
 Procedia IUTAM 15 (2015) 305 – 312

Available online at www.sciencedirect.com

2210-9838 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of Indian Institute of Technology, Hyderabad.
doi: 10.1016/j.piutam.2015.04.043

ScienceDirect

IUTAM Symposium on Multiphase flows with phase change: challenges and opportunities,
Hyderabad, India (December 08 – December 11, 2014)

Study of disintegration of a high speed liquid jet using VOF method

Rajesh Reddya,∗, R. Banerjeea

aDepartment of Mechanical and Aerospace engineering, Indian Institute of Technology Hyderabad, Hyderabad and 502205, India

Abstract

Numerical simulations are carried out to look at the primary atomization of a 2-D planar liquid jet. A finite volume method based

solver is developed and interface capturing is done by volume of fluid (VOF) method. The solver uses a projection algorithm to

solve the governing equations. Preconditioned conjugate gradient method is used to solve the pressure poisson equation. This part

of the solver is ported on to graphics processing unit (GPU) to meet the computational demand required. The solver is validated

against standard benchmark test cases. Initially the parallelized version on GPU is compared with the serial version on single CPU

core to estimate the speed up achieved. Effect of liquid inlet velocity on jet disintegration is studied.
c© 2014 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of Indian Institute of Technology, Hyderabad.

Keywords: VOF method; GPU computing; sprays;

1. Introduction

Breakup of a liquid jet emanating from an orifice is observed in several engineering and scientific applications

like fuel injection in IC engines and gas turbines, spray painting, etc. The description of the moving interface is

computationally very challenging in such type of flows. Traditional CFD approaches model the primary jet breakup

using constitutive models. However, these models are very empirical in nature and require several model inputs which

is typically derived from downstream experimental data. Additionally, obtaining experimental data in the dense spray

region is extremely difficult. Hence, more recently high fidelity two-phase interface tracking methods are being

increasingly used to simulate primary jet breakup1,2. The problem can be dealt from either Eulerian or Lagrangian

approach. Eulerian model based on volume of fluid (VOF) method is used here because of its inherent ability to

handle interfacial flows that undergo large topology changes including merging and breakup. The present solver is

aimed at understanding the spray ejecting from an injector, which is a computationally expensive problem. Solution

for the pressure Poisson equation consumes major part of the computational time. Hence, in order to reduce the

computational time, parallelization of the pressure Poisson equation solver is done by programming on GPU in the

present solver.

∗ Corresponding author. Tel.: +91-9866304076.

E-mail address: me10p006@iith.ac.in

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of Indian Institute of Technology, Hyderabad.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Archive of Indian Institute of Technology Hyderabad

https://core.ac.uk/display/80948028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.piutam.2015.04.043&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.piutam.2015.04.043&domain=pdf

306 Rajesh Reddy and R. Banerjee / Procedia IUTAM 15 (2015) 305 – 312

1.1. Introduction to GPU computing

In GPU computing, a Graphics Processor Unit is used in conjunction with CPU. It has become a recent trend in

high performance computing to use GPUs for executing a part of the program in parallel. The reason being its high

processing power and relatively low cost. Current GPUs are incorporated with hundreds of lightweight cores which

can accelerate compute intensive applications substantially. The GPUs are efficient for data parallel applications like

Computational fluid dynamics (CFD), as it has a Single Instruction Multiple Data (SIMD) device architecture. In the

present work, GPU programming is done on a parallel computing platform called compute unified device architecture

(CUDA), developed by NVIDIA Corporation3.

Nomenclature

C volume fraction

Eo Eotvos number

F surface tension force per unit volume

g gravitational acceleration

L liquid sheet thickness

p pressure

R radius of bubble

Re Reynolds number

u velocity component in x-direction

v velocity component in y-direction

v velocity vector

Greek symbols

Δt time step

Δx grid spacing in x-direction

Δy grid spacing in y-direction

η Kolmogorov length scale

μ dynamic viscosity

ρ density

σ surface tension

S ubscripts

l liquid

g gas

Abbreviations

CSF Continuum Surface Force

CUDA Compute Unied Device Architecture

EI-LE Eulerian Implicit Lagrangian Explicit

ENO Essentially Non-ooscillatory

GPU Graphics Processing Unit

VOF Volume of Fluid

2. Governing equations

The incompressible, variable density and isothermal flow of immiscible fluids is governed by

∇ · v = 0 (1)

ρ(
∂v
∂t
+ v · ∇v) = −∇p + ∇ · [μ(∇v + ∇vT)] + F (2)

Eq. (1) and (2) represent the conservation of mass and momentum, respectively. F in Eq. (2) is the body force term

which can be gravity or surface tension force per unit volume. The location of the interface is determined by using

VOF methodology. The VOF method solves an additional advection equation for volume fraction C, which is defined

as fraction of reference phase fluid occupied in a computational cell.

∂C
∂t
+ v · ∇C = 0 (3)

From the estimation of volume fraction, the effective density and viscosity in a cell can be obtained as (assuming

gaseous phase as reference phase)

ρ = ρgC + ρl(1 −C) (4)

μ = μgC + μl(1 −C) (5)

 Rajesh Reddy and R. Banerjee / Procedia IUTAM 15 (2015) 305 – 312 307

3. Numerical modeling

Finite volume method (FVM) is used to represent the flow governing partial differential equations in the form of

algebraic form. The grid is two dimensional, Cartesian, structured and collocated. A projection algorithm namely

simplified marker and cell (SMAC) is used to solve the Navier-Stokes equations. VOF method, which is used for

interface capturing consists of two parts, popularly known as interface reconstruction and interface advection. Youngs

method4 is adopted for interface reconstruction. Interface advection is done using Operator split scheme with Eulerian

implicit-Lagrangian explicit method given by Aulisa et al5. Surface tension term is modelled using continuum surface

force (CSF) method given by Brackbill et al6.Convective term is discretized using a second order ENO scheme. Space

derivatives are discretized using a second order central difference scheme. Pressure Poisson equation is solved by

using symmetric Gauss Siedel preconditioned conjugate gradient (SGSPCG) method.

4. Parallelization on GPU architecture

In interest of brevity, introduction to GPU architecture and CUDA platform are not presented here. These details

can be found in CUDA programming guide7. The pressure Poisson equation in the flow solver is ported on to GPU

to accelerate the computation. As the remaining part of the solver is processed on CPU, the required data is to be

transferred on to the device memory before the GPU execution starts. To achieve high performance, this data transfer

between the host and device memory is to be minimised.

Conjugate gradient (CG) method is rarely applied directly to solve the linear system of equations, because of slow

convergence issues. Generally, CG method is applied in preconditioned form to accelerate the convergence. The non

preconditioned CG method is straight forward to implement. In-addition, the sparse matrix vector multiplication, dot

product and other mathematical operations in CG algorithm are convenient to parallelize. The computational grid in

CUDA is handled by dividing it in to two dimensional blocks. Each block consists, say m x n number of threads. A

thread with a unique thread id is created corresponding to every cell center node in the actual computational domain.

Symmetric Gauss Siedel (SGS) is used as preconditioner in CG algorithm. Applying SGS is inherently serial in nature.

SGS method basically consists of two steps namely, forward Gauss Siedel (GS) sweep and backward GS sweep. For

the algorithm to run on parallel threads it is necessary that there are no dependencies between variables on different

threads. To resolve the dependencies, the current implementation employs Red-Black GS method8 in forward sweep,

followed by Black-Red GS method in reverse sweep. For a second order stencil used to solve 2-D Poisson equation,

two colors (say red and black) are required to generate sets of points which are not related with each other. Now each

colour can be processed separately and the calculations within a color are done in parallel. Each color is processed

sequentially. Every particular thread is mapped to a corresponding point in the required color by using the block-id

and thread-id provided by CUDA. The threads are mapped to points of one colour at a time. Fig. 1 shows colored

domain and thread mapping arrangement for a sample domain size of 8X4 interior cells.

A single kernel is used to apply the boundary conditions on all boundaries. For invoking boundary conditions a one

dimensional grid is assumed and as many threads as boundary points are created. A separate kernel is implemented

to calculate the summation of elements in a vector. This kernel assumes a 1-D grid and calculation is done by using

shared memory, which is several order faster than global memory.

NVIDIA GeForce GTX480 model GPU is used for present simulations. The GPU was hosted by a FUJITSU

CELSIUS R670 workstation (via PCI Express interconnect), consisting of dual Intel Xeon 2.8 GHz processors, 24

GB memory and 2 TB hard disk. Serial simulations are done with Linux Redhat C++ compiler (g++). Parallel code

compilation was performed with nvcc compiler. All the simulations are done with double precision floating point

values.

5. Validation

5.1. Validation of interface tracking algorithm

VOF method is successfully tested for vortex in a box test introduced by Rider and Kothe9. This test case is

believed to provide a complete assessment of the volume tracking algorithm. The details of the test procedure and its

verification by present solver has been described in detail by Rajesh and Banerjee10.

308 Rajesh Reddy and R. Banerjee / Procedia IUTAM 15 (2015) 305 – 312

Fig. 1. Colouring of the domain with CUDA thread mapping arrangement.

Fig. 2. (a) Initial configuration and boundary conditions for bubble rise test case; (b) Bubble position at different instants.

5.2. Validation of flow solver

The overall performance of the solver is established by validating it against the standard benchmark test case of

buoyancy driven gas bubble in a quiescent surrounding fluid. Test case presented by Hysing et al. 11 is taken as

reference. Initial configuration and boundary conditions are illustrated in Fig. 2(a) . The density and viscosity ratios

are taken to be equal to 10. Surface tension constant is equal to 24.5. Gravitational velocity Ug is defined as
√

2gR.

Reynolds number and Eotvos number are defined based on gravitational velocity and diameter of bubble. For the

present case Re = 35 and Eo = 10. Time scale is defined as t = 2U
g . The results are quantified in terms of bubble

centroid position and rise velocity.

Simulations are done up to t=3 on three different grids of sizes 40x80, 80x160 and 160x320. Fig. 2(b) shows the

interface shape of the rising bubble at different time instants on grid 80x160. The solution obtained on 80x160 grid

is compared with the solution from Hysing et al. Fig. 3 shows the comparison of bubble centroid and mean rise

 Rajesh Reddy and R. Banerjee / Procedia IUTAM 15 (2015) 305 – 312 309

Fig. 3. (a) Centroid of bubble with time; (b) Rise velocity of bubble with time.

velocity. The bubble centroid increases monotonically with respect to time. However in case of bubble rise velocity, it

initially increases with time, following which there is marginal decrease in the rise velocity before settling to an almost

constant value. This is because by this time the buoyant force is balanced by the drag force and the bubble attains its

terminal velocity. Fig. 2 and Fig. 3 show that the present solver is able to capture the bubble motion and show a good

agreement with the reference literature11. Fig. 3(b) shows a small deviation in the rise velocity when compared with

the reference result11. This difference is believed to be due to the surface tension term. Present solver uses standard

CSF algorithm proposed by Brackbill et al6. The curvature calculation from volume fraction and the resulting jump

condition at the liquid/gas interface results in spurious velocity at the interface which becomes increasingly apparent

for surface tension dominated problems like the present case. As expected, surface tension effects are strong enough to

hold the bubble together and no break up occurs. The bubble attains an ellipsoidal shape at the end of the simulation.

5.3. Performance acceleration with GPU parallelization

In order to estimate the performance of the GPU based parallelization, the bubble rise problem was solved using

both the serial and GPU based parallelized version of the code. The performance is reported in terms of workunits.

Table 1. Performance acceleration with GPU. (tested by running for first 30 timesteps)

Grid workunits speedup

CPU GPU

(x e−7) (x e−7)

40x80 2.107 1.714 1.23X

80x160 2.042 0.3196 6.39X

160x320 2.062 0.1478 13.95X

A workunit is defined as the computational time required for each control volume per iteration and is mathemati-

cally expressed as workunit = Tn
N∗In

where N is the number of control volumes in the domain, Tn is the time taken by

the pressure Poisson solver for n number of time steps and the total number of iterations done during the n time steps

is In.

Speed up obtained with GPU based solver is presented in Table 1. As can be seen from the table, the acceleration

due to GPU parallelization increases with increase in the size of computational grid. This is because with larger grid

sets, the time required by the GPU to perform the computations becomes larger than the time required for data transfer

between the host and the device. Hence, the non-computational overhead decreases, which results in increase of the

computational efficiency of the GPU.

310 Rajesh Reddy and R. Banerjee / Procedia IUTAM 15 (2015) 305 – 312

Fig. 4. Computational domain with BC.

6. Results and discussion

6.1. Liquid jet disintegration

The validated solver is applied to study the primary atomization of a liquid sheet emanating in to a quiescent

gaseous environment. A planar liquid sheet of thickness L=100 m will be entering the domain with a specified inlet

velocity. Computational domain of 10L x 5L is considered. Fig. 4 shows the numerical setup used for the simulation.

Physical parameters used in the simulation are listed in Table 2. Simulations are performed for three different liquid

inlet velocities. Simulation parameters along with non-dimensional numbers are given in Table 3. Liquid sheet

thickness at inlet is taken as characteristic length. Liquid velocity at inlet is taken as characteristic velocity.

Table 2. Parameters used.

Phase ρ μ σ Sheet thickness

(kg/m3) (kg/ms) (N/m) (μm)

Liquid 700 1e-3 0.03 100

Gas 25 1e-5

Table 3. Dimensionless numbers for different cases.

Case ul at inlet ug at inlet Re We
(m/s) (m/s)

A 30 0 2100 2100

B 40 0 2800 3733

C 50 0 3500 5833

All the simulations are performed on a grid size of 1024x512. The grid size employed here satisfactorily resolves

up to the Kolmogorov length scale (η). For the case with maximum Re (case C), grid spacing is approximately 4.4 η.
No velocity perturbation is given at liquid inlet. For the spray simulations, GPU based solver has shown a speedup of

approximately 18X. This speedup is obtained by running the simulation for 30 time steps and is calculated based on

workunit definition.

The development of the planar jet with time, for the cases A, B and C is given as a sequence of images in Fig. 5-7

respectively. It can be seen from the Fig. 5 that the liquid sheet observes a high shear at the tip, as soon as it exits the

nozzle and encounters the stationary gas. The tip of the sheet turns in to an umbrella shape, which leads to formation

of ligaments at top and bottom edges. Breakup starts occurring from these ligaments, resulting in primary atomization.

Corrugations start to appear on the surface of the sheet only after a certain distance from the injection region. Even

though slight instabilities develop on the liquid sheet surface, they are not amplified with the progress of the flow.

The droplets pinched off from the ligaments are convected upstream. This droplet pinching from ligaments is well

 Rajesh Reddy and R. Banerjee / Procedia IUTAM 15 (2015) 305 – 312 311

Fig. 5. Liquid jet disintegration for case A.

Fig. 6. Liquid jet disintegration for case B.

captured only if the mesh spacing is comparable to the thin liquid structure that forms during breakup. A portion of

the fine droplets formed are entrained by the recirculating flow. Hence there is a possibility of interaction of droplets

of different sizes and also droplets may interact with the liquid sheet core resulting in slight interface deformation.

These interactions can affect the droplet size distribution.

The structure of sheet disintegration seems to be identical for all the three cases simulated. With the increase

in liquid inlet velocity the droplet density is observed to be increased (qualitative assessment from the Fig. 5-7).

As mentioned by Shinjo and Umemura12, it is difficult to capture the final pinch-off moment of liquid structure

in Eulerian-Eulerian formulation. This is because the liquid structure smaller than grid size will be automatically

recognized as pinch-off. Artificial droplets of the size of grid spacing can be expected. In the present simulations, this

effect is mitigated by employing the sufficiently fine grid. So the droplet generation shown by simulations is mostly

312 Rajesh Reddy and R. Banerjee / Procedia IUTAM 15 (2015) 305 – 312

Fig. 7. Liquid jet disintegration for case C.

believed to be driven by surface tension effects. It is interesting to observe that the present 2-D simulation qualitatively

represent the flow pattern of Diesel jet spray (3-D simulation) by Shinjo and Umemura12.

7. Conclusion

A VOF based two-phase CFD solver was developed and validated against standard benchmark test cases. The

pressure Poisson part of the solver was parallelized on GPU architecture. Significant speed up was achieved for the

standard test cases performed. Also the parallelization efficiency increased with increase in grid size. The devel-

oped solver was used to study the primary jet breakup of 2-D planar liquid jet emanating in to a quiescent gaseous

environment. Physically realistic solutions were obtained with the simulations. The tip of the liquid sheet forms an

umbrella shaped front, during its propagation against the gas. The core of the liquid sheet remained intact throughout

the simulation. Ligaments are formed from the umbrella shaped front. These ligaments are disintegrated in to smaller

fragments and droplets. The effect of liquid inlet velocity on sheet disintegration was qualitatively seen. A speed up

of approximately 18X was observed with GPU based solver for the stated spray simulations.

References

1. Fuster D, Bague A, Boeck T, Moyne L L, Leboissetier A, Popinet S, et al. Simulation of primary atomization with an octree adaptive mesh

refinement and VOF method. Int J Multiph Flow 2009;35:550 65.

2. Mnard T, Tanguy S, Berlemont a. Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary

break-up of a liquid jet. Int J Multiph Flow 2007;33:510 24.

3. https://developer.nvidia.com/about-cuda.

4. Tryggvason G, Scardovelli R, Zaleski S. Direct Numerical Simulations of Gas- Liquid Multiphase Flows. Cambridge University Press; 2011.

5. Aulisa E, Manservisi S, Scardovelli R, Zaleski S. A geometrical area-preserving Volume-of-Fluid advection method. J Comput Phys

2003;192:355 64.

6. Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys 1992;100:335 54.

7. NVIDIA Cuda C programming guide, 2012.

8. Demmel JW, Applied numerical linear algebra, SIAM, 1997.

9. Rider WJ, Kothe DB. Reconstructing Volume Tracking. J Comput Phys 1998;141:112 52.

10. Reddy R, Banerjee R. Simulation of gas blasted liquid sheet on GPU architecture. 26th Annual Conference on Liquid Atomization and Spray

Systems, Bremen, Germany 2014.

11. Hysing S, Turek S, Kuzmin D, Parolini N, Burman E, Ganesan S, et al. Quantitative benchmark computations of two-dimensional bubble

dynamics. Int J Numer Methods Fluids 2009;60:1259- 88.

12. Shinjo J, Umemura A. Detailed simulation of primary atomization mechanisms in Diesel jet sprays (isolated identification of liquid jet tip

effects). Proc Combust Inst 2011;33:2089- 97.

