QAM modulation. The proposed algorithms are implemented
along with two main cognitive radio assisted channel access
strategies based on Distributed Time Slotted-Cognitive Medium
Access Control (DTS-CMAC) and Centralized Common Control
Channel based Cognitive Medium Access Control (CC-CMAC)
and their performances are compared. The simulation results
reveals that proposed Algorithm-2 outperforms Algorithm-1 by
a significant margin in terms of its implementation time. For the
exhaustive search based Algorithm-1 the average time consumed
to determine OPS for a given number of cognitive users is 1.2
seconds while for KKT based Algorithm-2 it is of the order of
5 to 10 ms. CC-CMAC with OPS is most efficient in terms of
overall energy consumption but incurs more delay as compared
to DTS-CMAC with OPS scheme.

Index Terms—Optimal packet size, cognitive radio sensor
networks, energy-efficiency, quadrature amplitude modulation,
convex optimization, medium access control.

I. INTRODUCTION

HE last few years has witnessed significant progress in

the areas of wireless Sensor networks. Major technical
challenges associated with the transmission of the sensed
data to a remote server or gateway has been addressed by
the researchers both from the perspective of the algorithms
and the embedded hardware complexity. With the advent of
the emerging technologies like Internet of Things (IoT) and
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big data which enables us to sense, transmit and process
massive amount of data from our physical surroundings, the
relevance of sensor networks in the context of IoT turns out
to be of prime importance. Majority of these sensor nodes are
power constrained operating on limited battery power or other
ambient sources of power. Therefore, efficient communication
and scheduling protocols must be implemented within the
sensor node so that the power consumption of the sensor nodes
could be minimised to enhance the network lifetime. Sensor
networks could be deployed indoor or outdoor for various
practical purposes like event detection and periodic monitoring
of any physical phenomenon [1], smart cities [2], healthcare
and body sensor networks related biomedical applications [3],
[4], smart grid [5], [6] etc. An expected exponential increase in
the number of WSN nodes for IoT applications in the coming
few years, all sharing the same frequency band (2.4 GHz)
would pose new challenges for data transmission. With the
commercialization of all-in-one single system on chip (SoC)
IoT solution based on 22 nm CMOS fabrication technology
by the manufacturers with different communication protocols
stacked into a single chip [7], the size of these sensing devices
or nodes are getting smaller. Considering the scalability of
these devices and the way they are likely to proliferate into
our daily lives in near future, it is essential to come up
with highly efficient state of the art communication protocols
evolved around this cutting edge technology of IoT.
Cognitive Radio (CR) is a technology which has evolved
over the last decade proposed to be used mainly for mobile
communication [8]. It is based on the opportunistic use of
the available frequency spectrum through dynamic spectrum
access by the mobile phone users. In conventional CR, the
licensed users are the ones who have been allocated a portion
of the frequency band by their respective mobile operators.
They are the paid subscribers for the services and coined as
Primary Users (PUs). Based on the SUs transmission model,
there are various paradigms described in the literature like
interweave, underlay and overlay cognitive communication
[9]. To address the general challenges associated with sensor
networks in terms of power efficiency, delay, reliability and
coexistence with similar services operating within the same
unlicensed band, the concept of cognitive radio is conceived
within sensor networks framework leading to the emergence of
an novel paradigm of cognitive radio sensor networks (CRSN).
This relatively new and novel concept is still in its evolving
stages and there are number of open ended areas which still
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remains unaddressed. In this paper we focus specifically on the
packet size optimization for CRSN architecture. Data trans-
mission with variable packet size depending on the network
condition as compared to a fixed data packet length has its
own advantages in terms of energy efficiency and delay. Under
worse network conditions transmitting larger packet size could
increase the retransmission energy overhead as the packet is
more vulnerable to collision. Packet size too small could lead
to an increase of the delay overhead due to the transmission
of the overhead header, trailer and other redundant bits apart
from the information bits. Therefore, there exists a clear
tradeoff to in terms of energy efficiency and delay which needs
to be accounted to determine the OPS and it is intuitively
evident that strategy based on transmission with OPS will
improve the performance of the system. Furthermore, in CRSN
framework the non-cognitive users or the primary users are
assumed to be different services like WiFi, Zigbee, Blue-
tooth, Unlicensed LTE and sensor nodes which do not have
cognitive or channel sensing/switching feature. These non-
cognitive users can access the available channels in the ISM
band at any given time as per their application requirement
and do not follow a deterministic traffic pattern. Moreover,
it is very difficult to implement a centralized scheduling and
access control strategy for divergent communication protocol
stacks. Under this scenario it is important to focus on the
cognitive radio enabled sensor nodes and adapt its various
transmission parameters like modulation level, transmit power
and the packet size so that an improved coexistence could be
achieved. In our work we have emphasized primarily on the
determination of the optimal packet size for CRSN architecture
using variable rate m-QAM modulation scheme. Furthermore,
we have ensured that the proposed strategy is an unified
strategy which minimizes the overall energy consumption of
the cognitive nodes involved during the transmission phase
and simultaneously satisfy key constraints like the end to end
delay, interference duration caused to the non-cognitive users,
average BER and the transmit power of the cognitive sensor
nodes which should not exceed typically above 20 dBm.

There are few literatures available where the authors have
formulated optimization problem to determine the OPS for
CRSN architecture For computationally constrained sensor
network architecture it is non-trivial to implement complex
algorithms to determine OPS in real time depending upon the
network conditions. Based on our extensive literature survey,
no work is proposed so far which provides a low complexity
robust algorithm to determine the OPS. To this end the main
contributions of this paper are three folds. Firstly, a joint
optimization problem is formulated based which is further sim-
plified to determine the OPS. Secondly, two algorithms based
on Exhaustive Search (E.S) assisted Algorithm-1 and low
complexity Karush-Kuhn-Tucker (KKT) assisted Algorithm-2
is proposed to estimate the optimal packet size. Lastly, the pro-
posed algorithms with its cognitive feature is incorporated into
a distributed time-slotted channel access scheme to evaluate
its performance. Thereafter, it is compared with a centralized
CSMA/CA assisted common control channel based channel
access scheme.

The remainder of this paper is organized as follows. Section
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IT discusses about the work that has been done so far in
this area available in the literature. Section III describes the
system model. Section IV describes the different transmission
states involved during cognitive mode of transmission and
estimation of the involved channel sensing time for a given
detection and false alarm threshold. Section V shows the
modelling of the basic optimization problem used to determine
the OPS for CRSN. Section VI describes the remodelling and
simplification of the optimization problem with variable rate
m-QAM based modulation scheme. Section VII describes the
proposed algorithm based on exhaustive search and Newton-
Raphson assisted KKT-based approach. Numerical results are
described in Section VIII and Section IX concludes the paper.

II. RELATED WORKS

Authors of [10] have proposed the metric to determine
OPS both for coded and uncoded system under basic sensor
network architecture. In [11], basic optimization problem is
proposed by the authors with variable rate m-QAM modulation
scheme for WSN without any cognitive features or network
constraints. Literatures available where data transmission with
optimal packet size instead of fixed packet length has been
analyzed [3], [4]. Furthermore, there are hardly any significant
work and available literatures that has addressed the issue of
OPS determination when the concept of cognitive radio is in-
troduced along with conventional sensor network architecture.
Closest to our work, in [12], the authors have proposed the
framework to determine the OPS for cognitive radio based
sensor network architecture under fixed transmit power from
the non-cognitive under fixed rate FSK modulation scheme.
In our paper we have used variable rate m-QAM modulation
technique. For short range communication it has already been
proven in the literatures [13], [14], [15], [16] that transmission
with varying modulation level consumes minimum energy.
Authors of [13] have used variable rate m-QAM for point to
point and MIMO based sensor network architecture to show
that it is more energy efficient as compared to fixed rate data
transmission. In the context of cognitive radio, we have shown
in our previous work that variable rate m-QAM based CRSN
framework outperforms fixed rate FSK modulation system
[17]. For cognitive channel sensing, the energy based channel
detection was first proposed in [18]. Authors of [19] proposed
the framework to determine the probability of detection for
PUs with different transmit signal and noise statistics. In [20],
authors equated the probability of misdetection and false alarm
under specific probability of occupancy and busy time of the
PUs (non-cognitive user in this case). In [21], authors formu-
lated the closed form solution for the detection and false alarm
probabilities under low SNR regime for AWGN, rayleigh
and nakagami m-fading channel. Authors in [22] provided
closed form solution for these parameters for different channel
conditions under noise uncertainty. Beside there are plenty
of other significant literatures available which has addressed
the challenges in CRSN framework with distributed spectrum
sensing to enhance the performance and energy efficiency
[23],[24], [25], [26] . Authors of [28], [29] have proposed and
formulated optimiztion problem to estimate an optimal sensing
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Fig. 1. Basic system architecture of delay sensitive cognitive radio
wireless sensor network

time that increases the throughput and minimizes the overall
energy consumption in CRSN architecture. In [30], [31], [32],
[33] , the authors have addressed various issues related to the
access scheme of the CRSN framework along with congestion
control.

III. SYSTEM MODEL

Cognitive radio sensor networks (CRSN)framework is con-
sidered with large number of stationary sensor nodes deployed
randomly either indoor or outdoor. Among these sensor nodes,
M number of active cognitive nodes are present within an area
of an event which needs to be report its data to a remote data
server. For example in Fig. 1, there are five cognitive sensor
nodes in the event region. Number of available unlicensed ISM
channels is considered to be C' each of which has bandwidth
B = 1 MHz. The primary users in this case are the non-
cognitive users assumed to be operating in same unlicensed
ISM band of 2.4 GHz contending among C' available ISM
channels for their transmission. These includes services like
Zigbee, Wifi, Bluetooth, Unlicensed LTE all operating in
the free ISM band. As the non-cognitive users access these
channels randomly with unpredictable traffic pattern therefore,
the system is highly prone to collision and packet loss. The
cognitive secondary users attempts to access these set of (C)
available channels opportunistically when it is not occupied by
the non-cognitive users. Leveraging the energy based channel
detection ability from cognitive radio, these cognitive nodes
could adapt its transmission parameters depending on the
physical condition. Each of the M cognitive nodes has K
bits to transmit. As shown in case A of Fig. 1, all the M
cognitive nodes must transmit its data within a time duration
Tiotql Which must be lesser than or equal to the end to
end delay constraint of 7,,4,. Similarly for certain regular
applications, the interference duration to the non-cognitive
users (I,.) caused due to cognitive transmission could be
critical. Therefore, it should be lesser than a specific threshold
(Iymaz) as shown in case B of Fig. 1. It is assumed that
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all the cognitive nodes follows a distributed time slotted
cognitive medium access control (DTS-CMAC) for their data
transmission similar to [12].

Furthermore, depending upon the application and scenario
the time duration for which the non-cognitive users experi-
ences interference from the cognitive secondary users should
be under a permissible threshold to ensure seamless quality
of service for the non-cognitive users. It is shown in case B
of the system architecture that I,,. which is the ratio of the
experienced interference duration to the average busy time of
the non-cognitive users must be me lesser than or equal to
Ima:v-

The busy and idle time of the non cognitive users are ex-
ponential random variables with Poisson distribution denoted
as L, and V), with [, and v, as the mean busy and idle time.
Therefore, the probability of occupancy by the non cognitive
users (Pr,,,) turns out to be . Similarly the probability of

7, +
unoccupancy Pr,r; will be ( 1 Pron) which equals to +l

The probability of occupancy is then varied which 1n turn
affects the average busy time of the non cognitive users.
During the data transmission phase of the cognitive users,
both the cognitive transmitter and the receiver experiences
interference from the non cognitive users. For our analysis it is
assumed that the non-cognitive users transmit complex PSK
signals. Furthermore, the channel state information and the
noise characteristics are known to the cognitive transceivers.
In case if the channel state information is not known at the
receiver, extra preamble bits could be added which marginally
increases the data packet size as proposed in [16].

The busy and idle time of the non cognitive users are
exponential random variables with Poisson distribution de-
noted as L, and V,, with I, and v, as the mean busy and
idle time. Therefore, the probability of occupancy by the non
cognitive users (Pr,p) turns out to be ;—"—. Similarly the
probability of unoccupancy Pryrr will %e (1 Pr,,) which
equals to .For the analysis presented in this paper, the
average idle tlme of the channel (v,) is assumed to be fixed at
160 ms. The probability of occupancy is then varied which in
turn affects the average busy time of the non cognitive users.
During the data transmission phase of the cognitive users,
both the cognitive transmitter and the receiver experiences
interference from the non cognitive users. For our analysis it is
assumed that the non-cognitive users transmit complex PSK
signals. Furthermore, the channel state information and the
noise characteristics are known to the cognitive transceivers.
In case if the channel state information is not known at the
receiver, extra preamble bits could be added which marginally
increases the data packet size as proposed in [16].

IV. Cognitive radio based transmission states

Considering the fact that the cognitive users have the
channel sensing capability, the transmission mode of cog-
nitive radio empowered sensor nodes can have a number
of transmission states. The two primary states involved in
the CRSN transmission are the state of detection with prob-
ability (P;) and the state of false alarm with probability
(Py). (Pg) implies the probability of correctly detecting the
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presence of non-cognitive users in a channel. Conventionally
(Py) is the measure of how effectively the primary users
(PUs) operating in the licensed frequency band are protected
from the unlicensed secondary users (SUs) operating in the
licensed band of the PUs. In our paradigm P,; could be
more appropriately described as the measure of how efficiently
the secondary cognitive users are protected from the non-
cognitive users both operating in the unlicensed band. Py
implies falsely detecting the presence of non-cognitive users
which corresponds to the amount of missed opportunity for
transmission. Mathematically these probabilities are calculated
for different signal and noise statistics by the authors of [19].
Based on energy based detection, when non cognitive users
are transmitting, the discrete received signal at the cognitive
receiver under hypothesis H;

y(n) = s(n) +u(n) (D

Hypothesis Hy is denoted as the inactive state of the non-
cognitive user under which

y(n) = u(n) 2

Certain basic assumptions that the noise process u(n) is
independent and identically distributed (iid) ZMCSCG with
variance &(|u(n)|?) = o2, the primary signal being iid with
zero mean and variance £(|s(n)|?) = o2 and s(n)andu(n)
being independent processes are taken into account. Therefore
for a given decision threshold A and decision statistic which
is the received power considered to be

N
1 2
Tl) =+ ; ly(n)l?, 3)
where N is the number of samples which is equal to f,7s
where 7, is the channel sensing time and f, = 2B from
Nyquist sampling theorem.
Therefore,
Pa = Pr(T(y) > AlH1) “4)
Py = Pr(T(y) > AlHo), (5)
which is equal to
Pi= [ po(w)is ©)
A
Pr= [ ms @
A

where po(x) and p;(x) are the probability density functions
(pdf) of the random variable test statistic 7'(y). The pdf of
T(y) will be have x? with 2N degrees of freedom as both
s(n) and u(n) are complex. It is usually represented by
gamma function but considering the central limit theorem for
large values of NV, the pdfs for Hy and H; boils down to
Gaussian distribution with their corresponding means (g, (1)
and variances (02, 0%) depending upon the signal and noise
statistics.

For complex PSK primary signal with complex gaussian
noise,the mean and the variance for two different hypothe-
sis Ho(po,03) and Hy(u1,0%) would be Ho(o2, +-04) and

2

Hy((ypr + 1)02, %(2% + 1)02)[19]. Here 7, = Z5 is the

ag
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received signal to noise ratio from the non-cognitive user or
SNR,. As per (6) and (7), integrating the gaussian distribution
po(x) and pi(x) and taking into account that the gaussian

42
Q-function, Q(z) = —A—= [ e = dt, the P; and Py is
estimated to be

v (2m)
A SJ s
Pd=Q<(03—vp—1) 271’;) ®)

(I

u

The effective probability of detection and false alarm will
depend on the occupancy and unoccupancy of the non-
cognitive users. Therefore,

A TSfS
= _ —_ 1
Pry = Pro,Q <<05 Vp ) 2, + 1 ) (10)

PT3:P7"ofo(<:\2—1> \/7'sfs), (11)

u

where Pri and Prj are the respective states of being into the
state of detection and false alarm respectively while P; and
Py are probabilities of detection and false alarm.

Misdetection state is the state of wrongly detecting the
absence of non-cognitive user. The probability of being into
the state of misdetection will be

Pro = Pron(1 — Py). (12)

Since, Q(—z) = 1 — Q(x), therefore

_ AN | Tsfs
Pro = Pr,,Q ((vp +1-— 03) 2 11 ) . (13)

In our system model it is assumed that the non-cognitive
(PUs) are transmitting complex-PSK signal. Furthermore, it is
also assumed that considering dense deployment of the non-
cognitive users around he proximity of the cognitive secondary
users, the probability density function of the cumulative inter-
ference power or the received SNR at the cognitive receiver
from the non-cognitive user will obey gaussian distribution.
Based on these assumptions, for a given probability of detec-
tion and false alarm threshold, the sensing time for a given
channel SNR (v,,) is calculated to be as

1

- 14
2B’y§r 14

TS Q71 (Py) = Q7 (P2 1]
where B is the channel bandwidth and Q(-) is the gaussian Q-
function as shown in [19] considering the sampling frequency
fs > 2B (Nysquist rate). In the later section of this paper
Ypr is denoted as SN R, It is the total received power from
the primary user (non-cognitive user in our case) normalised
by the total noise power NoB where B is the bandwidth of
the sensed channel and Ny= -171 dBm/Hz is the noise power
spectral density.

As mentioned before that the access scheme followed by
the cognitive users is distributed time slotted medium access
control, there lies a possibility that a cognitive user might
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select the same channel which is being used by another cog-
nitive user. Considering ergodic behaviour of the non-cognitive
users over all the contending channels, the probability of such
a event does not occur will be

Pr. = CProff -1 (M-1)
“ \ CProff ’

where C' is the number of available channels and M is the
number of contending users. Pr. represents the probability
that more than one user does not select the same channel.
Because of the ergodic behaviour of the non-cognitive users,
there are total Pr,y;C channels available for M users. If a
single cognitive user selects a channel, other M —1 users needs
to select from the remaining (C'Prof f —1) channels to avoid
collision among multiple cognitive users whose probability is
Pr. shown in the equation above. Therefore, probability of
multiple cognitive users selecting the same channel for data
transmission is simply (1—Pr.). Moreover, non-cognitive user
should be absent and there should be no false alarm in this
state of co-selection. Hence, the probability of being into such
state Pry will be

5)

P7'4:PT'Off(].—Pf)(].—PTC). (16)

The fifth case of Collision state is the scenario where
the cognitive user correctly detects the absence of the non-
cognitive user and stars transmission. Then all of a sudden the
non-cognitive user appears on the same channel and continues
transmission for the remaining duration of the cognitive user
transmission. Therefore, the cognitive user will experience
collision and interference. Probability of such an event taking
place will be Pr(V, < L) where [ is the packet size in bits,
R is the data rate and Iz denotes the transmission time by

R
the cognitive user to transmit each data packet. It will be to

1-f P Uieﬁ dt considering the fact that the the pdf of random
variable pr has exponential distribution. For this scenario to
hold good, the above state of co-selection should not occur.
Therefore, the collision probability will be

L
Prs = Prosp (1 — Py) Pre(1 —e®r). a7

The last condition is the state of success where the cognitive
users successfully detects the absence of the non-cognitive
users and successfully delivers the data packet to the desti-
nation or to the next hop. States of co-selection and collision
should not occur during this phase. The probability of success
would be ,

Pre = Pross (1 — Py) Pree™s. (18)
V. PROBLEM FORMULATION TO DETERMINE
OPTIMAL PACKET SIZE FOR COGNITIVE
ARCHITECTURE

A. Formulation and analysis of the cost function

In order to determine the optimal packet size, it is essential
to define a cost function which effectively captures the aspect
of overall energy consumption to transmit each data packet
and the reliability of the transmission. From the perspective
of cognitive radio based sensor networks architecture, apart
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from data transmission there are other cognitive functionalities
involved like channel sensing, decision and spectrum handoff
which has to be taken into account represented as F;,;. Based
on these parameters a basic cost function (packet energy
efficiency reliability metric) is formulated by combining the
energy efficiency of each packet transferred en(l;) and it’s
reliability 7(l5) both of which are function of packet size [,
[10]. The cost function would be the function of the packet
size,

CostFunction : n(ly) = en(ls) x r(ls). (19)
In the equation above
ki(ls — h)
en(ls) = ——=>, 20
(te) kils + Etot 0)

where k7 is the energy consumption per bit and A is the packet
header size.

Etot = Esens + Ehf + Edec + Eaddy (21)

where F.,s is the energy consumed for channel sensing ,
Ey, s is the energy consumed for channel handoff, Fg.. is the
energy consumed to reach a decision about a channel and
E, 44 is the additional energy consumption involved because
of the spectrum decision, handoff and other transient power
consumption with the transceiver.

Esens =Ts X Psen57 (22)

where 75 is the channel sensing time which is dependant on
received non-cognitive SNR (7,,) obtained from (14) and
Pi.,s is power consumption due to channel sensing nearly
equal to 110 mW [30].

Energy consumed for channel switching will depend on the
condition that the existing channel is sensed as busy and any
one of the other (C' — 1) available channels is unoccupied by
the non-cognitive users. Therefore, it is calculated to be as

Prigie = P?“off(l — Pf) + PTon(l — Pd) (23)
Pryysy = (Progp Py + Prop Py) €Y (24)
Prsw - (1 - Pridle)(l - Pbusy)- (25)

As per authors of [30], energy consumed for channel
switching (Ey, ) in practical applications for a relaxed scenario
when the channel center frequencies are close by is around 2
mJ. Therefore average energy consumed for channel handoff
for CR architecture turns out to be Prg,,Ej .

r(l,) =1— PER, (26)

where PER is the packet error rate given by {1 -(1-P) e },

P, is the average BER of the cognitive transmission. There-
fore, the cost function is simplified to

ki(ls — h) —
1) = s T Bl
77( ) klls + Etot( E)
It is observed that for fixed value of k; and Ey., e, (1s) will

be a linearly increasing function with respect to /5 while for
a fixed P., r(ls) will be a monotonically decreasing function

27)
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of [,. Calculating first and second order derivative of the cost
function for further analysis,

l

[ Erotkr + K2R f}ufm”
) = =t T T k(s —h)In(1—-P)y —~—
n( ‘ ) { klls + Etot + 1( ) n( ) (klls + Etot)
Z1(ls) Z2(ls)
(28)

where Z;(l;) and Z5(ls) are dummy variables. Similarly,

W(ZS) = Zl(ls),Z2(ZS) + ZZ(ZS),Zl(ls)

FEioik1 + k‘%h)]ﬁ
(klls + E‘tot)2

o (kils ¥ Eiot)(1 = Pl In (1 — P.) — (1 — Po)eky

(29)

2003 = In(1 - Poyky — & (30)

Z2 (ls> - (klls + Etat)2
(€29)

Since P, < 1 therefore, In(1— P.) ~ 0. Using this
argument and by substituting (30) and (31) in (29), it can
be easily verified that 7(l;)" < 0 which implies that n(l,) is
a concave function with an unique global maxima.

Therefore, the optimal packet size turns out to be [} which
maximizes the following cost function as long as all the posed
constraints criteria are satisfied.

ki(ls — h —
maximize n(ls) = 71( ) 1— Pe)lS.

= 32
ls kl ls + Etot ( )

7Since 7 is also a function of &y, for a fixed average BER
P., packet size (I5) and E}y,

877 B\1 (ls - h)(Etot)
21— (1 =Pl M tol),
( ) (klls + Etot)2

ok,

Since I, > h, it is clearly observed from (33) that ngl >0
and n(k1) will be an increasing function with respect to k;
when [, is fixed.

Power consumption in any generic transceiver system typi-
cally comprises of the power consumed by the power amplifier
Pp4 at the transmitter end along and different other circuit
components at the transmitter and the receiver end (ADC,
DAC, active filters at the transmitter and receiver side, fre-
quency synthesizer, mixers and intermediate frequency/ low
noise amplifiers for the receiver). Let (P, = Puty + Pera)
where P, is the total power power consumed by the circuit
components. Therefore, energy consumed per bit to transmit
a given data packet is estimated to be

(33)

1
7

In case of variable rate- m-QAM modulation scheme,
for a fixed symbol rate R, the modulation level which is
bits/symbol (b) is varied. It has been shown by the authors
of [15] extensively that transmission with variable rate m-
QAM modulation strategy improves the performance of the
system in terms of overall energy consumption due to data
transmission specially in sensor network architecture where

ki = (Ppa+P.) (34)
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transmission distances involved is relatively much smaller as
compared to other conventional cellular networks. Moreover,
Ppa = (1+ «)P,,; where P,,; transmit power of the power
amplifier and « is the peak to average ratio (PAR) which is
dependant on the modulation level as calculated to be as i -1
V/Mg+1
M, = 2% for b > 2 and even (square constellation) [15] and
p = 0.35 is the drainage efficiency of the power amplifier.
Therefore, Pp 4 is a function of b and (34) could be re-written
as

where ¢ = 3

is dependant on the constellation size

ki(B) = (Ppa(b) + P) .

bR, (35)

It is shown in the resulti of [13] [15] and [16] that for
a specific BER threshold (P.) and short distance range, the
value of k1 (b) will initially decrease upto an optimal point say

* b* and then gradually increase. Although modulation level (b)

is discrete integer however, for the sake of argument it can
be said that the k;(b) shows a convex behaviour with respect
to b. Although Pp4(b) is monotonically increasing function
of b because higher transmit power P,,; or received SNR
(74) 1s required to attain a fixed probability of error but if
we observe (35), for a fixed packet length, increase in the
modulation level decreases the transmit duration. Therefore,
from b = 2 till b = b* the circuit power consumption P, is
the dominant factor which decreases the value of k1 (b) while
for values (b > b*), Pp4 becomes the dominant factor.

In terms of n which is function of k; (27), it is already
shown in (33) that n(k;) will be a monotonically increasing
function with respect to k; which in turn is a function of
the modulation level k;(b) (35) therefore, if we intend to
minimize the overall energy consumption of the system over a
given span of discrete modulation levels b = {2, 3,4....9} and
simultaneously improve the cost function (27) to obtain the
optimal packet size, rather than using the cost function (32)
directly, the cost function needs to be modified to a min-max
cost function.

Furthermore, considering the cognitive feature in our system
model the transmit power required to attain a specific average
BER threshold of (P,) will be dependant on the transmit
duration of the cognitive users or its packet size (I) along
with the modulation level b. This is because of the fact that
average BER P, is calculated based on the instantaneous BER
of different cognitive transmission states whose probabilities
needs to be accounted. For example for the state of collision
whose probability is Prs (17), is a function of ;. Even for the
state of misdetection, the error probability will be dependant
on [ (explained in the later section). Intuitively, for a given
fixed b, k1 will be increasing function of /5 because increase
in packet size or transmit duration increases chances of packet
drop and contention and the power consumption to meet the
BER threshold increases. Hence, the P,,; will be a function
of s along with b and accordingly so will be k; which now
becomes k1 (s, b). Details on the estimation of the average
BER and k1 (ls,b) is illustrated in the later sections. Based
on the premises above, the cost function in (32) is modified
to
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min < max n(ls, b
; { z n(ls, b)

S

 ki(lsyb) (I, — h)(1 — P)ls
k(s )l + Bt } (36)

B. Modelling of the total interference time constraint for the
non-cognitive user

Non-cognitive users experience interference from the cog-
nitive user mainly during the states of misdetection and
collision. During state of misdetection non-cognitive user
could transmit all throughout the transmission duration of
the cognitive secondary user or it can vacate the channel
within the transmission duration of the SUs. Probability that
non-cognitive user vacate the channel within cognitive user

transmission period Pr(L, < lﬁ) is calculated to be as

(1—e™ ) where I, is the mean busy time of the non-cognitive
users. Therefore, probability that non-cognitive user suffers
interference with the cognitive user throughout its transmission

i,
duration can be calculated as {1 — Progy (1 - eTlp> } which

=ls
could be further simplified to (Pr(m + Prosrefie )
Since R = bR, the average duration for which non-
cognitive user experiences interference from the cognitive user
which is a function of packet size could be expressed as

—lg
I Pro (Pr(m + Proffe’TP) + Pry, Prs

Tznf(lsvbv ds f) R P’I”2+PT'5

(37

Therefore, the ratio of the average interference time to
the average busy transmission time of the non-cognitive user
denoted by I,,. will be,

T
In(:(ls; b7 Pda Pf) = llnf .
D

(38)

I, thus calculated must be lesser than a predefined con-
straint threshold 1,,,,.. As I,,. is also a function of the P; and
Py from (13), (17) and (37) therefore, the constraint function
¢1(ls) could be written as

Cl(lsvb7 depf) = Inc<l87banan) - Ima;v < 0 (39)

C. Modelling of the end to end delay constraint for the
cognitive user

It is assumed that each of the M cognitive users has K
information bits to transmit. Therefore for each hop, each user
will have to transmit % number of data packets where h is
the size of the packet header. An infinite Stop and Wait ARQ
scheme is considered in our case where the cognitive user
continues to transmit the packet for infinite times over the
data channel until it is successfully transmitted.The cognitive
user waits for acknowledgement from the receiver in order
to initiate transmission of the next data frame. Considering

size of the acknowledge packet and its packet error rate to be
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negligible, the expected time to transmit one packet of data is
calculated to be as

E(T) =T, (1 + %) (40)
— 1,
E(T) =T, (1 . 1‘“”)) ,
-7

where Ty, = (% + 7,44) where % is the data transmission
time.

Tadd = Td + Ts + Tdee + Thyi + Tstjwk (41)

is the additional delay caused due to processing at each hop
(14), cognitive features like channel sensing (75), spectrum
decision (74e.), channel handoff (73) and transient time for
the receiver to wake up from sleep to active mode 7g/y%-
Values of 7, and 74 is usually very small compared to the
data transmission time. 7, is the channel sensing time directly
dependant on probability of detection (P;) and false alarm
(Ps) (14). Therefore, T4qq is a function of 7, corresponding
to Py and Py
Since P, << 1, using binomial theorem,

E(T) =T (1+ Pely) . (42)

Since each of the M sensor nodes have total K bits to
transmit through 7 number of average hops therefore, the total
number of packets to be transmitted by all the M cognitive
nodes and the total delay would be

MKn

Ttotal (ls) = 1. _ hE(T) (43)
MKn — lg

Ttotal (ls) = I-_h (1 + Pels) <R + Tadd) . (44)

In our analysis it is assumed that though all the M cognitive
users are accessing the set of C' channels simultaneously
leveraging the cognitive feature however, the gateway can
process only single data packet at a time instant as shown in
[12]. This is the reason for scaling the delay factor by M in the
above equation (43) and (44) while calculating 7;4,; Which
would be the maximum possible delay M cognitive users each
of which has K bits to transmit to the gateway. However, in
future work modelling of the overall delay estimation could
incorporate advanced concepts like concurrent multi-packet
reception at the gateway which could revoke scaling the delay
factor by M.

The Tyotai < Timaz Where 7,4, 1S the maximum permissible
delay or the delay constraint threshold. The delay constraint
therefore is modelled as

C2 (ls) = Ttotal(ls) — Tmaz < 0. (45)

_ Since data rate R = bR;, Trotal(ls) also being a function of

P, from (44) and 7,44 is function of sensing time (75) which

depends on Py and Py from (14) and (41) therefore, ¢ could
be rewritten as

62(187 b7 Pda Pfa?e) = Elf + ls (ETLdeR +1- kR) +
R (Tqqq + kh) <0,
(46)

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



JOURNAL OF KTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

Tmax

where k = .

D. Constraint on the transmit power

For any wireless sensor networks architecture, they are
reliant either on batteries or other ambient power sources.
Therefore, in practical applications there is a peak power
constraint which needs to be considered. In our scenario, it is
assumed that the cognitive sensor nodes could transmit with
maximum transmit power of 20 dBm which is 100 mW. As
explained in the earlier subsection that transmit power in our
case calculated based on the rate and packet size adaptation
depending on the network condition to attain a specific average
BER threshold P, which will be depending on the P; and
Py as explained in details in the later section therefore, c3
becomes a function of P., P; and Py along with b and [,

Cg(ls,b,Pd,Pf7Pe) = Pout(l57bananaPe) —-0.1 S 0.
47)

E. Constraint on the average BER

In our set up instead of posing a constraint on the con-
ventional packet error rate, we are proposing to enforce a
constraint on the average BER. This is because our system
architecture is based on cognitive radio where there are differ-
ent BERs involved for different cognitive transmission states as
explained in Section III (A) and estimation of average BER is
non-trivial. Therefore, for the sake of brevity and mathematical
convenience, a direct constraint on the average BER reduces
the complexity of our analysis. The motivation to estimate
the average BER could be established if we consider (36),
(46) and (47) where this parameter is a critical component to
model both the cost and constraint functions related to delay
and transmit power. In our analysis, to guarantee a certain
level of system performance and reliability, an upper bound
constraint on the average BER threshold (P.s,) is considered
which turns out to be

1—(1—P)" < Pup, (48)

where 7 is the average number of hops and P,;, is the average
BER constraint for a single hop. In our simulation set up 7 is
considered to be 1. Therefore the (48) turns out to be P, <

P.ip. In general scenario when m > 1, P, < P, where

- 1 -
P =1 en log(1 — Peyn)

E. The optimization problem

To guarantee protection of the non-cognitive users and to
maximize the transmission opportunity by the cognitive users,
the probability of detection Py; > I5d and Py < I5f where
P; = 0.9 and P} = 0.1 which is the benchmark as per any
cognitive radio specifications. Based the on this and above
subsections the optimization problem to determine the optimal
packet size boils down to
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mgn max n(ls,b, Pa, Py, P.) (49a)

subject to c1(ls,b, Py, Py) <0 (49b)
62(Zsab7Pd7Pf7E) SO (490)
63(l8ab7Pd7Pf7E) SO (49d)
_ 1 _
P <1 enio8(l— Pern) (49¢)
Py > Py (491)
P; < Py (492)
100 < I, < 1000,b € {2,3,4....10}, (49h)

where both b and [ are discrete integers.

VI. DETERMINATION OF THE AVERAGE BER UNDER
VARIABLERATE M-QAM AND REMODELLING OF THE
OPTIMIZATION PROBLEM

The transmit power (P,,;) is determined based on the
average BER P,. Therefore the energy consumption Average
probability of error P, will depend on the received SNR
without interference from the non-cognitive user (v,) and
received signal to interference and noise ratio which is the
SINR (v3) both in terms of normalized bit energy to noise

ratio ﬁ’;
Ya = lgI? % (50)
W = lgl” (Nofm (51)
T = ’ya(NO]—ZiOPm)’ (52)

where P,.. is the received power from the cognitive trans-
mitter to the cognitive receiver, P, is the power received at
the cognitive receiver from the non-cognitive user as interfer-
ence and g being instantaneous channel gain component with
Rayleigh distribution. Again, since R = bR therefore, both

vq and 7, will depend on the modulagion level b. In Section IIT

A, it is already shown that v, = Z—2 where o2

is the signal
power received at the receiver end, uoﬁ = NyB is the total
noise power where % is single sided power spectral density
and B is the bandwidth of the channel. Thus 02 = ,,.(NoB).
o2 is now denoted as P, in this paper.

Power received at the cognitive receiver will depend upon
the transmit power along with the corresponding system and
network configuration which includes the pathloss, link mar-
gin, antenna gains and system implementation losses etc. P,
will be dependant on the transmit power and based on Friss
law of pathloss, P can be easily calculated to be as

P

recdBm POutdBm + thB + G?”dB + KZD (33)

ldB

dSS
— 10610g10 (do) - Nde - MldB’

where K,; = 20log,, (ﬁ) is the pathloss component,
G¢/G, are the gains of the transmit and receive antennas, Ny
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is the noise figure, M; is the link margin, J is the pathloss
exponent and dy = 1m is the reference distance.

Taking the absolute value of the P,.. and substituting in
(50) and (52) we can obtain the instantaneous SNR and SINR.
Taking expectation operator E(-) of 7, and +, yields the
average received SNR and SINR 7, and 7, which is used
to estimate the average BER of the system.

As explained in the earlier section that the average BER is
dependant on the probability of different cognitive transmis-
sion states, the instantaneous BER needs to to be calculated
for different states where cognitive nodes transmits and the
instantaneous BER has to be averaged over the pdfs of the
received SNR and SINR to obtain the average BER. Let ((7,)
and ((vp) be the corresponding BERs for the SNR (v,) and
SINR (~) respectively. Therefore, the instantaneous BER for
different cognitive states can be estimated as

Misdetection ((2) : (Pron + Proffe%;) Clw)+ (54
Proyy (1 - 6%;) ¢(7a)

Co — selection (C4) = C(v) (55)

Collision (¢5) : PronC(7) + Prof¢(Va) (56)

Success ful transmission ((s) : ((Va), (57)

where ((v), v € {74, W} is the BER expression for the
variable m-QAM modulation scheme given by

C(’Y)_;l<1_2115>Q< (]\45)1)—1)7>' (58)

Instantaneous BERs obtained in (54) to (57) needs to be
weighted with the probabilities of its corresponding transmis-
sion states as shown in (13), (16) to (18). Therefore, the total
instantaneous BER is calculated to be
PraCe + PraCs + Prs(s + PreCe
PTon(l — Pd) + P’I"Off(l — Pf) '

Substituting (54 to (57) in the above equation (59) and by
simplifying we obtain

Ctotal = C(’YG) +Q {C('Yb) -

Ctotal = (59)

((va)}, (60)

where

—ls
PTQ(PTon +ProffeRTp) +P7’4 +PTonPT5

Q:
Proff(l — Pf) + PT’O”(I — Pd)

(61)
The total average BER P, is now calculated by integrating

Ctotar Over the pdfs of 7, and ;. For rayleigh channel the pdfs
Jda b
of the received SNR and SINR would be ==e7« and =e7.

1e 1
/ / Ctotal %,%) T,y e dyady,  (62)

The expression for the BER in (58) could be further relaxed
using Chernoff bound to obtain an upper bound on the BER

which is
4 1— i e quﬂ
b 22

e7 = 1, using (60) to (63)

() < (63)

where v € {74, }. Since fooo%

we get

9
( 3b +1)W
4 1 1 /> “\on —1) "5 )T
Pesf(l——b> (1—9):/ e \2(Mg—1) ) Ty,
b 22 Ya Jo
( 3 +1)7 (64)
1 © =\ 57 1) T = b
+Q— e 2(Mg—1) dyp
T Jo

Therefore it is clear from the above equation that P, will
be a function of I, since () is a function of [, from (63).
It is certainly a function of b since R = bR,. Furthermore,
Q is also a function of the probability of detection (Py)
and false alarm (Py) as per (61). For a specific threshold
of probability of detection P, which is 0.9 in our simulation
set up, the probability of false alarm P, will be a convex
monotonically decreasing function with respect to the sensing
time 7, [19]. Again, for a fixed false alarm value, P; will
be an increasing function of sensing time 7. Since we have
a delay sensitive networks and increasing sensing time leads
to overhead energy consumption thus, the inequalities on
probabilities of false alarm and detection as in (49f) and (49g)
can be now considered to be equality constraints Py = Py
and P; = Py. Therefore, P, now becomes P (l,,b, Pd,Pf)
a function of P; and P; along with [, and b. Since = <1,
substituting v in terms of 7, from (52) we obtain

) [z
2%
(65)

-1
2(M, - 1)}

Based on the equation above (65), an upper bound on the
received SNR (7,) could be obtained for a specific BER
threshold P, [34][35]. The constraint in (49¢) is taken care
by considering P, = P.;; based on which we can write SNR
v, as a function of P.;; which results to

Pcth

141 1 3b -
w5 (1 51) [z )
(66)

Using the equation above, now we can easily calculate the
received SNR at the cognitive receiver and the corresponding
transmit power required to attain specific BER threshold of
P.;p, from (53) and (66),

1 Ny + QP

_ -~ 4
Pe ls7b7P7P §7 1- _
( ¢ f) b( Ya NO

1 No

’ya(l57b7 Isdvpfvpeth) <

. (4nRdMN,
POH ls, b? P ) P b Pe é A A~ N0
( d> Py Petn) ENeBY

Similarly, since energy consumed per bit (k) is depending
directly on the transmit power P,,;. From (35) and (67),

YaNoRR.  (67)

.. 1
kl(ls7b7Pd7Pf7Peth) S {(1+a)Pout+Pc}E (68)
The initial cost function (36) now becomes,
_ kl(lsab’ -Isdaﬁfapeth)(ls *h)(l *Peth)ls (69)

kl(lsa ba ﬁda ﬁfapeth)ls + Etot(ﬁdaﬁf)

Additional energy overhead Ey,; will be dependant on ]5d
and Py because of the overhead energy consumed due to
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channel sensing and channel switching during handoff. Based
on P; and P, sensing time (7,) needs to be calculated
which is used in (14), (22) and (25) to estimate the respective
energy consumptions during sensing and switching events.
Furthermore, the constraint functions c;, ¢s and c3 will be
directly dependant on P, and ]5f from (49b), (49¢) and (49d).
Both ¢ and c3 are also dependant on P.;;,. Henceforward, the
optimization problem can be modified with direct constraints
on average BER, probability of detection (P;) and false alarm
Py accounted in the cost function and the other remaining
constraint. It relaxes the number of constraint functions which
makes it easier to solve this non-linear NP-hard optimization
problem. The final optimization problem therefore boils down
to

min max1)(ls, b, P, Py, Pern) (70a)
subject to ¢1(ls,b, Py, Py) <0 (70b)
ca(ls,b, P, Py, Pegr) < 0 (70c)
c3(ls,b, Py, P, Peg) <0 (70d)
100 < I, < 1000,b € {2,3,4....10}, (70e)

where both b and [ are discrete integers.

VII. PROPOSED ALGORITHMS BASED ON HEURISTIC
EXHAUSTIVE SEARCH (E.S) AND KKT APPROACH

A. Exhaustive Search Algorithm

In the proposed Heuristic Exhaustive Search Algorithm, the
optimal value of the packet size is searched within a span of
discrete packet sizes ranging from 100 to 2000 bits for varying
modulation level sizes from 2 to 9. In the proposed Algorithm-
1 there are two subalgorithms (Subalgorithm-1.1 and 1.2)
which is used to determine the OPS value (IP!) and its
corresponding energy consumption per bit (k7% t) and transmit
power (Pooff ) for a given modulation level. In Subalgorithm
1.1 the optimal packet size (P! is obtained by maximizing
the cost function taking into account the constraints related to
non-cognitive interference duration (c;) and delay co. If they
are not satisfied the algorithm immediately selects the next
higher modulation level. If both the constraints are satisfied
for a

given modulation level, then it checks whether the transmit
power constraint cs is satisfied or nor. In case if the transmit
power constraint is not satisfied, it goes to Subalgorithm-1.2 to
adapt the packet size further to see in case if the the constraint
c3 could be met. In case if it manages to obtain the optimal
point, it passes on the estimated value of (1), (k") and
(Pffftt ), then moves on to the next higher modulation level.
Once it estimates these parameters for all the modulation

level from 2 to 9, it selects the optimal packet size based on
minimum k7% * value since it is already explained in (33) and
(36) that the cost function 7 is an increasing function of the
energy consumption per bit k; and optimization problem is a
min-max problem. In this case as explained elaborately in the
previous section Py = P, Ps = P and P, = Py, for all the
values of b since m = 1 and energy consumption per bit k;
is adapted for every values of the modulation level b to attain
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Initialize: o I, = 100 @ b = {2,3..9}

® baz =90iil =1

[ Cateutate: Py (1:(1),6(1) |

IF: Poyi(ls,b) > 0.1

yes
while: b(iil) < biax

Follow: All steps of Subalgorithm-1.1
with b = b(ii1) to obtain P!, k{P" & PZPY

)

IF: 127" exists

Follow: All steps of Subalgorithm-1.2
with b = b(iil) to obtain 197, k7" & POPY

LOPt(iil) = 1P, POPI(iil) = POPl &

out out

b ¢
K°P!(iil) = k7P

)

Find: o K°P'= min(K°P")
o LOP'Z=min(K°P")

. PoPtimin(K”pt)
out =

|

Stop & Return |[¢e——————

Fig. 2. Heuristic exhaustive search technique based Algorithm-1

the specific average BER P.;;,. In Subalgorithm-1.1 and 1.2,
{0} implies that the constraint functions is not satisfied and
optimal packet size does not exist. In that case the cognitive
node will either hand off and start sensing among any of the
(C — 1) available channels or back off for a random duration
of time if all channels are sensed as busy. {x=y} implies the
value = corresponding to the value of some variable y.

B. Conventional Karush-Kuhn-Tucker (KKT) based algorithm

In this proposed algorithm we are limiting the search space
by considering the packet size (I5) to continuous rather than
discrete integers. Since packet size cannot be continuous
therefore, we find the optimal packet size [} and take the
ceil and floor of the [}. Subsequently, the packet size which
has minimum difference with its corresponding ceil and floor
values is selected to be the optimal packet size (I2P). Now
in finding the optimal packet size and simultaneously meet
the three other constraint functions, the Karush-Kuhn-Tucker
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Follow: All steps of Subalgorithm-2.1
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IF:
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&cg(l;"’t) <0

Follow: All steps of Subalgorithm-2.2
) - yes no
Using b = b (i) —>
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Fig. 3. Newton-Raphson technique assisted KKT-based Algorithm-2

(KKT) based strategy is adopted because the cost function is a cils) <0

concave function of [, and constraint functions are non-linear. ca(ls) <0 o — Feasibility (72a)
Numerically Newton-Raphson technique is used to find the es(ls) <0

root of the Lagrangian function. Based on this, the Lagrangian Aei(ls) =0

function is conceived with the cost function, constraint func- Aaca(ls) =0 3 — Compl. Slackness (72b)
tions and its corresponding Lagrangian multipliers. Thereafter, Ases(ls) =0

the conditions to determine the KKT points which includes the A <0

condition jfoF optimality, fea51b.1hty, corpppmentary slackness N <0 Y = Negativity (720)
and negativity of the lagrangian multipliers as for a fixed A <0

modulation level b, Py, Py and Pej, the cost function needs

to be maximizes for range of [; values. Rest the strategy is The KKT optimization problem (71), (72a) to (72¢) can be
similar to that of Algorithm 1. The lagrangian function turns  ¢,jyved using Algorithm 2 which contains four Subalgorithms
out to be (2.1, 2.2, 2.3 and 2.4). Subalgorithm 2.1 corresponds all the
constraints are inactive. Algorithm 2 selects Subalgorithm-
2.2 when interference duration constraint c;(ls) is active.
Subalgorithm-2.3 when delay constraint co(ls) is active and
Subalgorithm-2.4 when the transmit power constraint c3(ls)

OL(ls; A1, A2, A3) _ 9n(ls) +)\1801(15) +)\28C2(15) is active. In order to estimate the lagrangian multipliers
s s Ol 8621(51 ) (71)  derivatives of the different constraint functions are required
+>\3T5 =0 to be estimated. The detailed mathematical steps involved
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used in various Subalgorithms to solve the above optimization

problem is illustrated in the appendix section.

VIII. NUMERICAL RESULTS

Table I. SIMULATION PARAMETERS

Symbol Definition Value
B Channel Bandwidth 1 MHz
f Operating Frequency 2.4 GHz
Pron probability of primary occu- % %
pancy
Vp avg. channel idle time 200 ms
dss distance between two cogni- | 8 m
tive secondary users
b bits/symbol for m-QAM {23.9}
Rs fixed symbol rate 10 bauds
) path-loss exponent 2,2.5,3
GG Gain of the transmitter and re- | 5 dBi
ceiver of secondary users
M; and Ny | link margin and noise figure 5 dB and 10 dB
Pty Power consumed by the trans- | 98.3 mw
mitter circuit
Pera Power consumed by the re- 125 mw
ceiver circuit
No one sided thermal noise -171 dBm/Hz
header(h) | size of the header in bytes 6 bytes
Psens power consumed by the circuit | 100 mw
due to channel sensing
Eyy energy consumed during hand- | 2 mJ
off

Fig. 4(a), shows the OPS value for increasing number of
cognitive users (M) in the system for different interference
power or SN R, when the number of available channels C'=
30 and both delay and interference constraints are inactive.
It is observed as M is increased from 1 to 10, the OPS
value decreases for all the SINR,, values. This is because
as M increases, the probability of co-selection increases (16).
As a result the average BER would increase. Therefore in
order to attain the average BER threshold of P, of 1073
more transmit power will be required which increases the
energy consumption per bit (k). Since the cost function 7
is an increasing function of k; hence, higher value of the
cost function is attained at lower values of [;. Similarly,
with increasing interference power from the non-cognitive user
(SNR,,) from -20 dB to -10 dB, the value of the optimal
packet size would decrease as more transmit power will be
required to attain the BER threshold. At M = 3, the OPS
at SNR,,= -20 and -10 dB is around 650 and 340 bits
respectively. Furthermore it could be clearly observed that
there is a perfect match in the results of the OPS obtained
using Exhaustive Search based (Algorithm 1) and K.K.T based
Algorithm-2 which holds true for all the subsequent simulation
results. In Fig. 4(b), the number of available channels (C) is
varied from 30 to 10 for a fixed SN R,,= -15 dB. It could be
seen that OPS value decreases with the decrease in the number
of available channels. Just like the reasoning valid for Fig. 4(a),
in this case as well the probability of co-selection increases
with the decrease in the number of available channels.

In case of Fig. 4(c), OPS is obtained for different users
at C=30 and SNR,,= -15 dB for varying delay sharpening
factor (sy) and inactive interference duration constraint I, .

12

In (45) it is shown that the average end to end delay should
be lesser than or equal to the delay constraint 7,,4,. In our

simulation set up we are considering T,,q, = Mns fR%
where K= 10 Kbits is the total number of bits required to be
transmitted by each cognitive sensor node, R, is the baud rate
at 10 Ksymb/s and 7 is the average number of hops which is
assumed to be 1 for the sake of simplicity. As the s; decreases,
the delay constraint (7,,,.) decreases which implies that the
delay constraint is becoming more severe. It could be observed
that OPS increases as sy decreases beyond a certain number
of users. For s7=0.8 and 0.7 it could be seen that OPS value
is almost same till M = 4 but when number of users is equal
to 5, the OPS value changes at sy;= 0.7 is 404 and s;= 0.8
is 398 bits. This gap would increase with increasing M as
OPS at sy= 0.7 will saturate at 404 bits while it will keep
on decreasing at s;=0.8. This is because of the fact that at
sp= 0.8, the delay constraint is actually becoming inactive.
Therefore with increasing number of users in the system,
based on similar arguments provided for Fig. 4(a) the OPS
value will keep on decreasing. However, when sy= 0.7, the
delay constraint becomes active beyond 4 users. In order to
satisfy the delay constraint based on proposed Algorithm 1
and Algorithm 2, it would try to search for the packet size
ls for a given modulation level which could satisfy the delay
constraint at higher packet size before deciding that OPS does
not exist for that given modulation level thus switching over
to the next higher modulation level (b). Although in this case
the cost function will not be the maximum but it is extremely
important to check throughout the range of [, for a given
modulation level as higher modulation level may lead to higher
energy consumption.

In Fig. 4(d), the OPS value is shown for varying percent-
age of interference duration time for the non-cognitive uses
when SN R,,= -15 dB and channels available C'= 30, delay
constraint inactive. The OPS value reduces as the interference
to non-cognitive user duration constraint I,,,, reduces and
becomes more severe from 6% to 4%. From (37), the total in-
terference duration to non-cognitive user 7;,s is an increasing
function of /5. Furthermore, larger packet size leads to greater
transmit duration that increases the probability of collision Prs
from (17). Therefore, the OPS decreases sharply for example
200 bits at M= 5 for I,,,q,= 4%.

In Fig. 4(e), OPS is determined for varying hop distance

for different pathloss exponents at SINR,.= -10 dB and -
15 dB. OPS decreases with increasing distance in meters and
pathloss exponent. This is rather straight forward to analyze
as increasing or pathloss exponent increases the over pathloss
thus reducing the overall received average signal to noise
ratio (0) (53). Thus more transmit power or energy will be
required to attain the BER threshold thus OPS decreases. Fig.
4(f) is rather the most significant and important result of this
overall figure. The MATLAB based command CPUTIME is
used to estimate the elapsed CPU time to execute Algorithm-1
and Algorithm-2 separately for varying number of users. The
simulation is carried out for 5000 rounds and the average is
estimated. It could be seen that Exhaustive Search (E.S) based
Algorithm-1 takes 1.2 seconds on average while Algorithm-2
is of the order of 5 to 10 ms. It is a significant improvement
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Fig. 4. Optimal packet size in bits (OPS) versus varying number of cognitive secondary users (M) with proposed E.S and KKT algorithms
. a. For varying interference power (SN Ry, ), b. For varying number of channels (C'), c. For varying delay sharpening factor (sy), d. For
varying percentage of interference duration (Imaz), €. OPS versus hop distance for varying SN R, and pathloss exponent () f. CPU
elapsed time versus number of users for Exhaustive search based (Algorithm-1) and KKT based (Algorithm-2).

in favour of Algorithm 2 in terms of its complexity.

The OPS value is compared for a fixed number of users
in the system (M = 6) with C= 30 available channels at
SNR,.= -15 dB in Fig. 5(a) and -20 dB in Fig. 5(b) for
increasing average busy time of the non-cognitive users I,
from 100 to 400 ms, both delay and interference duration
constraint relaxed. The results are shown for three different
average idle time v, at 100, 200 and 300 ms. In Fig. 5(a),
with increasing [, it is observed that the optimal packet size
increases. for a given value of v,. This is due to the fact that
with increase in I, the probability of occupancy (Pro,) of
the non-cognitive users increases. Increased Pr,, increases
chances of misdetection therefore, the optimal packet size
should intuitively decrease as more amount of energy per bit is
consumed to attain a specific BER at higher Pr,,, value. But in
this case the OPS value is increasing at SN R,,.= -15 dB which
is counter intuitive and not obvious. This is due to the fact
that with increasing Pr,,, energy consumed due to spectrum
handoff increases as Pr,, increases (25). Therefore, the
energy due to channel switching becomes a dominant factor
which reduces the value of the cost function as 7 is dependant
on E}o¢ which contains Ep,; (21) and optimal I, is achieved at
higher values. Similarly, as v,, is increased from 100 ms to 300
ms, it could be seen that the OPS value reduces. When [, is
200 ms, the OPS value at v,= 100 ms is 411 bits while 399 bits
at vp,= 300 ms. It is based on similar argument as explained

that with increasing v,, the probability of occupancy decreases
for a fixed I, since Prg, = lp% The E} s thus increasing
the cost function. Therefore, the OPS value decreases. In Fig.
5(b), as the SN R,, is further reduced to -20 dB, it could be
seen that the trend has completely changed as compared to
Fig. 5(a) because as SN R, reduces, the the channel sensing
energy Fgens becomes more dominating factor as sensing
time (7) increases with lower channel SNR for energy based
channel sensing in cognitive radios. Furthermore, 7, is not
dependant on Pr,,, from (14). Therefore, as SN R,, reduces
optimal packet size will reduce with increasing average busy
time and increases with increasing average idle time vp,. In
Fig. 5(c), the OPS value is compared for varying channel
sensing time for fixed values of P; set at 0.95, 0.9 and
0.8 for SNRy,=-15 dB and SNR,.= -10 dB. As sensing
time increases, the energy consumption for channel sensing
increases and the probability of false alarm decreases. The
channel sensing energy FEg.,s is a dominating factor which
reduces the cost function in this case thus increasing the
optimal packet size (OPS). Furthermore, at SN R,,,= -15 dB
it could be seen that sensing time becomes dominant beyond
3 users. As P, increases, OPS value becomes greater as
increasing P, improves reliability of the system and reduces
chances of collision with the non-cognitive users. Therefore,
the k; reduces to attain the BER threshold resulting in lower
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Fig. 5. Optimal packet size in bits (OPS) versus average busy time (I,,) of non-cognitive users. a. For different v, at SN Rp,= -15 dB, M=
6, b. For different v, at SN Rp,= -20 dB, M=6, c. OPS versus sensing time 75 for different SN R, and P4, d. OPS versus d,, for different
M at SN Rpr= -15 dB for DTS-CMAC and CC-CMAC, e. Total energy consumption in joules versus hop distance (dss) for DTS-CMAC,
CC-CMAC and system (w/o cognition & OPS) for a given number of nodes M =5 under SN R,,= -15 dB f. Total transmission time in

seconds versus hop distance (dss) for DTS-CMAC, CC-CMAC and
under SNR,,= -15 dB.

OPS.

For the cognitive architecture, all our analysis so far was
based on Distributed time slotted cognitive medium access
control (DTS-CMAC). Finally in Fig. 5(d) , Fig. 5(e) and Fig.
5(f), our model is extended to a CSMA/CA assisted common
control channel based cognitive MAC scheme (CC-CMAC)
[31] and their performance is analyzed along with a non-
cognitive system using a distributed MAC scheme without
any kind of cognition and OPS mode of transmisison. In CC-
CMAC model, there is a dedicated control channel for the
cognitive users which is never used by the non-cognitive users
and the remaining data channels are used both by the cognitive
and non-cognitive users. In common control channel (CC), the
cognitive transmitter and the receiver negotiates exchanges the
RTS and CTS packets to establish the link over a particular
data channel. Since the common control channel could be
busy as it is being occupied by one cognitive (Tx-Rx) pair,
the remaining (M — 1) users usually backs-off for a given
duration of time and mean overhead delay over the control
channel (T},) is based on number of users, maximum number
of retransmissions, maximum contention window size, slot
duration, DIFS and SIFS slot lengths and time requited to
transmit the RTS and CTS packets by Tx and Rx as shown

system (w/o cognition & OPS) for a given number of nodes M= 5

in (5) of [31]. Hence, in this model the probability of co-
selection (Pry4) can the relaxed and rest mathematical analysis
remains the same as discussed in the earlier sections for DTS-
CMAC . Ty, must be added to 7,44 (41). In Fig. 5(d) OPS
value is determined for DTS-CMAC and CC-CMAC channel
access schemes. It could be seen that for CC-CMAC, the OPS
value does not vary with change in the number of users in
the system. This is because with Pry being relaxed which
was function of M and key component of the average BER
in DTS-CMAC access scheme, the energy consumed per bit
k1 to satisfy specific BER threshold will no longer depend on
M. In Fig. 5(e) overall energy consumption is determined for
these two access schemes for varying hop distances from 4 to
14 m. The overall energy consumption is analyzed where the
results are quite obvious that CC-CMAC with optimal packet
size transmission minimizes the overall energy consumption
as compared to OPS with DTS-CMAC as CC-MAC does
not depends on M or C in terms of its energy consump-
tion. Moreover, the DTS-CMAC and CC-CMAC transmission
strategies with fixed packet size without OPS is shown as
well. Fixed packet length of smaller packet size of 200 bits
and larger packet size of 800 bits are considered. For both
the channel access schemes, it could clearly seen in Fig. 5(e)
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that transmission strategy with optimal packet size obtained
either from Algorithm-1 or Algorithm-2 will lead to minimum
overall energy consumption as compared to transmission with
fixed packet size which is significant for any sensor networks
architecture. Furthermore, the naive scheme without any kind
of cognitive feature would lead to larger energy consumption
as compared to the cognitive scheme. This is due to the fact
that for non-cognitive scenario, the transmitting nodes are not
aware of any of the statistical parameter like probability of
occupancy or average busy time of neighbouring services and
it would transmit at a fixed transmit power which is assumed
to be 5 dBm with QPSK modulation scheme (b= 2) in our
numerical results. Therefore, power or rate adaptation is not
possible resulting into increased energy consumption. Similar
trend is observed even if we increase the fixed transmit power
for non-cognitive mode of transmission by the participating
sensor nodes.

In Fig. 5(f), the overall delay analysis is shown for DTS-
CMAC, CC-CMAC and system without cognition & OPS .
Because of the mean overhead delay due to negotiation over
the common control channel, the delay in case of OPS based
CC-CMAC will be more than OPS based DTS-CMAC. Both
these schemes beyond 8 m distance will outperform the non-
cognitive/OPS based system by a significant margin. Similar
trend is observed for DTS-CMAC and CC-CMAC with fixed
packet size. In terms of delay Therefore, if the system is highly
delay sensitive then it is better to opt for DTS-CMAC with
OPS. Else if the delay constraint is inactive and overall energy
consumption is the crucial factor, CC-CMAC with OPS is a
better option.

IX. CONCLUSION AND FUTURE WORKS

This paper proposed a novel optimal packet size determina-
tion framework for cognitive radio based sensor networks. An
optimization model is framed to determine the OPS which
apart from determining the OPS, guarantees the minimum
energy consumption. Two key algorithms are proposed to
evaluate the OPS. From the simulation results it could be seen
that the elapsed CPU time for the KKT based Algorithm-2
outperforms Algorithm-1 by a significant margin. The CPU
elapsed time for Algorithm-2 is of the order of 5 to 10 ms
while for Algorithm-1 it is 1.2 seconds. Although this analysis
is shown in MATLAB but it is highly imperative that when
these algorithms are implemented in hardware, Algorithm-2
would be a feasible option. Our algorithms is introduced to a
centralized common control channel based strategy to compare
its performance with the distributed one. Through extensive
numerical simulations it is established that the distributed
time slotted cognitive channel access scheme (DTS-CMAC)
with optimal packet size is the best transmission strategy
when the application is highly delay sensitive as it incurs
minimum delay. In normal scenario, the CSMA/CA assisted
centralized common control channel based cognitive access
scheme (CC-CMAC) with OPS will outperform the distributed
(DTS-CMAC) with or without OPS in terms of overall energy
consumption. Both the cognitive access schemes with OPS
will outperform the access strategy without cognition in terms
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of overall energy consumption and end to end delay. However,
in future more efficient access strategies could be coupled
with our proposed OPS scheme. Different deployment strategy
based on the stochastic geometry can be considered for more
precise analysis. It could be observed that as the channel SNR
(7pr) reduces, that results in increase in sensing time which is
unsuitable for delay sensitive applications. Therefore, in our
future work we propose to introduce our concept to variable
sensing time.

APPENDIX A
FOR SUBALGORITHM-2.1
@ _ (1 - Peth)
Ol kils + Fio

{ (k1ls + Eior)

where Z3(l,) is the dummy variable given by

kil — h)log(1 — m>} (73)

Zf;(lé) = Etotlski + Etotkl — }LEtUt]Cll + hk% (74)
where
ki (ls) = (1 + )P (ls) (75)
From (67), it is equivalent to
kll(ls) = Z4Q/(ls)~ (76)
Similarly,
K (1s) = Z,9" (L), 77)
where
-1 2 5
_ : (4m)%d? M N
Zi = (I+a); (1 - f%) (2(1\jffl)> (e Pih Py (78)
~ —ls ~ —ls
(1) = PronProgy ot remz ™ ~ 0= Fmge™ (9
’ o Prog(1 = Pr) + Pron(1 — Fy)
Q//(ls) —
. =i ~ —ls
oy U PO 0 PP (a0
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Proff(l — Pf) +P7”0n(1 — pd)

Therefore the cost function is further simplified to be
used for the implementation of Newton-Raphson based OPS
determination in Algorithm-2 (Subalgorithm-2.1).

Fls) = Zs + ki (ls — h)1og(1 — Pesn) (krls + Eior) 8D

Similarly, the derivative of f(ls) could be expressed as

f,(ls) = Zé(ls‘) + log(l - m)(kllq + Etnt)

2
(lski + k1 — hk:i) + k1(ls — h)log(1 — Peth)(lskll + k1), (82)
where
Z4(1) = By (LY + 2K, — hE) + 2k1 K, .
(83)

APPENDIX B
SUBALGORITHMS FOR ALGORITHM-1 AND
ALGORITHM-2
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Subalgorithm-1.1 Exhaustive Search with interference dura-

tion and delay constraints.
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Require: [P, k%' & POV
1. Initialize: 1,= 100 to 2000, P; = P,;=0.9, P; = ]5f:0.1
& E = Pen = 1073
2: for jj1 =1:length(ls) do
3 Caleulate: n(1s(5j1)), c1(ls(351)), c2(ls(4J1)),
Pnurt(l-i(jjl)) & kl(IS(jjl))
Using (69), (39), (46), (66), (67) and (68).
4:  Find: Feasible set of /s for which ¢;(ls) < 0 and
ca(ls) <0
5: end for
6: Let: T1 | 1 = all positions of s for which
c1(ls) <0 and ea(ls) <0
7: if Z; = () then
8 1Pt =0, kP =0 PP =
9:  return [P, k7' & POPY
10: else
11:  Find: @ y = maz(n(77)) e ls=y
12 Set: [Pt =
13:  Calculate: P2} = Py, (197Y), k7' = ky (I19P%)
Using (67) & (68)
14: return [P, k7' & POP!
15: end if

Subalgorithm-2.2 Interference duration constraint active and
delay constraint inactive

Subalgorithm-1.2 Exhaustive Search with transmit power

constraint.

Require: (%7, kP & POP!

out

1: Obtain: P2} & 77 from Subalgorithm-1.1

out

2 if P! < 0.1 then
3 return [P, k9P' & POP
4: else

5. Find: 75= P, (z7) < 0.1 where 77 obtained from
Subalgorithm-1.1 and 73 represents the location in-

dices of z7 for which P,,; < 0.1

6. if 73 = {0} then

7 1Pt = 0, kP = POPE =)

8 return [P, k97" & PP

9:  else

10: Find: e y; = lastelementof (T3)

o 22 = 2
o [Pt = (z2)

11: Set: [°Pt = [

12: Calculate: k" = k(1)
P:f‘,)tt = Pout(IS)

13: return 27, k7' & POP!

14:  end if

15: end if

Require: 197!, c5(127%) & k{7 ~
1: Initialize: I} = 100, ii=1, iter=100, Py = Py = 0.9,

P;=P;=01& P. = P, = 107°

2: while ii < iter do

3:
4:

ol =1}
Calculate: o ¢; (1) & ¢, (I*) Using (39) and (84)
« _ cll)

o[t =] 7
s )

if |lsq — 1¥] < 107 then
1rt = [17]
Calculate: e 7 (19P1), ¢, (1P%), c2(19P%) & c3(19PF)
o K™ = ki (17)
Using (73), (84), (46), (47), (66) and (67)

et
o\ = *w

if A; < 0&ey(I97') <0 then
return 9P, c3(I1%) & KV
else
1998 = 0, e5(19P") = 0 & kg*' =)
return [P, c3(I1%) & KSP
end if
else if i = iter then
1998 =, c5(127") = 0 & ki™* =0
return (%%, c3(19) & k{P*
else
=11+ 1
end if

20: end while

Subalgorithm-2.3 Interference duration constraint inactive
and delay constraint active

Subalgorithm-2.1 Both delay and interference duration con-

straints inactive

Require: (9P, c1(19P%), ca(19PY), c5(19P) & kipt
1: Imitialize: [5=100, ii=1, iter=100, Py = P; = 0.9, Py =
Py =0.1& P, = Poy, = 1073
2: while i < iter do
3 Calculate: o f(I2)& f'(I*), Using (81) and (82)

ol =1}

o li=10— % )
4 if |lgg — %] < 107 then
5: Calculate:

*

o 1% = arg 1, — |

. min
INS{SRUSE

o c1(127), ca(I"), c3(IP') & K™

Using (39), (46), (67) & (68)

6: return (%%, ¢y (I9P%), co(19P%),c3(19P) & kP
7. else

8: i =11+ 1

9: end if

10: end while

Require: 9%, c3(12P) & kP

I: Initialize: P, = P, = 0.9, P; = P = 01 & P. =

P, =108

— 2 _
2: Calculate: (97!t = =B+VDB —4AC, fA 4AC,

jovt2 — —B—V/B2—4AC,
s T 24
Using values of A, B& C,, from (85),.

3 0f 1P & 1972 is R then

4 if [Pt > [9P2 then
sl = o] g = i)
6: else
U= 1] gt = (1]
8:  end if
9:  Calculate: o 7 (I12P11), ¢ (1%P"1) & cy(19P1)
! (1optl
o= lpm
o 1) (1), 1 (127%2) & ¢y (I9P*2)
! (jopt2
* Aoy =~ e
Using (73), (39) & (86)
10:  if Aoy < 0& ey (19P%1) < 0 then
11: lgpt — l(;ptl
12: Calculate: c3(1P%) & ki (12P%) Using (47), (66) &
(67)
13: ESP = ke (19P)
14: return %P, c5(19Pt) & KSP'
15:  else if Aoy < 0&c;(19P%2) < 0 then
16: [opt = [opt2
17: Calculate: c3(1P%) & k1 (1P%) Using (47), (66) &
(67)
18: EOPY = Ky (1971)
19: return %P, c3(19PY) & ESP*
20:  else
21: 1998 =, e3(1%) = 0 & k7' =0
22:  end if
23: else
4 1P =0, c3(I2P) =0 & K =0
25: end if
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Subalgorithm-2.4 Transmit power constraint active

Require: 197!, c3(19P%) & k3P*
1: Inmitialize: [} = 100, ii = 1, iter = 100
2: while ii <iter do

3 ol =1
4: Calculate: o c5(I%%) & c3(19P") Using (47), (66), (67)
& (92)
o[t =[*— ca(ly)
ST ()
i if |lg — 17| < 10 then
o 1= [
7: Calculate: e 7 (19P%), ¢ (I%P") & (:g(l;””’)/
Using (73), (39) and (46) e \s = 7%
cg(ls
8 if A3 <0, c1(19) < 0& (1Y) < 0 then
9: Calculate: k7" & c3(1%%) Using (47), (67), (68)
and (69)
10: return [P, k9P' & cy(19P)
11: else
12: 19t =0, k" =0 & c3(12) =0
13: return [P, kP & c3(19P)
14: end if

15:  else if i = iter then
16: 1Pt =0, B =0 & c3(19PH) =0

17: return [, kP & c3(19P)
18:  else

19: =11+ 1

20:  end if

21: end while

APPENDIX C
FOR SUBALGORITHMS- 2.2, 2.3 AND 2.4

C/l(ls) = A+ ls B,

(34)
where .
A = Pran"‘ (PTQP’/‘OffGT;) B, — _;
' Pro+ Prs LT T Py Pro)?
=t 1 s
{(PT2 + Prs)ProProgpe ™ .t ProProsre®r Prs}
P
’ 1 =ls
and Pry = ﬁ(P"'off — Prg — P7‘4)6Rf’p
Using (46),
A = Pe““ B = Peth(Tadd)R + 1 — kR and Ca =
R{(Tadd) + kh}
(85)
L/Z(ZS) = 2lspeth + PethTaddR + 1-kR
(36)

Using (66), (67), (79) and (80)

C;,(ZS) =

S

-1 2 5
1 3b (4m)*ds MyNy 1 ’
(1-%) (i) s 2-Pan) 87

(88)

Sl

1 4 1 4m)2d® MmN "
) =3 (1) (oton)  “TGesh g Pactlls)

17
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