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Abstract

Linear stability analysis of double diffusive convection in a horizontal fluid saturated porous layer has been carried out. Effects

of viscous dissipation, horizontal mass flow are taken into account. Combined effects of horizontal mass flow, viscous dissipation

may cause instability in the fluid system. To carry out linear stability analysis, disturbances are the form of longitudinal rolls,

transverse rolls have been considered. In order to solve eigenvalue problem numerically, Runge-Kutta and shooting methods have

been employed for the case of longitudinal rolls. Chebyshev-Tau method has been used for the case of transverse rolls. Critical

wave number aC , critical vertical thermal Rayleigh number RaC are evaluated for assigned values of flow governing parameters.

For the onset of convection, physical explanation is given.
c© 2015 The Authors. Published by Elsevier Ltd.
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1. Introduction

It is noteworthy to study double diffusive convection in a fluid saturated porous media as it has several technical and

geophysical applications. In the present article, linear stability analysis of double diffusive convection in a horizontal

porous layer saturated with fluid has been carried out. Viscous heating contribution and horizontal mass flow are taken

into account. Here the flow is induced by horizontal temperature and concentration gradients. It is an extension to the

study of [1].

Heat convection in a horizontal porous layer induced by temperature differences between the boundaries was first

studied by [2] and [3]. This particular problem is popularly known as Darcy- Bénard problem or Horton-Rogers-

Lapwood problem. Heat convection in a porous layer with horizontal temperature gradients was studied by [4]. [5]

investigated the horizontal mass flow effect on convection in a porous layer. All the improvements in this research

area is incorporated in the books [6] and [7].
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Double diffusive convection can arise due to combined heat and mass transfer which are caused by buoyancy

effects. Usually this type of convection arises in sea water flow, and mantle flow in the earth’s crust. Problem of

double diffusive convection was studied in [8], [9], and [10]. In [11], nonlinear stability theory using energy method

is developed to solve the problem of double diffusive convection.

Temperature profile becomes nonlinear when viscous dissipation is present. Article [12], was first to introduce

dissipation term in the temperature equation and proved that for the case of natural convection, this effect becomes

negligible. In general, most of the convection problems in a horizontal porous layer, imposed temperature differences

between the boundaries, serves to cause the instability. Brinkman number measures the internal heat generation by

the act of viscous dissipation to the temperature difference. Hence, viscous dissipation plays an important role for the

problems with no external temperature difference across the plates, and it leads to an infinite Brinkman number. The

viscous dissipation effect was investigated in many articles [13], [14], and [15].

2. Mathematical Formulation

A horizontal homogeneous porous layer which is saturated with fluid has been considered with characterstic length

H. The Cartesian coordinates (x∗, y∗, z∗), with z∗-axis vertically upwards and x∗-axis is in the net flow direction. Porous

layer is bounded by horizontal plates z∗ = 0, z∗ = H. The vertical temperature difference is ΔT ∗ and concentration

difference is ΔC∗. Boundary conditions at the plates are

T ∗(x∗, y∗, 0, t∗) = T ∗0 + ΔT ∗ − η∗x∗, C∗(x∗, y∗, 0, t∗) = C∗0 + ΔC∗ − ξ∗x∗,
T ∗(x∗, y∗,H, t∗) = T ∗0 − η∗x∗, C∗(x∗, y∗,H, t∗) = C∗0 − ξ∗x∗, (1)

where T ∗ be the temperatutre, C∗ is the concentration, (x∗, y∗, z∗) are Cartesian coordinates. And η∗ is uniform hori-

zontal temperature gradient and ξ∗ is concentration gradient. Dimensionless variables are defined as following

(x, y, z) =
1

H
(x∗, y∗, z∗), v =

H
α

v∗, t =
α

AH2
t∗,

T =
T ∗ − T ∗0
ΔT ∗

, C =
C∗ −C∗0
ΔC∗

, P =
K
αμ

P∗, (2)

where t∗ be the time, α be the thermal diffusitivity, v∗ be the Darcy velocity, P∗ be the pressure, K is the permeability

of the porous medium, μ is the dynamaic viscosity, and A = (ρc)m
(ρcP) f

is the heat capacity ratio. Dimensionless parameters

are defined as

Ge =
βT gH

c
, Le =

α

D
, Ra =

βT gΔT ∗KH
να

,

RaH =
βT gη∗KH2

να
, S a =

βCgΔC∗KH
νD

, S aH =
βCgξ∗KH2

νD
,

where βT and βC are the thermal and solutal expansion coeffients, D is the mass diffusitivity, ν is the kinematic

viscosity, Ra and RaH are the vertical and horizontal thermal Rayleigh numbers and S a and S aH are the vertical and

horizontal solutal Rayleigh numbers, Ge is the Gebhart number, Le is the Lewis number. Non dimensional Governing

equations are of the following form

∇ · v = 0, (3)

v = −∇P + (RaT +
1

Le
S aC)k, (4)

∂T
∂t
+ v · ∇T = ∇2T +

Ge
Ra

v · v, (5)

∂C
∂t
+ v · ∇C =

1

Le
∇2C, (6)

z = 0 : w = 0, T = 1 − RaH

Ra
x, C = 1 − S aH

S a
x,
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z = 1 : w = 0, T = −RaH

Ra
x, C = −S aH

S a
x, (7)

here k is the unit vector. In the x-direction, it is assumed that a horizontal mass flow of with magnitude Pe i.e

∫ H

0

us = Pe. (8)

here us is basic state velocity in x−direction.

2.1. Steady-State solution

On evaluating the curl of Eq. (4), the following equations are obtained.

∂w
∂y
− ∂v
∂z
=

(
Ra
∂T
∂y
+

1

Le
S a
∂C
∂y

)
, (9)

∂w
∂x
− ∂u
∂z
=

(
Ra
∂T
∂x
+

1

Le
S a
∂C
∂x

)
, (10)

∂u
∂y
− ∂v
∂x
= 0, (11)

By using boundary conditions Eq.(7), and from the Eqs.(3),(5),(6) and (9)-(11), the following steady state solution is

obtained.

us (z) =

(
RaH +

1

Le
S aH

) (
z − 1

2

)
+ Pe, vs (z) = 0, ws (z) = 0, (12)

Ts(x, z) = 1 − RaH

Ra
x − z +

(1 − z) z
24Ra

[12GePe2 − 4GePeX +GeX2

+ 12PeRaH − 2XRaH + 2zX (4GePe −GeX + 2RaH)

+ 2z2GeX2],

(13)

Cs(x, z) = 1 − S aH

S a
x − z − (z − 1)z

2

LePeS aH

S a
+ Le

S aH

S a
X(

z2

4
− z3

6
+

z
12

), (14)

where X = RaH +
1
Le S aH .

In Eq. (12), basic state velocity in the x-direction which varying linearly with z represent superposition of Hadley

flow and uniform flow. Eq.(13) and (14) indicates temperature and concentration fields in the fluid system varying

in x, z directions. But when horizontal Rayleigh numbers RaH , S aH goes to zero, temperature and concentration

gradients depends only on z.

In this article, Pe is the strength of the velociy in flow direction, Ge is measure of viscous dissipation effect.

Ra,RaH , show buoyancy effects by cause of temperature differences whereas S a, S aH represent buoyanct effects as a

result of concentration differences.

2.2. Perturbation Analysis

In order to study linear stability analysis, small perturbations viz. V(x, y, z, t), θ(x, y, z, t) and φ(x, y, z, t) are intro-

duced.

v = vs + εV, T = Ts + εθ, C = Cs + εφ, (15)

where ε is small quantity and V = (U,V,W). By omitting δ2 terms and sub. (15) in (3) and (5)-(7), the following

perturbation equations are obtained
∂U
∂x
+
∂V
∂y
+
∂W
∂z
= 0, (16)
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∂W
∂y
− ∂V
∂z
=

(
Ra
∂θ

∂y
+

1

Le
S a
∂φ

∂y

)
, (17)

∂W
∂x
− ∂U
∂z
=

(
Ra
∂θ

∂x
+

1

Le
S a
∂φ

∂x

)
, (18)

∂U
∂y
− ∂V
∂x
= 0, (19)

∂θ

∂t
− U

RaH

Ra
+ us
∂θ

∂x
+W
∂Ts

∂z
= 2

Ge
Ra

usU + ∇2θ, (20)

∂φ

∂t
+ us
∂φ

∂x
− S aH

S a
U +W

∂Cs

∂z
=

1

Le
∇2φ, (21)

z = 0, 1 : W = 0, θ = 0, φ = 0. (22)

2.3. Transverse Rolls

Transverse rolls are rolls which axes are prependicular to the basic flow direction. That is, disturbances lies in

xz-plane.

U = U (x, z, t) , V = 0, W = W (x, z, t) , θ = θ (x, z, t) , φ = φ (x, z, t) , (23)

Set up a stream function ψ such that

U =
∂ψ

∂z
, W = −∂ψ

∂x
, (24)

Substituting Eqs. (23)-(24) in (16)-(22), the following equations are obtained. And (16), (17), (19) satisfies identically.

∇2ψ = −
(
Ra
∂θ

∂x
+

1

Le
S a
∂φ

∂x

)
, (25)

∂θ

∂t
+ us
∂θ

∂x
− RaH

Ra
∂ψ

∂z
− ∂ψ
∂x
∂Ts

∂z
= ∇2θ + 2

Ge
Ra

us
∂ψ

∂z
, (26)

∂φ

∂t
+ us
∂φ

∂x
− S aH

S a
∂ψ

∂z
− ∂ψ
∂x
∂Cs

∂z
=

1

Le
∇2φ, (27)

z = 0, 1 : ψ = 0, θ = 0, φ = 0. (28)

Solutions of eqs. (25)-(28) are of the form of

ψ (x, z, t) = f (z)ei(ax)eλt,

θ (x, z, t) = h(z)ei(ax)eλt,

φ (x, z, t) = k(z)ei(ax)eλt, (29)

where λ = λR + λI is complex growth rate parameter, a is the wave number. Disturbances grows exponentially when

λI > 0, which leads instability in the flow. Disturbances decays to 0 for λI < 0 which leads to stability in the flow.

While λI = 0, is a case of principle of exchange of stabilities or marginal stability. It is interesting to study the case of

λI = 0. By Substituting Eq. (29) in Eqs. (25)-(28), the following eigenvalue problem is obtained.

(D2 − a2) f + ia(Rah +
1

Le
S ak) = 0, (30)

(D2 − a2)h − iaush + 2
Ge
Ra

usD f + ia
dTs

dz
f +

RaH

Ra
D f = λh, (31)

(D2 − a2)k − iaLeusk + Le
S aH

S a
D f + ia

dCs

dz
Le f = λkLe, (32)
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z = 0, 1 : f = 0, h = 0, k = 0. (33)

where

γ =
λR

a
− Pe. (34)

F(z) = us − Pe

=

(
RaH +

1

Le
S aH

) (
z − 1

2

)
,

(35)

G(z) =
∂Ts

∂z

= −1 +
1

24Ra
[12GePe2 + 12PeRaH +GeX2 − 2XRaH − 4GePeX

− 6z
(
4GePe2 + 4PeRaH +GeX2 − 4GePeX − 2XRaH

)
− 12z2

(
XRaH + 2GePeX −GeX2

)
− 8z3GeX2],

(36)

H(z) =
∂Cs

∂z

= −1 +
1

2
Le

S aH

S a
(Pe − X

6
) + Le

S aH

S a
z(

X
2
− Pe) − Le

S aH

S a
Xz2

2
,

(37)

where X = RaH +
1
Le S aH .

2.4. Longitudinal Rolls

Longitudinal rolls are rolls which axes are parallel to the basic flow direction. That is, disturbances lies in yz-plane.

U = 0, V = V (y, z, t) , W = W (y, z, t) , θ = θ (y, z, t) , φ = φ (y, z, t) , (38)

Set up a stream function ψ such that

V =
∂ψ

∂z
, W = −∂ψ

∂y
, (39)

Substituting Eqs. (38)-(39) in (16)-(22), the following equations are obtained.

∇2ψ = −
(
Ra
∂θ

∂y
+

1

Le
S a
∂φ

∂y

)
, (40)

∂θ

∂t
− ∂ψ
∂y
∂Ts

∂z
= ∇2θ, (41)

∂φ

∂t
− ∂ψ
∂y
∂Cs

∂z
=

1

Le
∇2φ, (42)

z = 0, 1 : ψ = 0, θ = 0, φ = 0. (43)

Solutions of Eqs. (40)-(43) are of the form of

ψ (y, z, t) = f (z)ei(ay)eλt,

θ (y, z, t) = h(z)ei(ay)eλt,

φ (y, z, t) = k(z)ei(ay)eλt, (44)

Substituting Eq.(44) into (40)-(43), the following eigenvalue problem is attained.

(D2 − a2) f + ia(Rah +
1

Le
S ak) = 0, (45)
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Fig. 1: Variation of RaC versus Pe for RaH = 10, Le = 10, S a = 5, S aH = 0 and Ge = 0, 0.2.

(D2 − a2)h + ia
dTs

dz
f = λh, (46)

(D2 − a2)k + iaLe
dCs

dz
f = λLek, (47)

z = 0, 1 : f = 0, h = 0, k = 0. (48)

3. Results and discussion

For longitudinal rolls, Runge-Kutta and shooting methods have been employed to solve the eigenvalue problem

(30)-(33). Whereas for transverse rolls, to solve the eigenvalue problem (45)-(48), Chebyshev-Tau method has been

used. Throught the discussion, dashed lines represent transverse rolls and solid lines represent longitudinal rolls.

Fig. 1 shows the responce of critical thermal Rayleigh number RaC to Peclet number Pe for the parameters

RaH = 0, Le = 10, S a = 5,S aH = 0 with the comparison of Ge = 0, 0.2. Plots with Ge = 0 is symmetric about

Pe = 0 axis. Transverse rolls are more unstable than longitudinal rolls. In the presence of viscous dissipation, upward

throughflow is more prone instability comparing to the downward throughflow.

Fig. 2 display the behavior of RaC against horizintal Rayleigh number RaH for Le = 10, S a = 5, S aH = 0 and

Ge = 0, 0.2. In both the figures, small values of RaH upto 25, has stabilizing efect, but as RaH increases beyond this,

destabilization effect takes place. For upward throughflow, flow with Ge = 0.2 is more unstable than the flow with

Ge = 0 but an opposite observation is made for the downward throughflow.

(a) Pe = 10 (b) Pe = -10

Fig. 2: Graph of RaC versus RaH for Le = 10, S a = 5, S aH = 0 and Ge = 0, 0.2.
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Fig. 3: Plot of RaC versus RaH for Pe = 0, Le = 10, S a = 5, S aH = 0 and Ge = 0, 0.2.

Fig. 4: Variation of RaC versus S aH for Pe = 0, Le = 10, S a = 10, RaH = 0 and Ge = 0, 0.2.

Fig. 5: Graph of RaC versus S a for Pe = 5, Le = 10, RaH = 10, S aH = 0 and Ge = 0, 0.2.

Fig. 3 represents the plot of RaC versus RaH for values of Pe = 0, Le = 10, S a = 5, S aH = 0 and Ge = 0, 0.2.

RaH has stabilizing effect. When Pe = 0, effect of viscous dissipation is insignificant up to certain values of RaH (for

longitudinal modes 70, for transverse modes 40). After this certain value flow with Ge = 0.2 is more unstable than

the flow with Ge = 0.

Fig. 4 depicts graph of RaC to S aH for Pe = 0, Le = 10, S a = 10, RaH = 0 and Ge = 0, 0.2. For both, longitudinal

and transevesre modes, S aH has stabilizing effect. There is no effect of viscous dissipation on longitudinal modes.

But in the case of transverse modes, up to perticular value of S aH , curves for Ge = 0 and Ge = 0.2 coincides. But

after this value, Ge = 0.2 makes the flow more destable than Ge = 0.

Fig. 5 shows the response of RaC to S a for Pe = 5, Le = 10, RaH = 10, S aH = 0 and Ge = 0, 0.2. As S a increases

from −40 to 40, destabilization effect takes place. This effect of destabilization is stronger for longitudinal modes,

weaker for transverse modes. In both cases, flow with Ge = 0.2 is more unstable than the flow with Ge = 0.
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