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ON THE DENSENESS OF MINIMUM ATTAINING OPERATORS

S. H. KULKARNI AND G. RAMESH

Abstract. Let H1, H2 be complex Hilbert spaces and T be a densely defined
closed linear operator (not necessarily bounded). It is proved that for each
ǫ > 0, there exists a bounded operator S with ‖S‖ ≤ ǫ such that T + S is
minimum attaining. Further, if T is bounded below, then S can be chosen to
be rank one.

1. introduction

It is well known that the set of all norm attaining operators defined between two
complex Hilbert spaces is norm dense in the space of all bounded linear operators
defined between complex Hilbert spaces. This result is even true for operators
defined between Banach spaces, when the domain space is reflexive, which is proved
by Lindenstrauss [13]. A simple proof of this fact, in the case of Hilbert space
operators is given by Enflo et al. in [5]. Moreover, the authors proved that rank
one perturbation of a bounded operator can be made as norm attaining operator.

Similar to the norm attaining operators, bounded operators that attain their
minimum modulus is introduced in [4]. The unbounded case is dealt in [12] and the
authors established basic properties of minimum attaining closed densely defined
operators.

It is very natural to ask whether the Lindenstrauss theorem is true in case of
minimum attaining operators. In this article we answer this question affirmatively.
We show that the set of all minimum attaining densely defined closed operators
is dense in the class of densely defined closed operators with respect to the gap
metric. As a consequence, we can conclude the same is true for bounded operators
with respect to the operator norm. In a special case, we also show that rank one
perturbations lead to minimum attaining operators. This leads to the perturbations
of minimum attaining operators.

In the second section we recall some basic definitions and results which we need
for proving our main results. In the third section we prove the Lindenstrauss type
theorem for minimum attaining operators.

2. Notations and Preliminaries

Throughout we consider infinite dimensional complex Hilbert spaces which will
be denoted by H,H1, H2 etc. The inner product and the induced norm are denoted
by 〈·〉 and ||.||, respectively. The closure of a subspace M of H is denoted by M .
We denote the unit sphere of M by SM = {x ∈ M : ‖x‖ = 1}.

If M is a closed subspace of a Hilbert space H , then PM denotes the orthogonal
projection PM : H → H with range M .

Let T be a linear operator with domain D(T ) (a subspace of H1) and taking
values in H2. If D(T ) is dense in H1, then T is called a densely defined operator.
The graph G(T ) of T is defined by G(T ) := {(Tx, x) : x ∈ D(T )} ⊆ H1 × H2. If
G(T ) is closed, then T is called a closed operator. Equivalently, T is closed if (xn)
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is a sequence in D(T ) such that xn → x ∈ H1 and Txn → y ∈ H2, then x ∈ D(T )
and Tx = y.

For a densely defined linear operator T , there exists a unique linear operator (in
fact, a closed operator) T ∗ : D(T ∗) → H1, with

D(T ∗) := {y ∈ H2 : x → 〈Tx, y〉 for allx ∈ D(T ) is continuous} ⊆ H2

satisfying
〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ D(T ) and y ∈ D(T ∗).

We say T to be bounded if there exists M > 0 such that ‖Tx‖ ≤ M‖x‖ for all
x ∈ D(T ). Note that if T is densely defined and bounded then T can be extended
to all of H1 in a unique way.

By the closed graph Theorem [17], an everywhere defined closed operator is
bounded. Hence the domain of an unbounded closed operator is a proper subspace
of a Hilbert space.

The space of all bounded linear operators between H1 and H2 is denoted by
B(H1, H2) and the class of all closed linear operators between H1 and H2 is denoted
by C(H1, H2). We write B(H,H) = B(H) and C(H,H) = C(H).

If T ∈ B(H1, H2) is such that for every bounded sequence (xn) of H1, (Txn) has
a convergent subsequence in H2, then T is called a compact operator. Equivalently,
T is compact if and only if for every bounded set B of H1, T (B) is pre compact in
H2.

If T ∈ C(H1, H2), then the null space and the range space of T are denoted by
N(T ) and R(T ), respectively and the space C(T ) := D(T ) ∩ N(T )⊥ is called the
carrier of T . In fact, D(T ) = N(T ) ⊕⊥ C(T ) [2, page 340]. Here ⊕⊥ denote the
orthogonal direct sum of subspaces.

A subspace D of D(T ) is called a core for T if for any x ∈ D(T ), there exists
a sequence (xn) ⊂ D such that lim

n→∞
xn = x and lim

n→∞
Txn = Tx. In other words,

D is dense in the graph norm, which is defined by ‖|x‖| := ‖x‖ + ‖Tx‖ for all
x ∈ D(T ). It is a well known fact that D(T ∗T ) is a core for T (see [18, Definition
1.5, page 7, Proposition 3.18, page 47] for details).

Let S, T ∈ C(H) be densely defined operators with domains D(S) and D(T ),
respectively. Then S + T is an operator with domain D(S + T ) = D(S) ∩ D(T )
defined by (S + T )(x) = Sx+ Tx for all x ∈ D(S + T ). The operator ST has the
domain D(ST ) = {x ∈ D(T ) : Tx ∈ D(S)} and is defined as (ST )(x) = S(Tx) for
all x ∈ D(ST ).

If S and T are closed operators with the property that D(T ) ⊆ D(S) and
Tx = Sx for all x ∈ D(T ), then S is called the restriction of T and T is called an
extension of S.

A densely defined operator T ∈ C(H) is said to be

(1) normal if T ∗T = TT ∗

(2) self-adjoint if T = T ∗

(3) positive if T = T ∗ and 〈Tx, x〉 ≥ 0 for all x ∈ D(T ).

Let V ∈ B(H1, H2). Then V is called

(1) an isometry if ‖V x‖ = ‖x‖ for all x ∈ H1

(2) a partial isometry if V |N(V )⊥ is an isometry. The space N(V )⊥ is called
the initial space or the initial domain and the space R(V ) is called the final
space or the final domain of V .

Definition 2.1. Let T ∈ B(H1, H2). Then T is said to be norm attaining if there
exists x0 ∈ SN(T )⊥ ⊆ H1 such that ‖Tx0‖ = ‖T ‖.

Definition 2.2. [2, 6] Let T ∈ C(H1, H2) be densely defined. Then

m(T ) = inf {‖Tx‖ : x ∈ SD(T )}
2



is called the minimum modulus of T .

Definition 2.3. [12, Definition 3.1] Let T ∈ C(H1, H2) be densely defined. Then we
say T to be minimum attaining if there exists x0 ∈ SD(T ) such that ‖Tx0‖ = m(T ).

We denote the class of minimum attaining closed operators between H1 and H2

by Mc(H1, H2) and Mc(H,H) by Mc(H).

Note 2.4. If T ∈ C(H1, H2) is densely defined and N(T ) 6= {0}, then m(T ) = 0
and there exists x ∈ SN(T ) such that Tx = 0. Hence T ∈ Mc(H1, H2).

Remark 2.5. If T ∈ C(H1, H2) is densely defined, then m(T ) > 0 if and only if
R(T ) is closed and T is one-to-one.

Theorem 2.6. [17, theorem 13.31, page 349][3, Theorem 4, page 144] Let T ∈ C(H)
be densely defined and positive. Then there exists a unique positive operator S such
that T = S2. The operator S is called the square root of T and is denoted by

S = T
1
2 .

For T ∈ C(H1, H2), the operator |T | := (T ∗T )
1
2 is called the modulus of T .

Moreover, D(|T |) = D(T ), N(|T |) = N(T ) and R(|T |) = R(T ∗). As ‖Tx‖ =
‖|T |x‖ for all x ∈ D(T ), we can conclude that m(T ) = m(|T |) and T ∈ Mc(H1, H2)
if and only if |T | ∈ Mc(H1).

Theorem 2.7. [3, Theorem 2, page 184] Let T ∈ C(H1, H2) be densely defined.
Then there exists a unique partial isometry V : H1 → H2 with the initial space
R(T ∗) and the final space R(T ) such that T = V |T |.

Definition 2.8. [17, page 346] Let T ∈ C(H) be densely defined. The resolvent of
T is defined by

ρ(T ) := {λ ∈ C : T − λI : D(T ) → H is invertible and (T − λI)−1 ∈ B(H)}

and

σ(T ) : = C \ ρ(T )

σp(T ) : = {λ ∈ C : T − λI : D(T ) → H is not one-to-one},

are called the spectrum and the point spectrum of T , respectively.

Definition 2.9. [18, Definition 8.3 page 178] Let T = T ∗ ∈ C(H). Then the
discrete spectrum σd(T ) of T is defined as the set of all eigenvalues of T with finite
multiplicities which are isolated points of the spectrum σ(T ) of T . The complement
set σess(T ) := σ(T ) \ σd(T ) is called the essential spectrum of T .

The essential spectrum is stable under compact perturbations.

Proposition 2.10 (Weyl’s theorem). [18, Corollary 8.16, page 182] Let A ∈ C(H)
be self-adjoint and C is compact, self-adjoint. Then σess(A+ C) = σess(A).

Lemma 2.11. [7, 8, 15] Let T ∈ C(H1, H2) be densely defined. Denote Ť =

(I + T ∗T )−1 and T̂ = (I + TT ∗)−1. Then

(1) Ť ∈ B(H1), T̂ ∈ B(H2)

(2) T̂ T ⊆ T Ť , ||T Ť || ≤
1

2
and Ť T ∗ ⊆ T ∗T̂ , ||T ∗T̂ || ≤

1

2
(3) if g : [0, 1] → C is a continuous function, then

(a) T ∗g(T̂ )y = g(Ť )T ∗y for all y ∈ D(T ∗)

(b) Tg(Ť )x = g(T̂ )Tx for all x ∈ D(T ).
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2.1. Gap Metric. The gap between closed subspaces M and N of H is defined by
θ(M,N) := ‖PM − PN‖. This defines a metric on the class of closed subspaces of
H , known as the gap metric. The topology induced by the gap metric is known as
the gap topology. We have the following alternative formula for the gap;

θ(M,N) := max
{
||PM (I − PN )||, ||PN (I − PM )||

}
.

For the details we refer to [1, Page 70].
Let A,B ∈ C(H1, H2) be densely defined. Then G(A) and G(B) are closed

subspaces of H1 ×H2. The gap between A and B is defined as

θ(A,B) = ‖PG(A) − PG(B)‖,

where PM : H1 × H2 → H1 × H2, is an orthogonal projection onto the closed
subspace M of H1 × H2. This defines a metric on the class of closed operators
and induced topology is known as the gap topology. The gap topology restricted
to the space of bounded linear operators coincides with the norm topology. Also
the convergence with respect to the gap metric on the set of self-adjoint bounded
operators coincide with the resolvent convergence [16, Chapter VII, page 235]).

We have the following formula for the gap between two closed operators;

Theorem 2.12. [11] Let S, T ∈ C(H1, H2) be densely defined. Then the operators

T̂
1
2SŠ

1
2 , T Ť

1
2 Š

1
2 , SŠ

1
2 Ť

1
2 and Ŝ

1
2T Ť

1
2 are bounded and

θ(S, T ) = max {
∥∥∥T Ť 1

2 Š
1
2 − T̂

1
2SŠ

1
2

∥∥∥ , ‖SŠ 1
2 Ť

1
2 − Ŝ

1
2T Ť

1
2 ‖}. (2.1)

3. Denseness of minimum attaining operators

In this section we discuss the denseness of minimum attaining operators. First
let us consider the case of functionals:

Let H be a Hilbert space and φ : H → C be a non zero linear functional. Then
φ is continuous (bounded) if and only if φ is closed. Since H is infinite dimensional
and H/N(φ)⊥ is isomorphic with C, we can clearly conclude that N(φ) 6= {0}.
Hence φ is minimum attaining. Thus, the class of minimum attaining bounded
linear functionals coincide with the space of all bounded linear functionals. So in
this case, the minimum attaining functionals are dense. If H is finite dimensional,
then clearly every linear functional is minimum attaining. Hence in this case also
the result holds trivially.

In the above discussion we can replace Hilbert space by a Banach space. By a
theorem of James we can conclude that a normed linear space X is reflexive if and
only if every non zero bounded linear functional is norm attaining (see [9, 10] for de-
tails ). This is no more true if we replace the norm attaining property of functionals
by minimum attaining property, as we have noted in the above paragraph.

Now we consider the case of densely defined closed operators defined between two
different Hilbert spaces. We prove that the set of all minimum attaining densely
defined closed operators defined between two Hilbert spaces is dense in the class of
all densely defined closed operators with respect to the gap metric. First, we prove
a key result related to the gap between two closed operators.

Theorem 3.1. Let S, T ∈ C(H1, H2) be densely defined and D(S) = D(T ). Then

(1) the operators T̂
1
2 (T − S)Š

1
2 and Ŝ

1
2 (S − T )Ť

1
2 are bounded and

θ(S, T ) = max
{
‖T̂

1
2 (T − S)Š

1
2 ‖, ‖Ŝ

1
2 (S − T )Ť

1
2 ‖

}

(2) if T − S is bounded, then θ(S, T ) ≤ ‖S − T ‖.
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Proof. First we simplify the term T Ť
1
2 Š

1
2 . For x ∈ H1, we have that Š

1
2 x ∈ D(S) =

D(T ), consequently, T Ť
1
2 Š

1
2 x = T̂

1
2T Š

1
2x, by (3) of Lemma 2.11. Thus,

T Ť
1
2 Š

1
2 − T̂

1
2SŠ

1
2x =

(
T̂

1
2T Š

1
2 − T̂

1
2SŠ

1
2

)
x (3.1)

= T̂
1
2 (T − S)Š

1
2x. (3.2)

With a similar argument we can show that

SŠ
1
2 Ť

1
2 − Ŝ

1
2T Ť

1
2 = Ŝ

1
2 (S − T )Ť

1
2 .

Now the conclusion follows by Theorem 2.12.
If T − S is bounded, then

‖T̂
1
2 (T − S)Š

1
2 ‖ ≤ ‖T̂

1
2 ‖ ‖T − S‖ ‖Š

1
2 ‖ ≤ ‖T − S‖. (3.3)

Similarly, we can conclude that ‖Ŝ
1
2 (S − T )Ť

1
2 ‖ ≤ ‖T − S‖.

Hence by the above two observations the conclusion follows. �

Proposition 3.2. [12, Propositions 3.8, 3.9] Let T ∈ C(H) be positive. Then

(1) T ∈ Mc(H) if and only if T
1
2 ∈ Mc(H)

(2) T ∈ Mc(H) if and only if m(T ) is an eigenvalue of T .

Proposition 3.3. [12, Proposition 3.5] Let T ∈ C(H) be positive. Then

m(T ) = inf {〈Tx, x〉 : x ∈ SD(T )}.

Theorem 3.4. Let T ∈ C(H) be positive. Then for each ǫ > 0, there exists an
operator S ∈ B(H) such that

(1) ‖S‖ ≤ ǫ
(2) T + S is minimum attaining
(3) θ(S + T, T ) ≤ ǫ.

Proof. We prove the results by considering the following cases.
Case (1): m(T ) > 0

First we may assume that 0 < ǫ < m(T ). Since, T ≥ 0 and m(T ) = inf
x∈SD(T )

〈Tx, x〉

by Proposition 3.3, there exists xǫ ∈ SD(T ), such that

〈Txǫ, xǫ〉 < m(T ) +
ǫ

2
. (3.4)

Now, define

Cǫ(x) = ǫ 〈x, xǫ〉xǫ. (3.5)

Then clearly, Cǫ is a rank one positive, bounded operator with ‖Cǫ‖ = ‖Cǫ(xǫ)‖ = ǫ.
Let Tǫ = T − Cǫ. Clearly, Tǫ is self-adjoint. In fact, we show that Tǫ ≥ 0. To

this end, let x ∈ D(Tǫ) = D(T ). Then

〈Tǫx, x〉 = 〈Tx, x〉 − ǫ|〈x, xǫ〉|
2

≥ (m(T )− ǫ)〈x, x〉 (by Cauchy-Schwarz inequality).

In fact,

‖T
1
2
ǫ x‖2 ≥ (m(T )− ǫ) ‖x‖2 for all x ∈ D(Tǫ). (3.6)

Note that D(Tǫ) ⊆ D(T
1
2
ǫ ). Using the fact that D(Tǫ) is a core for D(T

1
2
ǫ ), we can

conclude that the inequality (3.6) holds for all x ∈ D(T
1
2
ǫ ). Hence T

1
2
ǫ is invertible

and consequently, Tǫ is invertible. So m(Tǫ) > 0.
We claim that Tǫ ∈ Mc(H). We show that m(Tǫ) ∈ σd(Tǫ). Assume that

m(Tǫ) ∈ σess(Tǫ). Then by the Weyl’s theorem we have σess(Tǫ) = σess(T ). Note
as m(T ) ∈ σ(T ) and m(T ) is the smallest spectral value, we can conclude that
m(T ) ≤ m(Tǫ).
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But we have

m(Tǫ) ≤ 〈Tǫxǫ, xǫ〉 = 〈Txǫ, xǫ〉 − ǫ < m(T )−
ǫ

2
< m(T ).

Thus our assumption that m(Tǫ) ∈ σess(Tǫ) is wrong. As m(Tǫ) ∈ σ(Tǫ), it must
hold that m(Tǫ) ∈ σd(Tǫ). Consequently, Tǫ ∈ Mc(H).

Note that Tǫ ∈ C(H) and Tǫ − T = Cǫ|D(T ) is a bounded operator with domain
D(T ). By Theorem 3.1, it follows that

θ(Tǫ, T ) ≤ ‖Tǫ − T ‖ = ‖Cǫ|D(T )‖ ≤ ‖Cǫ‖ = ǫ.

Take S = −Cǫ. Then S satisfies the stated conditions.
Case (2) T is not one-to-one

Clearly T is minimum attaining. In this case S = 0 satisfy the required properties.
Case (3) T is one-to-one and m(T ) = 0

We can use case (1) to get the desired operator S. Note that T +
ǫ

2
I is positive and

m(T +
ǫ

2
I) =

ǫ

2
. Hence by Case (1) above, there exists a positive rank one operator

C with ‖C‖ ≤
ǫ

2
such that T+

ǫ

2
I−C is minimum attaining and θ(T, T+

ǫ

2
I−C) ≤

‖
ǫ

2
I − C‖ ≤ ǫ. Let S =

ǫ

2
I − C. Then S satisfy all the required conditions. �

Now we prove the above result for the general case.

Theorem 3.5. Let T ∈ C(H1, H2). Then for each ǫ > 0 there exists an operator
S ∈ B(H1, H2) with ‖S‖ ≤ ǫ such that S+T is minimum attaining and θ(S+T, T ) ≤
ǫ. Moreover, if m(T ) > 0 then S can be chosen to be rank one operator.

Proof. Let T = V |T | be the polar decomposition of T . Applying Theorem 3.4 to
|T |, there exists A ∈ B(H1) with ‖A‖ ≤ ǫ and |T |+A is minimum attaining.

Define S = V A. Then S ∈ B(H1, H2) with ‖S‖ ≤ ǫ. Next, we claim that T + S
is minimum attaining. By construction in Theorem 3.4, we have that S = 0 if T is
not one-to-one, hence in this case clearly T + S = T is minimum attaining.

If T is one-to-one, then V is an isometry and T + S is minimum attaining as
|T |+A minimum attaining. Note that m(T + S) = m(|T |+A).

In case if m(T ) > 0, then A is a rank one operator and so is the operator S.
Finally, by Theorem 3.1, we have θ(S + T, T ) ≤ ‖S‖ ≤ ǫ. �

The following Corollary is an immediate consequence of Theorem 3.5.

Corollary 3.6. The set Mc(H1, H2) is dense in C(H1, H2) with respect to the gap
topology.

Corollary 3.7. The set of all minimum attaining bounded operators is dense in
B(H1, H2) with respect to the norm topology of B(H1, H2).

Proof. The gap topology restricted to B(H1, H2) coincide with the norm topology of
B(H1, H2) by [14, Theorem 2.5]. Hence the conclusion follows by Corollary 3.6. �

Theorem 3.8. Let

G := {T ∈ Mc(H1, H2) : T is densely defined and bounded below }

and Cb(H1, H2) = {T ∈ C(H1, H2) : T is bounded below}. If T ∈ Cb(H1, H2) and

ǫ > 0, there exists T̃ ∈ Mc(H1, H2) such that θ(T, T̃ ) ≤ ǫ.

Proof. Let T ∈ G and T = V |T | be the polar decomposition of T . By the assump-
tion, m(|T |) > 0. Following the steps in Theorem 3.4, for each ǫ > 0, we get a
rank one operator S with ‖S‖ ≤ ǫ such that |T | + S ∈ Mc(H1). Since V is an

isometry, we can conclude that T̃ := V (|T |+ S) = T + V S is minimum attaining

and m(T̃ ) = m(|T |+ S).
6



Since T̃ − T = V S is a bounded operator with domain D(T ), by Theorem 3.1,

we can conclude that θ(T̃ , T ) ≤ ǫ. �

Corollary 3.9. The set

Mb(H1, H2) := {A ∈ B(H1, H2) : A is minimum attaining and bounded below}

is norm dense in Bb(H1, H2) = {A ∈ B(H1, H2) : A is bounded below}.

Proof. The gap metric and the metric induced by the operator norm are equivalent
on B(H1, H2) by [14, Theorem 2.5]. Hence the conclusion follows by Theorem
3.8. �
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