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Pyricularia graminis-tritici, a new Pyricularia species causing
wheat blast

V.L. Castroagudin', S.I. Moreira?, D.A.S. Pereira’3, S.S. Moreira', P.C. Brunner?,
J.L.N. Maciel*, P.W. Crous®>%’, B.A. McDonald?, E. Alves?, P.C. Ceresini’

Key words Abstract Pyricularia oryzae is a species complex that causes blast disease on more than 50 species of poaceous
plants. Pyricularia oryzae has a worldwide distribution as a rice pathogen and in the last 30 years emerged as an
important wheat pathogen in southern Brazil. We conducted phylogenetic analyses using 10 housekeeping loci for
128 isolates of P. oryzae sampled from sympatric populations of wheat, rice, and grasses growing in or near wheat
fields. Phylogenetic analyses grouped the isolates into three major clades. Clade 1 comprised isolates associated
only with rice and corresponds to the previously described rice blast pathogen P. oryzae pathotype Oryza (PoO).
Clade 2 comprised isolates associated almost exclusively with wheat and corresponds to the previously described
wheat blast pathogen P. oryzae pathotype Triticum (PoT). Clade 3 contained isolates obtained from wheat as well
as other Poaceae hosts. We found that Clade 3 is distinct from P. oryzae and represents a new species, Pyricu-
laria graminis-tritici (Pgt). No morphological differences were observed among these species, but a distinctive
pathogenicity spectrum was observed. Pgt and PoT were pathogenic and highly aggressive on Triticum aestivum
(wheat), Hordeum vulgare (barley), Urochloa brizantha (signal grass), and Avena sativa (oats). PoO was highly
virulent on the original rice host (Oryza sativa), and also on wheat, barley, and oats, but not on signal grass. We
conclude that blast disease on wheat and its associated Poaceae hosts in Brazil is caused by multiple Pyricularia
species. Pyricularia graminis-tritici was recently found causing wheat blast in Bangladesh. This indicates that
P. graminis-tritici represents a serious threat to wheat cultivation globally.
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INTRODUCTION

Pyricularia oryzae is a species complex (Couch & Kohn 2002)
that causes blast disease on more than 50 species of poaceous
plants, including important crops such as rice, wheat, barley,
millet, and oats (Urashima & Kato 1998, Couch & Kohn 2002,
Takabayashi et al. 2002, Murakami et al. 2003, Couch et al.
2005). On the basis of host specificity, mating ability, and
genetic relatedness, P. oryzae isolates were classified into
several subgroups with restricted host ranges, including: the
Oryza pathotype, pathogenic on rice (Oryza sativa); the Setaria
pathotype, pathogenic on foxtail millet (Setaria italica); the
Panicum pathotype, pathogenic on common millet (Panicum
miliaceum); the Eleusine pathotype, pathogenic on finger mil-
let (Eleusine coracana); the Triticum pathotype, pathogenic on
wheat (Triticum aestivum); the Avena pathotype, pathogenic
on oats (Avena sativa); and the Lolium pathotype, pathogenic
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on perennial ryegrass (Lolium perenne) (Urashima et al. 1993,
Kato et al. 2000, Tosa et al. 2004, Tosa & Chuma 2014). Kato
and collaborators (Kato et al. 2000) reported that isolates of
P. oryzae recovered from Eleusine, Panicum, Oryza, Setaria,
and Triticum spp. form a highly related group that is partially
inter-fertile with the Oryza subgroup (i.e. the rice blast patho-
gen). In addition, the Oryza and Setaria pathotypes contain
physiological races that show distinct patterns of virulence on
cultivars within their host species (Tosa & Chuma 2014). Both
host species-specificity and cultivar-specificity can be governed
by gene-for-gene interactions (Silue et al. 1992, Takabayashi
et al. 2002, Tosa et al. 2006, Valent & Khang 2010).

The P. oryzae pathotype Triticum is considered the causal
agent of wheat blast in South America and has also been as-
sociated with blast disease on barley, rye, triticale, and signal
grass (Urochloa sp., ex Brachiaria sp.) in central-western and
southern Brazil (Lima & Minella 2003, Verzignassi et al. 2012).
Wheat blast was first reported in Parana State, Brazil in 1985
(Igarashi et al. 1986, Anjos et al. 1996). Due to the lack of resist-
ant cultivars and effective fungicides for disease management,
wheat blast is widely distributed across all the wheat-cropping
areas in Brazil, causing crop losses from 40—100 % (Silva et
al. 2009, Maciel 2011, Castroagudin et al. 2015). Wheat blast
also occurs in Bolivia, Argentina, and Paraguay (Duveiller et
al. 2010). The disease was not found outside South America
(Maciel 2011) until a recent outbreak reported in Bangladesh
(Callaway 2016), though wheat blast is considered a major
quarantine disease and a threat to wheat crops in the United
States (Duveiller et al. 2007, Kohli et al. 2011).

As wheat blast emerged in an area of southern Brazil where
rice blast is prevalent, it was originally proposed that the rice
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pathogen had evolved to parasitize wheat (Igarashi et al. 1986).
Urashima et al. (1993) provided evidence based on pathogenic-
ity, reproductive isolation, and genetic data that indicated the
existence of two distinct groups of P. oryzae causing wheat blast
in Brazil: one that infects rice and wheat, and one that infects
only wheat. In that study, wheat-derived isolates were reported
to infect grass plants from six different tribes within Poaceae.
In addition, crosses of wheat-derived isolates with strains from
Eleusine coracana, Urochloa plantaginea (ex Brachiaria plan-
taginea), and Setaria italica produced mature perithecia with
viable ascospores, i.e. evidence of fertile crosses (Urashima et
al. 1993). On the contrary, progeny from the crosses between
wheat- and rice-derived isolates were infertile (Urashima et
al. 1993). In the same study, crosses between wheat-derived
isolates and isolates obtained from Cenchrus echinatus, Setaria
geniculata, and Echinocloa colonum produced no perithecia
(Urashima et al. 1993). The work of Urashima and his collabora-
tors indicated that two distinct pyricularia-like pathogens cause
wheat blast disease in Brazil. However, it is not clear whether
a population of P. oryzae able to infect both rice and wheat
coexists with a population that infects only wheat.

Several studies suggested that the wheat-adapted P. oryzae
population was derived de novo from a non-rice host. DNA
fingerprinting with the repetitive DNA probes MGR563 and
MGRS586 found a high level of differentiation between P. oryzae
pathotype Oryza (PoO) and P. oryzae pathotype Triticum (PoT)
from Brazil (Farman 2002). In fact, the fingerprints from wheat-
derived isolates resembled those from isolates non-pathogenic
to rice (Hamer 1991, Valent & Chumley 1991, Urashima et
al. 1999, Farman 2002). Maciel et al. (2014) showed that the
Brazilian wheat-adapted population of P. oryzae was highly dif-
ferentiated (F.. = 0.896, P < 0.001) from the local rice-adapted
population. Analyses of the current pathotype diversity of
P. oryzae showed that none of the 69 wheat-derived isolates
were able to infect rice (Maciel et al. 2014).

Phylogenetic analyses demonstrated that Pyricularia is a spe-
cies-rich genus in which different species evolved through
repeated radiation events from a common ancestor (Hirata et
al. 2007, Choi et al. 2013, Klaubauf et al. 2014). Multi-locus
phylogenetic analyses revealed that P. oryzae and P, grisea are
independent phylogenetic species (Taylor et al. 2000, Couch &
Kohn 2002) and showed that the contemporary rice-infecting
pathogen (P. oryzae pathotype Oryza) originated via a host shift
from millet onto rice ~7 000 years ago during rice domestication
in China (Couch et al. 2005). More recent phylogenetic analyses
combined pre-existing biological and morphological data to
re-examine the relationships among pyricularia-like species.
These comprehensive studies favoured the classification of new
cryptic species that were recently identified within Pyricularia
and other relevant changes within the order Magnaporthales
(Hirata et al. 2007, Choi et al. 2013, Luo & Zhang 2013, Klau-
bauf et al. 2014, Murata et al. 2014). Most relevant for agricul-
tural scientists is that despite the extensively reported differ-
entiation between P. oryzae pathotypes Oryzae and Triticum,
these two pathotypes have been kept under the same species
name P. oryzae. Therefore, we sought to determine whether
the pathotypes Oryza and Triticum of P. oryzae are distinct
species that should be given different names. We conducted
phylogenetic analyses based on 10 housekeeping genes using
sympatric populations of Pyricularia sampled from rice, wheat,
and other poaceous hosts in Brazil. We also conducted cultural,
morphological, and pathogenic characterisation of the Pyricu-
laria isolates to provide a complete description for each species.
Our phylogenetic analyses revealed a new Pyricularia species
causing blast on wheat and other poaceous hosts in Brazil. We
name and describe Pyricularia graminis-tritici in this report.

MATERIALS AND METHODS

Fungal isolates and DNA extraction

A unique collection of 128 monoconidial isolates of Pyricularia
spp. obtained in sympatry from the Brazilian wheat agro-eco-
system was analysed in this study (Table 1). Pyricularia spp. iso-
lates were obtained from Triticum aestivum (N = 79), Oryza sa-
tiva (N = 23), Avena sativa (N = 5), Cenchrus echinatus (N = 3),
Cynodon sp. (N = 1), Digitaria sanguinalis (N = 4), Elionurus
candidus (N = 2), Echinochloa crusgalli (N = 1), Eleusine
indica (N = 1), Rhynchelytrum repens (N = 3), and Urochloa
brizantha (ex Bracharia brizanta) (N = 6). Isolates recover-
ed from wheat and other poaceous hosts located within or
adjacent to sampled wheat plots were obtained from symp-
tomatic head and leaf tissue in commercial wheat fields
located in seven states in Brazil during 2012. A detailed
description of wheat field sampling strategies was provided
earlier (Castroagudin et al. 2015). The rice-derived isolates of
P. oryzae were recovered from rice leaves, necks and panicles
exhibiting typical rice blast symptoms, comprising a representa-
tive group including all races of P. oryzae pathotype Oryza
prevalent in the major Brazilian rice growing areas (Maciel et al.
2014). The rice-derived isolates were provided by EMBRAPA-
Rice and Beans, Santo Anténio de Goias, Goias, Brazil. The
isolate collection is maintained at the Laboratory of Phytopa-
thology, UNESP-DEFERS Campus llha Solteira, Sdo Paulo,
Brazil. A duplicate of the collection is hosted at the Laboratory
of Phytopathology, EMBRAPA-Wheat, Passo Fundo, Brazil.
Specimens were deposited at Culture Collection Mycobank
Prof. Maria Auxiliadora Cavalcanti, Federal University of
Pernambuco, Recife, Brazil, and at the Coleg¢ao de Culturas
da Microbiologia Agricola (Agriculture Microbiology Culture
Collection) of the Federal University of Lavras, Lavras, Minas
Gerais, Brazil. Holotype specimen was deposited at INCT-HISA
Herbario Virtual da Flora e dos Fungos at UNESP — Campus
llha Solteira (Virtual Herbarium of Flora and Fungi, University
of Sao Paulo State — Campus llha Solteira, llha Solteira, Sao
Paulo, Brazil).

DNA extraction, amplification, and sequencing

Genomic DNA was extracted from freeze-dried mycelia with
the GenElute Plant Genomic DNA Miniprep Kit (Sigma-Aldrich,
St. Louis, MO, USA), according to the specifications of the
manufacturer. Partial sequences of 10 nuclear housekeeping
loci previously used to characterise Pyricularia species (Car-
bone & Kohn 1999, Couch & Kohn 2002, Couch et al. 2005,
Zhang et al. 2011) were included in the analyses. The loci
amplified were: ACT (actin), BAC6 (putative vacuolar import
and degradation protein), 87-1 (beta-tubulin), CAL (calmodulin),
CH7-BACY (hypothetical protein), CH7-BAC9 (anonymous se-
quence), CHS1 (chitin synthase 1), EF-1a (translation elonga-
tion factor 1-alpha), MPG1 (hydrophobin), and NUT1 (nitrogen
regulatory protein 1). The loci were amplified using PCR cy-
cling conditions described previously (Carbone & Kohn 1999,
Couch et al. 2005). The PCR primers and the annealing tem-
peratures used to amplify each locus are described in Table 2.
The PCR products were purified and sequenced by Macrogen
Inc. (Seoul, Korea) using the ABI Prism BigDye Terminator
v.3.1 Cycle Sequencing Ready Reaction Kit in an ABI 3730xI
automated sequencer (Applied Biosystems, Foster City, CA).
Newly generated DNA sequences were deposited in NCBls
GenBank nucleotide database (Table 1).

Phylogenetic analyses

The complete set of sequence data was obtained from 125
isolates of Pyricularia spp., including two identified as P. penni-
setigena (URM7372 = CML3524, isolate 12.0.100) and P, grisea
(URM7371 = CML3525, isolate 12.0.082) from Brazil, which
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2 |solates included in the cultural and morphological characterization assays.

® Isolates included in the pathogenicity spectra assays.

° Isolates listed in the Taxonomy section as specimens examined.

d

‘~’ indicates no data available.

were used as outgroups. Sequence data from the 10 loci were as-
sembled, aligned, and concatenated using Geneious Rv. 9.0.5
(Biomatters, Auckland, New Zealand) for further phylogenetic
analyses.

The phylogeny for the Pyricularia species was reconstructed
through Bayesian inference using BEAST v. 1.8.2 and in-files
created with the help of BEAUti (Drummond et al. 2012). The
10-locus dataset was partitioned and the best substitution model
for each locus was determined using JModelTest2 (Darriba et al.
2012). Exploratory BEAST runs were conducted to determine
the optimal clock- and tree-models. Model comparisons were
based on the likelihoods using the Akaike information criterion
(AICM) as implemented in the program Tracer v. 1.6 (Rambaut
et al. 2014). The selected nucleotide substitution model was
GTR for all loci, the strict clock model and the birth-death spe-
ciation process as the tree model.

Four independent final runs were conducted with MCMC length
set to 108 generations with sampling intervals every 1 000 gene-
rations. Runs were assessed for convergence and combined
using LogCombiner v. 1.8.0, which is part of the BEAST pack-
age. Posterior sampled trees were extracted using TreeAnnota-
tor v. 1.8.2. (Drummond et al. 2012) with the following param-
eters: burn-in 10 %, 0.50 posterior probability limit, maximum
clade credibility target tree type, and mean node height. The
final tree was visualised with FigTree v. 1.4.2 (Institute of Evo-
lutionary Biology, University of Edinburgh, http://tree.bio.ed.ac.
uk/software/figtree). A phylogenetic tree was reconstructed for
MPG1 using the same settings as described for the combined
tree. The resulting trees and respective alignments were
deposited into TreeBASE (submission 19365). Based on the
phylogenetic results, non-fixed and fixed nucleotide differences
across all loci among the major clades were calculated using
DnaSP (Librado & Rozas 2009).

Cultural characterisation

To examine macroscopic features, a representative subgroup
of 30 isolates (Table 1) were grown on Corn Meal Agar (CMA),
Malt Extract Agar (MEA), Oatmeal Agar (OA), Potato Dextrose
Agar (PDA), and Synthetic Nutrient-poor Agar (SNA). All media
were prepared as previously described (Crous et al. 2009) and
amended with streptomycin sulphate (INLAB, Sdo Paulo, Bra-
zil) 0.05 g/L, and chloramphenicol (INLAB, S&o Paulo, Brazil)
0.05 g/L.

Stored isolates were re-activated on PDA. For this assay, a
6-mm-diam disk of colonized PDA from a 7-d-old re-activated
culture was transferred to the centre of a Petri plate containing
one of the media described above. Colony diameter and cultural
features were assessed after 7 d of incubation at 25 °C under
a 12 h dark/12 h fluorescent light regime, following the proce-
dures described by Klaubauf et al. (2014). Three replicates were
made for each isolate and the assay was conducted twice. For
colony descriptions, isolates were grouped according to their
clustering in the phylogenetic analyses. A general description
representing the colony morphology of each group of isolates
was recorded. In addition, one isolate from each group was
chosen as representative of the group.

Morphological characterisation

The same subgroup of 30 isolates selected for the description of
colony morphology was examined using bright field and electron
microscopy to characterise fungal structures. Isolates were re-
activated on CMA and incubated for 7 d at 25 °C in darkness.
They were subsequently transferred to SNA with sterile barley
seeds to induce sporulation and incubated for 3 wk at 25 °C
under a 12 h dark/12 h fluorescent light regime. Samples were
prepared following methods described previously (Bozzola &
Russell 1999).
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Table 2 Primers used in this study.

Locus Forward primer (5 - 3") Reverse primer (5’ - 3’) AT (°C)® Expected Reference

PCR pro-

duct (bp)
ACT ACT-34F: CGTCTTCCGTAAGTGCCC ACT-322R: GCCCATACCAATCATGATAC 58 279 This study
BAC6 BAC6-F: ACATCATTGTCCTCCTCGTC BAC6-R: GTTCCTGTCATTCATTTTCAA 54 283 Couch et al. 2005
BT-1 BT-26F: CCAGCTCAACTCTGATCTCC BT-630R: GGTACTCGGAAACAAGATCG 56-58° 604 This study
CAL CAL-35F: CTTACCGAAGAGCAAGTTTCCG CAL-607R: TYTTCCTGGCCATCATGGTS 55 648 This study
CH7-BAC7 CH7-BAC7-F: AAGACACGAGAGCAAAGAAAGAAG CH7-BAC7-R: CGATACATTACAGTGCCTACGAA 55 313 Couch et al. 2005
CH7-BAC9 CH7-BAC9-F: TGTAAGAAGCTCGGTGACTGAT CH7-BAC7-R: AGTGTTGCTTGAACGGCTAA 59 296 Couch et al. 2005
CHS1 CHS-79F: TGGGGCAAGGATGCTTGGAAGAAG CHS-354R: TGGAAGAACCATCTGTGAGAGTTG 55 300 Carbone & Kohn 1999
EF-1a EF-98F: CTYGGTGTTAGGCAGCTCA EF-820R: GAAMTTGCAGGCRATGTGGG 55 722 This study
MPG1 MPG1-F: AGATCCCCATCGACGTTCTC MPG1-R: TCCCTCACAGAAACTCCAAAC 55 368 Couch et al. 2005
NUT1 NUT1-F: AAGTATGGCGCTTCTTCAGC NUT1-R: GCGCATTGGTCTTTAGTGGT 55 268 Couch et al. 2005

2 AT: Annealing temperature.

b AT of 56 °C was used with DNA from isolates obtained from wheat and rice, and annealing temperature of 58°C was used with DNA of isolates obtained from other poaceous hosts.

Observations were made with a Nikon SMZ25 stereo-micro-
scope, and with a Zeiss Axio Imager 2 light microscope using
differential interference contrast (DIC) illumination and a Nikon
DS-Ri2 camera and software. The bright field images were
taken with a Nikon SMZ1500 stereoscope microscope using
NIS Elements D 3.2 software. Scanning electron microscope
(SEM) images and measurements were acquired on a Zeiss
LEOEVO 40 microscope using SmartSem Zeiss software (Ober-
kochen, Germany) operating at 10 kV and 10 to 30 mm work
distance. When possible, biometric data were obtained from
30 observations per fungal structure per isolate. The photo
plates were created on Corel Draw X7 software (Corel Corpo-
ration, Ottawa, Canada).

Pathogenicity spectrum

A subgroup of 18 isolates was tested for pathogenicity spec-
tra in greenhouse assays on barley (Hordeum vulgare) cvs.
BRS Korbel, signal grass (Urochloa brizantha, ex Brachiaria
brizantha) cvs. Piata and Marandu, oats (Avena sativa) cvs.
EMBRAPA 29 and IAPAR 61, rice (Oryza sativa) cv. IRGA
409, and wheat cv. Anahuac 75. Seeds of the different hosts
were planted in 10-cm-diam plastic pots filled with Tropstrato
HT potting mix (Vida Verde, Mogi Mirim, Sdo Paulo, Brazil).
Fifteen seeds were planted per pot. Fifteen d after seedling
emergence, pots were thinned to eight seedlings per pot for
barley, signal grass, oats, and rice; and to five seedlings per
pot for wheat. Pots were kept in the greenhouse under natural
conditions until inoculation and watered daily from the top.
Plants were fertilised with NPK 10 : 10 : 10 granular fertiliser
(N:P,O,: K,0, Vida Verde, Mogi Mirim, S&o Paulo, Brazil). A
forty gram dose of NPK granular fertiliser was sprinkled across
every 100 pots 1 d after emergence. Fertilisation was repeated
every 15 d until inoculation. In addition, rice plants were ferti-
lised with a solution of 4 g/L FeSO,-7H,0O (Dinamica, Diadema,
Sao Paulo, Brazil) once after emergence, with 1 L of solution
applied to every 100 pots.

Isolates were recovered from long-term storage and re-acti-
vated on PDA plates and then transferred either to OA plates
(rice-derived isolates) or PDA plates (wheat and other isolates
originating from poaceous hosts). Fifteen plates were prepared
for each isolate. Plates were incubated for 15 d at 25 °C under
a 12 h dark/12 h fluorescent light regime. Mycelium was gent-
ly scraped and washed with 3—5 mL of sterile distilled water
amended with Tween 80 (two drops/L) to release the spores.
Conidia concentration was quantified using a Neubauer coun-
ting chamber and adjusted to 1 x 10° spores/mL for inoculation.

Pathogenicity assays were conducted on seedlings, 1-mo-old

plants at growth stage 14 (Zadocks et al. 1974) on all hosts,
and on immature heads of 2-mo-old wheat plants at the be-

ginning of anthesis in growth stage 60 (Zadocks et al. 1974).
Spore suspensions (1 x 10° spores/mL) were uniformly applied
either onto the adaxial leaf surfaces or onto wheat heads until
runoff. Fifty millilitres of spore suspension was used for every
20 inoculated pots.

Inoculated pots were placed onto plastic trays and incubated
in a plant growth chamber for 7 d at 26 °C (barley, oats, rice,
and wheat) or 30 °C (signal grass). Plants were kept in the dark
for the first 24 h, followed by a 12 h dark/12 h fluorescent light
regime. Plants were watered every other day from the bottom
to avoid cross-contamination. Humidifiers were used to insure
that relative humidity would stay above 85 % within the chamber
during the entire experiment. Temperature and relative humidity
were recorded in the chamber using an ITLOG80 Datalogger
(Instrutemp, Belenzinho, S&o Paulo, Brazil). As negative con-
trols, five pots of each host were mock-inoculated with sterile
deionised water amended with Tween 80 (two drops/L) in each
experimental replication.

Plants were examined for lesions 7 d after inoculation. For
the seedling inoculation tests, the disease severity index was
calculated using an ordinal scale from 0 to 5 as previously
described (Urashima et al. 2005). The disease severity index
(DI) was scored as follows: lesion type 0 = no visible reaction;
1 = minute, pinhead-sized spots; 2 = small brown to dark brown
lesions with no distinguishable centres; 3 = small eyespot
shaped lesions with grey centres; 4 = typical elliptical blast
lesions with grey centres; 5 = completely dead plant. Index
values 0, 1, and 2 were considered non-compatible and index
values 3, 4 and 5 were considered compatible. When different
types of lesions were found on a single leaf, the most abundant
lesions were considered.

Disease severity on wheat heads was assessed following the
procedure described by Maciel et al. (2014), calculating the
percentage of each wheat head affected by blast using Assess
v. 2.0 image analysis software (APS, St. Paul, Minnesota).
Wheat head tissue was considered affected by blast when it was
chlorotic and/or it was covered with pathogen spores. For each
head, a picture from each side of the head was taken, and the
percentage of affected area in the two pictures was averaged.

Seedling and head inoculation experiments were conducted
using a one-factor completely randomized unbalanced design.
Five pots containing five (wheat) or eight (barley, signal grass,
oats, and rice) plants in the seedling tests, or five non-detached
heads in the wheat-head tests were inoculated with each of
the 18 isolates. The seedling inoculation experiments were
conducted twice. The head inoculation experiment was con-
ducted six times, but only two randomly chosen replicates were
used for further statistical analyses. For statistical analyses,
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isolates were grouped according to their phylogenetic cluster-
ing (i.e. based on the species clades identified using the 10
loci sequences).

Analyses of variance (ANOVA) were performed to evaluate the
effects of experiment’s replicates, Pyricularia species, and
their interactions in the different inoculation tests. Analyses
were performed independently for each host species. For
non-parametric data (seedlings inoculation tests) ANOVAs
were conducted using the PROC NPAR1WAY procedure
computed with the Wilcoxon rank-sum test and by using
Monte Carlo estimations for the exact p-values (P) with the
EXACT/MC statement, at a = 0.01. A Dunn all Pairs for Joint
Ranks test was used for non-parametric means comparisons.
In the seedlings inoculation experiment, replicates were not
significantly different (exact P = 0.05), thus the two replicates
were combined for these analyses. For parametric data (wheat
heads inoculation tests) ANOVAs were conducted with the
PROC GLM procedure, considering species as fixed factors
and isolates as random factors nested inside species factors.
Fisher’s protected Least Significant Difference (LSD) test was
used for comparison of disease severity means for species,
at a = 0.05. Since the experiment was unbalanced, the har-
monic cell size was used to calculate the average LSD. The
experiment effect was statistically significant (P = 0.02), there-
fore the two replicates of the experiment were analysed inde-
pendently. All statistical analyses were performed with Statisti-
cal Analysis System program, v. 9.4 (SAS Institute, Cary, North
Carolina)

RESULTS

Phylogenetic analyses

The final alignment for partial sequences of the 10 genes had a
total length of 3 381 bases (3 301 un-gapped bases) from 125
isolates, including sequences retrieved from Brazilian isolates
of P. grisea and P. pennisetigena used as outgroups. A total of
471 polymorphic sites were found, equivalent to 14.3 % of the
un-gapped alignment total length, and 168 of these sites (5.1 %)
were phylogenetically informative (Table 3). This resulted in
109 multilocus haplotypes, i.e. 87.2 % of isolates had a unique
multilocus haplotype.

The Bayesian analyses grouped the isolates into three major
phylogenetic clades (Fig. 1, 2). In the 10-locus phylogeny, Clade 1
(Bayesian posterior probability, BPP = 1) comprised isolates
exclusively associated with rice and corresponds to the previ-
ously described P. oryzae pathotype Oryza (PoO). Clade 2
(BPP = 0.99) comprised isolates almost exclusively associ-
ated with wheat. A single isolate (12.0.009i) collected from
signal grass plants invading a wheat field in Parana state also
clustered within this clade. This clade corresponds to the previ-
ously described P. oryzae pathotype Triticum (PoT). Clade 3
(BPP = 0.99) contained isolates obtained from wheat as well
as other Poaceae hosts. Based on the combined evidence
presented in this study, we propose that this clade is distinct
from P. oryzae and represents a new species, Pyricularia
graminis-tritici (Pgt).

Non-fixed and fixed nucleotide differences among the three
identified phylogenetic clades were examined for each locus,
excluding the outgroups (Table 3, 4). A total of 242 polymorphic
sites were found, corresponding to 7.3 % of the un-gapped
alignment total length. Of those sites, 120 (3.6 %) were phylo-
genetically informative. Four of the 10 loci (87-1, CH7-BACS,
EF-1a, and MPG1) showed a total of 18 (0.6 %) fixed differ-
ences across the three clades (Table 4, 5). Pyricularia graminis-
tritici could be distinguished from PoT by 14 differences at
MPG1. These fixed differences were at the following positions:

Table 3 Number of polymorphic sites in ten loci across Pyricularia species
examined in this study.

Locus Alignment Un-gapped Polymorphic sites?
length (bp) sequence including excluding
:22;31 (bp) outgroups® outgroups®
ACT 184 179 16 (2) 0 (0)
BAC6 254 253 18 (0) 0 (0)
BT-1 501 500 28 (9) 19 (9)
CAL 524 520 92 (33) 12 (5)
CH7-BAC7 285 285 54 (34) 54 (34)
CH7-BAC9 293 268 40 (20) 38 (20)
CHS 229 224 78 (8) 26 (2)
EF-1a 658 643 83 (31) 66 (30)
MPG1 229 205 55 (26) 22 (16)
NUT1 224 224 7 (5) 5 (4)
Total 3381 3301 471 (168) 242 (120)

2 Sequences of isolates 12.0.100 (P. pennisetigena, URM7372) and 12.0.082 (P. grisea,
URM7371) were used as outgroups.

b N=125.

¢ N=123.

9 The number of phylogenetically informative sites is indicated between parenthesis.

10(C), 13—14(TC), 20 (A), 22—25 (CCAG), 27 (C), 33—34 (CA),
41-42 (AG), and 87 (C). Likewise, Pgt could be distinguished
from PoO by 18 fixed differences. These mutations are: one
fixed difference at 37-1: 338 (A), one at CH7-BAC9: 20 (C), one
at EF-1a: 325 (T), and 15 fixed differences at MPG1, as follows:
4(T),10(C), 13—14(TC), 20 (A), 22—25 (CCAG), 27 (C), 33-34
(CA), 41-42 (AG), and 87 (C). PoT was differentiated from PoO
only by fixed differences: one difference at CH7-BAC9: 20 (C)
and one at EF-1a: 325 (T) (Table 4, 5).

Sequences for only six genes were obtained for three isolates;
therefore these isolates were not included in the phylogenetic
analyses. However, by analysing variation in the diagnostic
genes CH7-BAC9 and MPG1, we were able to assign isolate
12.0.642i to Pgt, and isolates 12.0.007i and 12.0.012i to PoT.

Cultural and morphological characterisation

For description of cultural and morphological characteristics,
Pyricularia isolates were grouped according to their phyloge-
netic placement, following the assignments P. graminis-tritici
(Pgt), P. oryzae pathotype Triticum (PoT) and P. oryzae patho-
type Oryza (PoO).

In general, similar colony morphologies were observed for iso-
lates of Pgt, PoT, and PoO on the five media tested. No mor-
phological differences were observed among the Pyricularia
species. Cultural and morphological characteristics observed
for Pyricularia graminis-tritici and Pyricularia oryzae patho-
types Triticum and Oryza (Fig. 6—8, a—j) are described in the
Taxonomy section.

Pathogenicity spectrum of Pyricularia spp. on wheat, bar-
ley, signal grass, oats, and rice

The replicates of the seedlings inoculation tests were combined
due to the lack of experiment effect (Table 6). Pyricularia spe-
cies caused symptoms ranging from hypersensitive response
lesions composed of diminutive, 1-mm-diam brown spots (mean
disease index (DI) = 1), to typical elliptical blast lesions with
grey centres (> 5 mm diam), usually coalescing and causing
plant death on all hosts (DI = 3) (Kato et al. 2000, Cruz et al.
2016) (Fig. 3—5). This virulence variation was observed even
among isolates of the same Pyricularia species and pathotypes,
indicating the presence of host-physiological race interactions.
For all tests, host seedlings or wheat heads used as negative
controls showed no blast lesions on their leaves (DI = 0.00).
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Table 4 Number of fixed polymorphic sites in ten loci across Pyricularia species.

Locus ACT BAC6 pBT-1 CAL CHT7- CH7- CHS EF-1a MPG1 NUT1 Total %?
BAC7 BAC9
Species, clade Alignment length (bp) 184 254 501 524 285 293 229 658 229 224 3381
Ungapped sequence mean length (bp) 179 253 500 520 285 268 224 643 205 224 3301
P. graminis-tritici vs. P. oryzae pathotype Triticum 0 0 0 0 0 0 0 0 14 0 14 042
P. graminis-tritici vs. P. oryzae pathotype Oryza 0 0 1 0 0 1 0 1 15 0 18 0.55
P. oryzae pathotype Triticum vs. P. oryzae pathotype Oryza 0 0 0 0 0 1 0 1 0 0 2 0.06
Total 0 0 1 0 0 1 0 1 15 0 18  0.55
@ Percentage of fixed mutation with reference to the total number of 3301 nucleotides in the ungapped alignment.
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Table 5 Fixed polymorphic sites in four loci across Pyricularia spp.

Locus BT-1 CH7- EF-1a
BAC9

MPG1

Aligment position 776 1771 2597

Species, clade
Locus position 338 20 325 4
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Fig. 2 Phylogeny inferred by Bayesian Inference from the sequences of
the MPG1 hydrophobin locus from isolates of Pyricularia spp. The 50 %
majority-rule consensus tree is shown. The numbers above the branches are
the Bayesian posterior probabilities (BPP) for node support with BPP > 0.95.
Pyricularia grisea and P. pennisetigena were used as outgroups. The
original host of the isolate can be distinguished by the colour of the isolate
number: black = wheat; green = other poaceous hosts; and orange = rice.
The asterisk (*) indicates the isolates listed in the Taxonomy section as
specimens examined.
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Fig. 3 Boxplot distribution of leaf blast severity of seedlings of five poaceous hosts in response to inoculations with isolates of P. graminis-tritici (Pgt, N = 7),
P. oryzae pathotype Triticum (PoT, N =7), and P. oryzae pathotype Oryza (PoO, N = 4). Boxplots represent blast severity as mean disease index assessed
7 d after inoculation using an ordinal scale from 0 to 5, and based on lesion type (Urashima et al. 2005). Disease index means with the same letter are not
significantly different according to Dunn’s All Pairs for Joint Ranks non-parametric test (P > x2 < 0.05). a. Inoculation tests on seedlings of wheat (Triticum
aestivum); b. barley (Hordeum vulgare) cv. BRS Korbell; c. signal grass (Urochloa brizantha, ex Brachiaria brizanta) cv. Marandu; d. signal grass cv. Piata;
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Table 6 Pathogenicity of isolates of Pyricularia spp. on seedlings of five poaceous hosts.

Mean scores for disease index?

Species Host Wheat Barley Signal grass Oat Rice
Cultivar Anahuac 75 BRS Korbell Marandu Piata EMBRAPA 29 |APAR 61 IRGA 409
Pyricularia graminis-tritici (N = 7) 4.0882 a 3.8286 a 1.7612 a 0.3857 ab 3.4328 a 3.4627 a 0.0000 b
P. oryzae pathotype Triticum (N = 7) 44857 a 3.8986 a 2.0882 a 0.4714 a 27121 a 3.0145 a 0.0143 b
P. oryzae pathotype Oryza (N = 4) 2.0000 b 3.9143 a 0.1750 b 0.2051 b 1.2750 b 0.8500 b 1.8000 a
Species effect
x? 80.6093 0.5303 48.8753 2.9844 56.0390 81.2610 92.7152
P>y2 < 0.0001 0.7671 < 0.0001 0.2249 < 0.0001 < 0.0001 < 0.0001
Experiment effect
x? 1.8216 3.9535 0.5244 2.9081 2.3851 0.3639 0.7286
P>y2 0.1771 0.0500 0.4690 0.0881 0.1225 0.5463 0.3934

®

Mean disease index was averaged over five repetitions per test, and two test replicates were conducted. Each repetition (pot) had five seedlings for wheat, and eight seedlings for the other
hosts. Disease index was assessed 7 d after inoculation using an ordinal scale from 0 to 5, and based on lesion type (Urashima et al. 2005). In this scale, 0 = no visible reaction; 1 = minute,
pinhead-sized spots; 2 = small brown to dark brown lesions with no distinguishable centers; 3 = small eyespot shaped lesions; with grey centers; 4 = typical elliptical blast lesions with grey
centers; 5 = complete dead plant. Disease index means with the same letter are not significantly different according to Dunn’s All Pairs for Joint Ranks non-parametric test (P > %2 < 0.05).

Table 7 Pathogenicity of isolates of Pyricularia spp. on non-detached heads of wheat (Triticum aestivum) cv. Anahuac 75.

Disease index (% head affected area)?

) Experiment 1 Experiment 2
Species, clade
Least Mean Standard Least Mean Standard
Square Error Square Error
Pyricularia graminis-tritici (N = 7) 57.0364 a 1.6566 47.9202 a 2.3065
P. oryzae pathotype Triticum (N = 7) 39.7740 b 1.6996 43.6509 a 2.3065
P. oryzae pathotype Oryza (N = 4) 2.1330 ¢ 2.1241 8.3485 b 2.8691
Species effect
F 209.0400 65.2000
P < 0.0001 < 0.0001
LSD 5.123 7.016

@ Disease index was calculated as the percentage of the wheat head affected by blast using Assess v. 2.0 Image Analysis software. Head tissue was considered diseased when it was chlorotic
and/or covered in pathogen spores. Disease was assessed 7 d after inoculation. Mean disease index was averaged over five repetitions (wheat heads) for each test replicate. The inoculation
experiment was conducted twice, and replicates were analyzed independently due to significant experiment effect (P = 0.0170). Disease index means with the same letter are not significantly
different according to Fisher’s protected Least Significant Difference (LSD) test at P < 0.05.

a. Wheat heads (cv. Anahuac 75), Experiment 1 b. Wheat heads (cv. Anahuac 75), Experiment 2

100 100
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)
3
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Pgt PoT PoO Pgt PoT PoO
Pyricularia species Pyricularia species

Fig.4 Boxplotdistribution of blast severity observed on heads of wheat ( Triticum aestivum) cv. Anahuac after inoculations with isolates of P. graminis-tritici (Pgt,
N =7), P. oryzae pathotype Triticum (PoT, N =7), and P. oryzae pathotype Oryza (PoO, N = 4). Heads were not detached from the plant. Boxplots represent
blast severity as mean disease index assessed 7 d after inoculation as percentage wheat head affected by blast using Assess v. 2.0 Image Analysis software.
Head tissue was considered diseased when it was chlorotic and/or covered in pathogen spores. The test was conducted twice, and replicates (experiment
1 and 2) were analysed independently (a, b). Disease index means with the same letter are not significantly different according to Fisher’s protected Least
Significant Difference test at P < 0.05.
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a. Wheat

Pgt PoT PoO Cir Pgt

e. Rice

f. Wheat, heads

Pgt PoT PoO Ctr Pgt PoT

oT PoO Ctr

c. Signal grass d. Oats

PoT PoO Ctr

Pgt PoT PoO Ctr Pgt

Pyricularia species:
Pgt: Pyricularia graminis-tritici

PoT: Pyricularia oryzae
pathotype Triticum

PoO: Pyricularia oryzae
pathotype Oryza

Ctr: Control

PoO Ctr

Fig. 5 Blast symptoms on leaves and heads of poaceous host after inoculation with Pyricularia species. Inoculated hosts: a and f. wheat ( Triticum aestivum);
b. barley (Hordeum vulgare); c. signal grass (Urochloa brizantha, ex Brachiaria brizantha); d. oats (Avena sativa); e. rice (Oryza sativa). Pyricularia species:
Pyricularia graminis-tritici (Pgt), P. oryzae pathotype Triticum (PoT), and P. oryzae pathotype Oryza (PoO). Control plants (Ctr) were inoculated with sterile
deionized water amended with Tween 80 (2 drops/L). Plants were assessed for disease symptoms 7 d after inoculation.

Inoculation tests on seedlings of wheat cv. Anahuac 75 showed
significant differences among Pyricularia species in pathogenic-
ity (P> %2<0.0001). Seedlings were highly susceptible to
isolates of PoT and Pgt (Dls of 4.48 and 4.09, respectively). In
addition, isolates of PoO caused lesions on wheat seedlings
(DI = 2.00); however, conspicuous differences were observed in
the levels of virulence of isolates of this group. Isolates 8762 and
10659 sporadically produced lesions that ranged from minute,
pinhead-sized spots (type 1 lesion) to small eyespot shaped
lesions with grey centres (type 3 lesions). On the other hand,
isolates 678 and 10880 consistently produced typical elliptical
blast lesions with grey centres (type 4 lesions) (Fig. 3a, 5a).

Seedlings of barley cv. BRS Korbell did not show significant
differences in their susceptible response to the inoculated
Pyricularia species (P > 2= 0.7671). All species were highly
virulent on this host (DIs = 3.82), showing that barley is very
susceptible to both wheat and rice blast pathogens (Fig. 3b, 5b).

Inoculations on signal grass seedlings showed that cv. Marandu
was more susceptible to Pyricularia species than cv. Piata. On
cv. Marandu, PoT (DI = 2.08) showed the highest level of viru-
lence, but it was not significantly different from Pgt (DI = 1.76).
PoO was not pathogenic on this cultivar (DI = 0.18). None of
the species were pathogenic on signal grass cv. Piatd (Dls

ranged from 0.21 to 0.47, and were not significantly different
at P > %2 = 0.2249) (Fig. 3c, d, 5c).

Inoculation tests on oats showed similar seedling reactions
for cvs. EMBRAPA 29 and IAPAR 61. Both Pgt and PoT had
similar, high average levels of aggressiveness with DIs > 2.71
for cv. EMBRAPA 29 and DI > 3.01 for cv. IAPAR 61. Further-
more, significant differences in the level of aggressiveness of
individual isolates of these species were observed. The most
aggressive isolates on oats cv. EMBRAPA 29 were 12.0.534i
(Pgt), 12.1.169 and 12.1.119 (both PoT), and the least aggres-
sive isolates were 12.0.607i (Pgt), 12.1.032i and 12.1.291 (both
PoT). Likewise, on cv. IAPAR 61 the most aggressive isolates
were 12.0.607i (Pgt), 12.1.158 and 12.1.119 (both PoT), and
the least aggressive isolates were 12.0.642i (Pgt), 12.0.009i
and 12.1.291 (both PoT). Isolates of PoO showed the lowest
level of aggressiveness on oats (DI = 1.28 on cv. EMBRAPA 29,
and 0.85 on cv. IAPAR 61), significantly lower (P > %2 < 0.0001)
compared to PoT and Pgt. Differences in virulence among iso-
lates of PoO were significant only on cv. IAPAR 61, on which
isolate 10659 was the most aggressive while isolate 8762 was
not pathogenic (Fig. 3e, f, 5d).

Inoculation tests on rice seedlings showed generally low levels
of disease severity. On cultivar IRGA 409, PoO was pathogenic
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with a mean DI = 1.80 which was significantly different from
the DI of the other two species (P > 2 < 0.0001). Pgt and PoT
were not pathogenic on rice (DI = 0.00 and DI = 0.01, respec-
tively). PoO isolates showed a wide range of aggressiveness.
Whereas isolates 8762 and 10880 consistently produced
small eyespot-shaped lesions with grey centres (type 3 le-
sions) and sporadically typical elliptical blast lesions (type 4
lesions), isolate 678 produced small dark brown lesions with
no distinguishable centres (type 2 lesions) and isolate 10659
sporadically produced type 2 lesions or no lesions at all on cv.
IRGA 409 (Fig. 3h, 5e). This variation in virulence among the
isolates is consistent with race-cultivar interactions.

Asignificant experiment effect was observed in the wheat head
inoculation tests (P = 0.02). Therefore, statistical analyses of
the two test replicates were conducted independently (Table 7,
Fig. 4, 5f). The mean disease indexes obtained for PoT and PoO
were higher in the second experiment; nevertheless, results
from both experiments were congruent. All species tested were
pathogenic on heads of wheat cv. Anahuac 75 and significant
differences were found in their levels of aggressiveness (P <
0.0001 for both experiment 1 and experiment 2). Pgt was the
most aggressive species, followed by PoT (Table 7). Isolates
of PoO were able to infect wheat heads, but the disease did
not progress to more than 10 % of the head of cv. Anahuac 75.
However, similar to the seedling inoculation tests, PoO isolate
10880 was very aggressive on wheat heads, infecting 20—60 %
of the inoculated heads (mean DI = 33.39 %; Fig. 4, 5f).

TAXONOMY

Pyricularia graminis-tritici V.L. Castroagudin, S.l. Moreira,
J.L.N. Maciel, B.A. McDonald, Crous & P.C. Ceresini, sp. nov.
— MycoBank MB816086; Fig. 6

Etymology. Referring to the major association of this fungal species with
multiple grasses, and to the most common cultivated species this fungal
species infects causing blast, Triticum aestivum.

Typus. BraziL, Goias, isolated from head of Triticum aestivum, 2012,
J.L.N. Maciel (holotype HISA 10298, culture ex-type URM7380 = CML 3547 =
isolate 12.1.037).

On SNA on sterile barley seeds — Mycelium consisting of
smooth, hyaline, branched, septate hyphae, 2—3 ym diam.
Conidiophores solitary, erect, straight or curved, unbranched,
1-5-septate, medium brown, smooth, (14-)125(-255) x
(1-)3.5(—6) pm. Abundant conidiogenesis observed on the top
half of the conidiophore. Conidiogenous cells 50—-80(-170) x
3-5 um, terminal and intercalary, pale brown, smooth, forming
a rachis with sympodial proliferation, with several protruding
denticles, 1-2 pm long, 1.5—2 ym diam. Conidia solitary, pyri-
form to obclavate, pale brown, finely verruculose, granular to
guttulate, 2-septate, (23—)25-29(-32) x (8—)9(—10) uym; apical
cell 10—13 pm height, basal cell 6—9 pm long; frill hilum, protru-
ding, 1-1.5 ymlong, 1.5—2 pym diam, unthickened, not darkened;
central cell turning dark brown with age. Chlamydospores and
microconidia not observed.

Culture characteristics — Colonies on CMA with moderate
dark grey aerial mycelium, irregular margins, reaching up to0 6.5
cm diam after 1 wk; reverse dark grey. Colonies on MEA with
abundant white aerial mycelium, and pale grey sporulation at
the centre; reaching up to 7.6 cm diam after 1 wk; reverse dark
grey; sometimes, fewer colonies (5.1 cm diam) with dark grey
sporulation at centre and abundant white aerial mycelium at
margins. Colonies on OA with dark grey sporulation in concen-
tric circles, with sparse margins, up to 5.8 cm; reverse pale grey;
sometimes, larger growth with abundant white aerial mycelium,
pale grey at the centre. Colonies on PDA with abundant white
aerial mycelium, olivaceous at centre, growth in concentric

circles, up to 6.5 cm diam; reverse black in centre with white
margins. Colonies on SNA with sparse olivaceous mycelium
irregular margins, up to 5.2 cm diam; reverse sparse olivaceous.

Specimens examined. BraziL, Goids, isolated from head of Triticum
aestivum, 2012, J.L.N. Maciel (URM7380, isolate 12.1.037); Mato Grosso
do Sul, isolated from leaves of Avena sativa, 2012, J.L.N. Maciel (URM7366
= CML3516, isolate 12.0.345); Mato Grosso do Sul, isolated from leaves of
Echinochloa crusgalli, 2012, J.L.N. Maciel (URM7381, isolate 12.0.326);
Mato Grosso do Sul, isolated from leaves of Elionorus candidus, 2012, J.L.N.
Maciel (URM7377, isolate 12.0.194); Mato Grosso do Sul, isolated from
leaves of Urochloa brizantha, 2012, J.L.N. Maciel (URM7367 = CML3517,
isolate 12.0.366); Parana, isolated from leaves of Cenchrus equinatus, 2012,
J.L.N. Maciel (URM7378, isolate 12.0.642i); Parana, isolated from leaves of
Cynodon spp., 2012, J.L.N. Maciel (URM7375, isolate 12.0.578i); Parana,
isolated from leaves of Digitaria sanguinalis, 2012, J.L.N. Maciel (URM7376,
isolate 12.0.555i); Paran3g, isolated from leaves of Eleusine indica, 2012,
J.L.N. Maciel (URM7365 = CML3518, isolate 12.0.534i); Parana, isolated
from leaves of Rhynchelytrum repens, 2012, J.L.N. Maciel (URM7384, iso-
late 12.0.607i); Rio Grande do Sul, isolated from head of T. aestivum, 2012,
J.L.N. Maciel (URM7387, isolate 12.1.191).

Notes — Pyricularia graminis-tritici causes blast disease on
Triticum aestivum, Avena sativa, Hordeum vulgare, and Uroch-
loa brizantha but not on Oryza sativa.

Based on morphological and cultural comparisons, isolates of
P. graminis-tritici are indistinguishable from those of P. oryzae
pathotypes Oryza and Triticum. However, these taxa are readily
distinguished based on their DNA phylogeny, host range and
pathogenicity spectra. Sequencing of the MPG1 gene is a
diagnostic tool to distinguish P. graminis-tritici from P. oryzae.

Pyricularia oryzae Cavara, Fungi Longobard. Exsicc. 1: no.
49. 1891

= Magnaporthe oryzae B.C. Couch, Mycologia 94: 692. 2002.

Pyricularia oryzae pathotype Triticum (Kato et al. 2000) —
Fig. 7

On SNA on sterile barley seeds — Mycelium consisting of
smooth, hyaline, branched, septate hyphae, 1.5-2 ym diam.
Conidiophores solitary, erect, straight or curved, unbranched,
medium brown, smooth, 60—150 x 4—6 um, 2—3-septate; base
arising from hyphae, not swollen, lacking rhizoids. Conidiogenous
cells 40—95 x 3—5 pm, integrated, terminal and intercalary, pale
brown, smooth, forming a rachis with several protruding denticles,
0.5-1 um long, 1.5—-2 pym diam. Conidia solitary, pyriform to
obclavate, pale brown, smooth, granular to guttulate, 2-septate,
(25—-)27—-29(—32) x (8—)9(—10) um; apical cell 10-13 ym long,
basal cell 6—9 pm long; hilum truncate, protruding, 1-1.5 ym
long, 1.5—2 pm diam, unthickened, not darkened. Chlamydo-
spores and microconidia not observed (based on isolate CPC
26580 = 12.1.132).

Culture characteristics — On CMA colonies with moderate
dark grey aerial mycelium with irregular margins, sometimes
with black aerial mycelium with sporulation in concentric circles,
or sparse white mycelial colonies, reaching up to 5.9 cm diam
after 1 wk; reverse dark grey with brown margins. On MEA,
colonies presented different forms: cottony white aerial my-
celia within concentric growth rings, sometimes with a grey
sporulation at the centre, reaching up to 6.9 cm diam after
1 wk; reverse dark grey. Colonies on OA with grey aerial my-
celium and sporulation in concentric circles; sometimes surface
mycelia were white or cream, showing concentric growth, up
to 7.9 cm diam; reverse dark grey; sometimes, larger growth
with abundant white aerial mycelium, pale grey at the centre.
PDA colonies exhibited many variations in culture, often with
concentric growth: abundant white aerial mycelia and pale
grey sporulation at centre; abundant white aerial mycelia; or
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Fig. 6 Pyricularia graminis-tritici. a—j. Cultures of isolate 12.1.037 grown for 7 d at 12 h photoperiod and 25 °C in CMA (a, f), MEA (b, g), OA (c, h), PDA
(d, i), and SNA (e, j) media; k—I. sporulation on SNA on sterile barley seeds; m—o. scanning electron micrographs of conidiophores and conidia; p—x. bright
field microscopy images of conidiophores and conidia. — Scale bars = 10 pm.
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dark grey mycelia at the bottom, with white aerial mycelia up
to 7 cm diam; reverse, concentric growth, black in centre with
olivaceous margins. On SNA the colonies with dark green
centres with sparse pale brown margins; or pale grey at the
centre and sparse pale brown margins; reverse dark green to
black at the centre and with pale brown margins.

Specimens examined. BraziL, Mato Grosso do Sul, isolated from head
of Triticum aestivum, 2012, J.L.N. Maciel (URM7388, isolate 12.1.132);
Mato Grosso do Sul, isolated from head of T. aestivum, 2012, J.L.N. Maciel
(URM7368 = CML3521, isolate 12.1.158); Mato Grosso do Sul, isolated
from head of T. aestivum, 2012, J.L.N. Maciel (URM7386, isolate 12.1.169);
Parana, isolated from head of T. aestivum, 2012, J.L.N. Maciel (URM7369 =

Fig. 7 Pyricularia oryzae pathotype Triticum. a—j. Cultures of isolate 12.1.291 grown for 7 d at 12 h photoperiod and 25 °C in CMA (a, f), MEA (b, g), OA
(c, h), PDA (d, i), and SNA (e, j) media; k—I. sporulation on SNA on sterile barley seeds; m—o0. scanning electron micrographs of conidiophores and conidia;
p—v. bright field microscopy images of conidiophores and conidia. — Scale bars = 10 ym.

CML3522, isolate 12.1.291); Parana, isolated from leaves of Urochloa
brizantha, 2012, J.L.N. Maciel (URM7385, isolate 12.0.009i); Rio Grande
do Sul, isolated from head of T. aestivum, 2012, J.L.N. Maciel (URM7389,
isolate 12.1.205).

Pyricularia oryzae pathotype Oryza (Kato et al. 2000) — Fig. 8

On SNA on sterile barley seeds — Mycelium consisting of
smooth, hyaline, branched, septate hyphae, 2—3 ym diam. Co-
nidiophores were (70.5-)146.5(—247) x (3.5-)4.5(=5.5) ym,
solitary, erect, straight or curved, septate, hyaline, sometimes
light brown. Sometimes, the conidiophores branched. Conidio-
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genous cells apical and intercalary, sporulating frequently at the
apical part, with protruding denticles 0.9—1.1 ym long. Conidia
pyriform to obclavate, narrowed towards the tip, rounded at the
base, 2-septate, hyaline to pale olivaceous, (18—)24-28(-32)
x (8—)9(—10) um; apical cell 7-14 ym long, basal cell 7-12 ym
long; hilum 1.5—2 ym diam. Chlamydospores and microconidia
not observed.

Culture characteristics — On CMA the predominant colony
morphology was the moderate pale grey aerial mycelium with
irregular margins reaching up to 5.6 cm diam after 1 wk; reverse
dark grey centre and grey edges; fewer colonies with regular

Persoonia — Volume 37, 2016

margin formed by sparse white aerial mycelia; sometimes,
moderate dark grey aerial mycelium with irregular margins;
or white aerial mycelium. Colonies on MEA were often pale
grey, sporulation in concentric circles, with dark grey margins;
sometimes dark grey at the bottom with sparse white aerial
mycelia; or white colonies with regular margins, dark grey at
the centre, reaching up to 7.6 cm diam after 1 wk; reverse
dark grey. On OA colonies with dark grey sporulation at centre
and regular margins of white aerial mycelia up to 7.3 cm. PDA
colonies were variable, with grey growth in concentric circles,
sometimes pale grey or olivaceous; in some cases, with regular

Fig. 8 Pyricularia oryzae pathotype Oryza. a—j. Cultures of isolate 10880 grown for 7 d at 12 h photoperiod and 25 °C in CMA (a, f), MEA (b, g), OA (c, h),
PDA (d, i), and SNA (e, j) media; k—I. sporulation on SNA on sterile barley seeds; m—o. scanning electron micrographs of conidiophores and conidia; p—t.
bright field microscopy images of conidiophores and conidia. — Scale bars = 10 ym.
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margins of white mycelia, reaching up to 6.4 cm; reverse dark
grey. On SNA colonies with pale green or dark green mycelia,
with sparse margins; in rare cases with abundant pale grey
aerial mycelia at centre and white mycelia in regular margins,
up to 3.1 cm; reverse dark green in centre and olivaceous at
the borders.

Specimens examined. BraziL, Central Brazil, isolated from leaves of Oryza
sativa, 2013, Unknown (URM7382, isolate 8762); Central Brazil, isolated from
leaves of O. sativa, 2013, Unknown (URM7370 = CML3523, isolate 10880);
Goias, isolated from leaves of O. sativa, 2006, Unknown (URM7379, isolate
678); Tocantins, isolated from leaves of O. sativa, 2007, Unknown (URM7383,
isolate 704).

DISCUSSION

We conducted comprehensive phylogenetic, morphological, and
pathogenicity analyses to characterise Pyricularia isolates asso-
ciated with the blast disease on rice, wheat and other poaceous
hosts from the Brazilian agro-ecosystem. Urashima, Igarashi
& Kato (1993) demonstrated that the blast pathogens infecting
wheat and rice were distinct. These authors also reported that
isolates recovered from wheat did not infect rice and that most
isolates recovered from rice did not infect wheat, except for a
few isolates capable of producing small leaf lesions. Although
Urashima & Kato (1998), and several follow-up studies demon-
strated that the wheat and rice pathogens were phenotypically
and genetically different, they have been treated as subgroups
of the same species: Pyricularia oryzae (Urashima & Kato 1998,
Kato et al. 2000, Murakami et al. 2000, Couch & Kohn 2002,
Farman 2002, Klaubauf et al. 2014, Chiapello et al. 2015).

The results of our phylogenetic analyses indicate that wheat
blast is caused by Pyricularia strains assigned to Clade 2,
previously described as P. oryzae pathotype Triticum, and to
Clade 3 (Fig. 1, Table 5). Here, we propose that Clade 3 is dis-
tinct from P. oryzae and represents a new species, Pyricularia
graminis-tritici (Pgt).

We confirmed that the two host-associated clades P. oryzae
pathotype Triticum and P. oryzae pathotype Oryza correspond
to different pathotypes. This distinction is supported by the
combined phylogenetic reconstruction that clearly separates
the two taxa. Interestingly, the combined tree (Fig. 2) does
not suggest that PoO and PoT are sister taxa. Instead, PoT
forms a sister group with Pgt that includes all isolates collected
from wheat and other poaceous hosts. This combined group
is the sister group to the rice-associated PoO. However, we
postulate that this pattern should be interpreted with caution
as explained below.

Among the Pyricularia species examined in this study, non-
fixed polymorphic sites and phylogenetically informative sites
were found in nine of the ten loci examined (locus BAC6 was
monomorphic). Fixed nucleotide differences that are diagnostic
for the three taxa were located in four loci: 7-1, CH7-BAC9,
EF-1a, and MPG1. Among these, MPG1 was the most diag-
nostic locus with 15 fixed differences. Hence, sequencing the
MPG1 locus could provide a simple and informative tool to
establish the identity of Pyricularia isolates at the species level.

Fig. 2 shows the phylogenetic tree reconstructed for MPG1
using the same settings as described for the combined tree.
Significant differences in tree topology are visible compared to
the combined tree. Variation at the MPG 1 locus can distinguish
Pgt and PoO with high confidence. However, this analysis splits
PoT into two sub-clades. Furthermore, PoO and PoT now join
together to form the sister-group, as opposed to Pgt. The ob-
servation that single loci can produce different phylogenetic pat-
terns has been referred to as ‘phylogenetic incongruence’. The
concept of genealogical concordance of different sequence loci
(genealogical concordance phylogenetic species recognition,
GCPSR) was proposed as a possible solution for phylogenetic

species recognition (Taylor et al. 2000, Dettman et al. 2003). In
the GCPSR approach, concordant grouping of species based
on several sequences is regarded as evidence for restricted
exchange of genetic material and, thus, for the reproductive
isolation of taxonomic units, indicating speciation. However,
in an extensive analysis Grinig et al. (2007) showed that this
combined phylogenetic approach also has its limits. The authors
concluded that in ambiguous cases (such as cryptic species
complexes) phylogenetic approaches should be complemented
with population genetic analyses that more easily detect re-
productive isolation between taxa. Until additional evidence
emerges, likely based on comparative population genomics
analyses that include entire genome sequences, we suggest a
conservative interpretation and propose to maintain the patho-
type-based denomination system of P. oryzae pathotype Oryza
and P. oryzae Triticum (Kato et al. 2000), recognizing that PoT
and Pgt may eventually be fused into a single, highly diverse
species.

Under our experimental conditions, P. graminis-tritici and P. ory-
zae pathotypes Oryza and Triticum did not present consistent
cultural or morphological differences. However, distinctive
pathogenicity spectra were observed. Pyricularia graminis-tritici
and P. oryzae pathotypes Triticum and Oryza caused blast
symptoms on wheat, barley, and oats with different levels of
aggressiveness. These findings agree with Urashima’s pioneer-
ing observation that two different pyricularia-like pathogens
caused wheat blast disease in Brazil (Urashima et al. 2005).
Furthermore, our results confirmed that isolates of P. oryzae
pathotype Oryza can cause blast on seedlings and heads of
wheat under greenhouse conditions that favour infection, as
previously reported (Urashima et al. 1993, Urashima & Kato
1998). An important question that remains to be answered is
whether compatible interactions also occur under natural field
conditions. Our observation that none of the wheat-derived
isolates was genetically assigned to PoO suggests that PoO
infections on wheat are very rare or absent under natural field
conditions.

In conclusion, our study suggests that blast disease on wheat
and other Poaceae in Brazil represents a disease complex
caused by more than one species of Pyricularia. A recent popu-
lation genomics analysis performed by D. Croll showed that
the Bangladeshi wheat blast strains responsible for the 2016
outbreak were closely related to strains of Pyricularia graminis-
tritici collected in Brazilian wheat fields (Callaway 2016). Given
these findings, recognising and properly naming the causal
agents of wheat blast will not only increase our understanding
of the biology and epidemiology of the disease, but will also
enable the establishment of proper quarantine regulations to
limit the spread of these pathogens into disease-free areas that
grow susceptible wheat cultivars, including Asia, Europe, and
North America (McTaggart et al. 2016).
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