CNMS 2016

XXXI CONGRESSO NACIONAL DE MILHO E SORGO

"Milho e Sorgo: inovações, mercados e segurança alimentar"

Eficiência e seletividade de herbicidas aplicados em sorgo sacarino

Carlos Orestes Santin⁽¹⁾; <u>Gismael Francisco Perin</u>⁽²⁾; César Tiago Forte⁽¹⁾; Renan Carlos Fiabane⁽¹⁾; André Andres⁽³⁾; Alexandre Fereira da Silva⁽⁴⁾, Leandro Galon ⁽²⁾.

(1) Estudante da Agronomia, Universidade Federal da Fronteira Sul; Erechim, Rio Grande do Sul; carlosorestessantin@yahoo.com.br; (2) Professor da Universidade Federal da Fronteira Sul; (3) Pesquisador da Embrapa Clima Temperado. (4) Pesquisador da Embrapa Milho e Sorgo.

RESUMO: O sorgo sacarino é utilizado na produção de biocombustíveis, alimentação animal e humana. Os problemas enfrentados na cultura estão relacionados as práticas de manejo, principalmente de plantas daninhas, devido à falta de herbicidas seletivos e registrados. O objetivo do trabalho foi avaliar a eficiência e a seletividade de herbicidas associados ou não a atrazine, para o controle de plantas daninhas infestantes da cultura do sorgo sacarino. O delineamento experimental utilizado foi o de blocos casualizados, com 4 repetições. A cultivar semeada foi a BRS 509, em sistema de plantio direto, com prévia dessecação da vegetação com glyphosate (1080 g ha⁻¹). Os tratamentos utilizados foram; atrazine-1250; atrazine+simazine-1250+1250: atrazine+simazine+s-metolachlor-1250 +1480+920: atrazine+s-metolachlor-1250+1440 e atrazine+flumioxazin-1250+40 g ha⁻¹ e em pósemergência da cultura e das plantas daninhas: atrazine-1250; atrazine+2,4-D-1250+1209; 2,4-D-1209; atrazine+bentazon-1250+720; bentazon-720 g ha⁻¹, mais duas testemunhas uma capinada e outra avaliadas infestada. As variáveis foram fitotoxicidade a cultura e controle de papuã aos 07, 14, 21 e 28 dias após a aplicação dos tratamentos (DAT). Determinou-se ainda o diâmetro de colmo (DC), altura de planta (AP), massa verde de colmos (MVC) e massa verde total (MVT) do sorgo sacarino. A aplicação de a atrazine (1250 g ha⁻¹) em pré-emergência ocasionou maior fitotoxicidade a cultura se comparada ao uso desse herbicida em pós-emergência. Os herbicidas que controlaram o papuã foram a atrazine - 1250 g ha⁻¹ (aplicação em pré-emergência), atrazine + simazine (1250+1250 g ha⁻¹), atrazine + s-metolachlor (1250+1440 g ha⁻¹) e atrazine + flumioxazin (1250+40 g ha⁻¹). A competição de plantas daninhas com o sorgo diminui o DC, AP e MVC, bem como a aplicação dos herbicidas estudados. A mistura de atrazine + bentazon (1250+720 g ha⁻¹) aliou baixa fitotoxicidade, controle mediano de papuã e excelente produção de MVT.

Termos de indexação: Sorghum bicolor, Urochloa plantaginea; Controle químico.

INTRODUÇÃO

O sorgo sacarino está presente no mercado brasileiro como uma alternativa para a entressafra da cana-de-açúcar, com objetivo de minimizar a instabilidade do preço do etanol no Brasil, apresentando boa adaptação ao setor sucroalcooleiro. Essa cultura pode oferecer as vantagens de rapidez no ciclo; ser totalmente mecanizável, produção de grãos que podem ser utilizados para alimentação humana, animal ou para a produção de biocombustível; utilização do bagaço como fonte de energia para industrialização, cogeração de eletricidade ou forragem para animais, contribuindo para um balanço energético favorável (Parrella, 2011).

A falta de recursos tecnológicos para o cultivo do sorgo sacarino vem sendo o empecilho para sua expansão. A cultura apresenta crescimento lento entre os estádios de desenvolvimento V3 e V11, com isso há um estabelecimento maior de plantas daninhas nas entrelinhas de cultivo, sendo que a competição imposta pelas plantas daninhas pode diminuir consideravelmente seu potencial produtivo (Cabral et al., 2013; Silva et al., 2014).

O principal método de controle de plantas daninhas é o químico, através do uso de herbicidas, porém eles podem ocasionar fitotoxicidade a cultura do sorgo sacarino, devido a baixa seletividade para a mesma (Martins et al., 2006; Geier et al., 2009).

Diante do exposto, o objetivo do trabalho foi avaliar a eficiência e a seletividade de herbicidas associados ou não a atrazine, para o controle de plantas daninhas infestantes da cultura do sorgo sacarino.

MATERIAL E MÉTODOS

O experimento foi conduzido a campo na área

"Milho e Sorgo: inovações, mercados e segurança alimentar"

experimental da Universidade Federal da Fronteira Sul, Câmpus Erechim/RS, nos meses de novembro de 2015 a março de 2016. A semeadura do sorgo sacarino foi efetuada em sistema de plantio direto na palha, sendo que 30 dias antes dessa operação efetuou-se a dessecação da vegetação com o herbicida glyphosate + 2,4-D (3,0 + 1,5 L ha⁻¹). A cultivar de sorgo sacarino semeada foi a BRS 509.

Cada unidade experimental foi caracterizada por uma parcela de 15 m² (5 x 3 m) semeadas com 6 linhas de sorgo em espaçamento de 0,5 m com uma população de 11 plantas m⁻¹. A densidade média de papuã era de 169 plantas m⁻². A aplicação dos herbicidas foi efetuada com pulverizador costal de precisão, pressurizado a CO₂, equipado com quatro pontas de pulverização tipo leque DG 110.02, mantendo-se pressão constante de 210 kPa e velocidade de deslocamento de 3,6 km h⁻¹, o que proporcionou a vazão de 150 L ha⁻¹ de calda de herbicida. As condições no momento da aplicação pré-emergência eram: céu parcialmente nublado, temperatura do ar de 35 °C, umidade relativa do ar de 43,5%, solo úmido e ventos de 6 km h⁻¹, já na aplicação em pós-emergência o céu apresentava-se nublado, temperatura do ar de 24 °C, umidade relativa do ar de 67%, solo úmido e ventos de 1,5 a 3,5 km h⁻¹. A aplicação dos herbicidas pré-emergentes foi realizada logo após a semeadura da cultura, já a aplicação em pósemergência a cultura apresentava 4 folhas completamente desenvolvidas (estádio V4) e as plantas daninhas de 1 a 4 folhas.

Tratamentos e amostragens

Os tratamentos utilizados no experimento estão dispostos na **Tabela 1**.

As avaliações de fitotoxicidade ao sorgo sacarino e o controle da planta daninha (papuã) foram realizadas visualmente aos 07, 14, 21 e 28 dias após a aplicação dos tratamentos (DAT). Para isso atribui-se a nota de zero (0%) aos tratamentos com ausência de fitotoxicidade e/ou controle do papuã e a nota de cem (100%) para morte total da planta daninha e da cultura (SBCPD, 1995).

Tabela 1. Tratamentos utilizados e respectivas doses. UFFS, Erechim/RS, safra 2015/16.

Tratamentos	Doses (g ha ⁻¹)
Testemunha infestada	
Testemunha capinada	
Atrazine ¹	1250
Atrazine + simazine ¹	1250 + 1250
Atrazine ²	1250
Atrazine + 2,4-D ²	1250 +1209
Atrazine + bentazon ²	1250 + 720
Atrazine + simazine + s-metolachlor ¹	1250 + (1480 + 920)

Atrazine + s-metalochlor ¹	1250 + 1440
Atrazine + flumioxazin ¹	1250 + 40
$2,4 - D^2$	1209
Bentazon ²	720

¹Aplicação dos herbicidas em pré-emergência. ²Aplicação em pós-emergência.

As variáveis avaliadas no sorgo foram: diâmetro de colmo (DC) em mm determinando-se com paquímetro digital no primeiro entrenó da planta. A altura de plantas (AP) em cm foi aferida com auxílio de régua graduada desde rente ao solo até o final da panícula. A massa verde total (MVT) foi determinada seccionando-se as plantas rente ao solo no centro de cada unidade experimental (4,5 m²), sendo posteriormente realizada a pesagem e os resultados extrapolados para kg ha¹, após isso foi realizada a desfolha e retirada de panícula para estimar a massa verde de colmos (MVC), foi realizada novamente a determinação da massa do material extrapolando-se os dados para kg ha¹.

Delineamento e análise estatística

O experimento foi instalado em delineamento de bloco casualizados, com 12 tratamentos e quatro repetições. Os dados foram submetidos à análise de variância pelo teste F, em sendo significativos as médias foram submetidas ao teste de Tukey a p $\leq 0,05$.

RESULTADOS E DISCUSSÃO

Observou-se menor fitotoxicidade nos tratamentos contendo o herbicida bentazon e atrazine aplicados em pós-emergência, sendo esse último é o único herbicida registrado para a cultura do sorgo no Brasil (Agrofit, 2016). As maiores injúrias foram constatadas nos estádios iniciais das plantas de sorgo sacarino pelos herbicidas atrazine (pré), atrazine + simazine (pré), atrazine + simazine + s-metolachlor, atrazine + s-metolachlor e atrazine + flumioxazin. Aos 28 DAT de modo geral os maiores sintomas foram observados pela aplicação em pré-emergência de atrazine + s-metolachlor e atrazine + simazine + s-metolachlor, ambos não diferiram estatisticamente entre si. Para o sorgo granífero a aplicação em pré-emergência dos herbicidas metolachlor, alachlor, simazine, atrazine + metolachlor, atrazine + simazine apresentaram fitotoxicidade a cultura, a qual resultou em perdas de produtividade de grãos, em relação a testemunha mantida no limpo (Martins et al., 2006).

Para todas as épocas de avaliação de controle do papuã a atrazine aplicada em pré-emergência apresentou os melhores resultados quando comparado com a aplicação em pós-emergência. As

"Milho e Sorgo: inovações, mercados e segurança alimentar"

misturas desse herbicida com simazine, s-metolachlor e flumioxazin na avaliação dos 28 dias após a aplicação (DAT) não diferiram estatisticamente entre si, apresentando os melhores controles, depois da testemunha capinada (**Tabela 3**). A associação de atrazine com outros herbicidas é uma importante forma de controle de plantas daninhas (Geier et al., 2009).

serem herbicidas que controlam principalmente dicotiledôneas o 2,4-D e o bentazon não apresentaram controle de papuã, porém nas avaliações dos 14 e 21 DAT o 2,4-D apresentou fitotoxicidade sorgo de ao 33 respectivamente (Tabela 2 e 3). De acordo com Dan et al. (2010), a aplicação de 2,4-D em estádios mais avançados do sorgo granífero apresentam efeitos negativos relacionados ao rendimento e ao acamamento das plantas.

Tanto na testemunha infestada como nos tratamentos com herbicidas o DC foi influenciado pela competição e pelos herbicidas, sendo que a testemunha mantida no limpo (capinada) apresentou o maior valor dessa variável. Do mesmo modo que para o DC a AP também foi influenciada negativamente pela competição com as plantas daninhas e pelos herbicidas atrazine + 2,4-D, atrazine + bentazon, atrazine + flumioxazin e 2,4-D os quais diferiram da testemunha capinada (Tabela 4). Segundo Silva et al. (2014), a ausência de controle da comunidade infestante no sorgo sacarino, ocasionou aumento no teor de sólidos solúveis totais e redução de, respectivamente, 9 e 25% na altura de planta e diâmetro de colmo, ao se comparar com uma testemunha mantida no limpo. O grau de interferência das plantas daninhas na cultura do sorgo foi maior com o aumento do período de convivência da comunidade de plantas daninhas com a cultura (Cabral et al., 2013).

Os resultados demonstram que todos os herbicidas aplicados tanto em pré como em pósemergência apresentaram redução na MVC, sendo atrazine (Pós), atrazine + 2,4-D, atrazine + simazine + s-metolachlor, 2,4-D e bentazon os que foram mais prejudiciais, inclusive piores que a testemunha infestada (Tabela 4). A competição das plantas nas condições do experimento, daninhas ocasionaram perdas de aproximadamente 26 e 16%, respectivamente para MVC e MVT. Mesmo reduzindo cerca de 9.689 kg ha-1 a testemunha infestada não diferiu da capinada para a variável MVT, diferentemente da MVC a aplicação em pósemergência das misturas de atrazine + bentazon não apresentou diferença estatística da testemunha capinada (Tabela 4). A mistura de atrazine + bentazon aliou baixa fitotoxicidade, controle mediano de papuã e excelente produção de MVT.

CONCLUSÕES

Aplicações em pré-emergência de atrazine apresentam maior eficiência de controle, porém maior fitotoxicidade a cultura do sorgo sacarino.

A competição de plantas daninhas e a aplicação dos herbicidas foram prejudiciais ao desenvolvimento do sorgo sacarino.

Estudos que avaliem misturas de herbicidas para o controle de plantas daninhas se tornam importantes para a cultura do sorgo sacarino.

AGRADECIMENTOS

A Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e a Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), pela concessão de bolsas e auxílio financeiro.

REFERÊNCIAS

AGROFIT – Sistemas de agrotóxicos fitossanitários. Disponível em http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons estudo_safra.pdf>. Acesso em 23 maio 2016.

CABRAL, P. H. R.; JAKELAITIS, A.; CARDOSO, I. S.; ARAÚJO, V. T.; PEDRINI, E. C. F. Interferência de plantas daninhas na cultura do sorgo cultivado em safrinha. **Pesquisa Agropecuária Tropical**, Goiânia, v.43, n.3, p.308-314, 2013.

DAN, H. A.; DAN, L. G. M., BARROSO, A. L. L.; OLIVEIRA JR. R. S.; GUERRA, N.; FELDKIRCHER, C. Tolerância do sorgo granífero ao 2,4-D aplicado em pósemergência. **Planta Daninha**, Viçosa, v.28, n.4, p.785-792, 2010.

GEIER, P. W.; STAHLMAN, P. W. REGEHR, D. L.; OLSON, L. B. Preemergence Herbicide Efficacy and Phytotoxicity in Grain Sorghum. **Weed Technology**, v.23, n.2, p.197-201, 2009.

MARTINS, C. C.; NAKAGAWA, J.; MARTINS, D. Seletividade de herbicidas sobre a produtividade e a qualidade de sementes de sorgo granífero. **Agropecuária Técnica**, Areia, v.27, n.1, p.37-42, 2006.

PARRELLA, R. A. C. Melhoramento genético do sorgo sacarino. **Revista agroenergia**, Brasília, ano 2, n.3, p. 8-9, 2011.

SILVA, C.; SILVA, A. F.; VALE, W. G.; GALON, L.; PETTER, F. A.; MAY, A.; KARAM, D. Interferência de plantas daninhas na cultura do sorgo sacarino. **Bragantia**, Campinas, v.73, n.4, p.438-445, 2014.

SBCPD - Sociedade Brasileira da Ciência das Plantas Daninhas. **Procedimentos para instalação, avaliação e**

"Milho e Sorgo: inovações, mercados e segurança alimentar"

análise de experimentos com herbicidas. Londrina: 1995. 42 p.

"Milho e Sorgo: inovações, mercados e segurança alimentar"

Tabela 2. Fitotoxicidade (%) a cultivar de sorgo sacarino BRS 509, em função da aplicação de herbicidas em pré ou pós-emergência. UFFS/Erechim/RS, 2015/16.

Tratamentos	Fitotoxicidade (%)			
	07 DAT ¹	14 DAT	21 DAT	28 DAT
Testemunha infestada	0^2 b	0 d	0 e	0 e
Testemunha capinada	0 b	0 d	0 e	0 e
Atrazine	40 a	22 bc	7 de	4 d
Atrazine + simazine	47 a	42 a	5 e	5 cd
Atrazine	8 b	6 cd	0 e	0 e
Atrazine + 2,4-D	9 b	15 cd	5 e	4 d
Atrazine + bentazon	8 b	10 cd	0 e	0 e
Atrazine + simazine + s-metolachlor	49 a	46 a	17 cd	10 ab
Atrazine + s-metolachlor	46 a	43 a	33 a	12 a
Atrazine + flumioxazin	49 a	41 a	30 ab	7 bc
2,4 - D	7 b	33 ab	23 bc	6 cd
Bentazon	5 b	4 d	0 bc	0 e
CV (%)	30,39	32,30	42,21	29,60

¹DAT: dias após a aplicação dos tratamentos. ² Médias seguidas de mesmas letras minúsculas na coluna, em cada época de avaliação, não diferem entre si pelo teste de Tukey a p≤5.

Tabela 3. Controle (%) de papuã (*Urochloa plantaginea*) na cultivar de sorgo sacarino BRS 509, em função da aplicação de herbicidas em pré ou pós-emergência. UFFS/Erechim/RS, 2015/16.

Tratamentos	Controle (%)			
	07 DAT ¹	14 DAT	21 DAT	28 DAT
Testemunha infestada	0 ² e	0 f	0 e	0 f
Testemunha capinada	100 a	100 a	100 a	100 a
Atrazine	76 bc	46 cd	50 b	66 bc
Atrazine + simazine	76 bc	59 bc	45 bc	73 b
Atrazine	18 d	20 ef	0 e	29 e
Atrazine + 2,4-D	27 d	50 bcd	35 bcd	39 de
Atrazine + bentazon	23 d	33 de	23 d	51 cd
Atrazine + simazine + s-metolachlor	87 ab	67 bc	25 d	51 cd
Atrazine + s-metolachlor	81 bc	64 bc	35 bcd	53 bcd
Atrazine + flumioxazin	70 c	70 b	33 cd	59 bcd
2,4 - D	0 e	0 f	0 e	0 f
Bentazon	0 e	0 f	0 e	0 f
CV (%)	14,33	20,31	21,85	19,53

DAT: dias após a aplicação dos tratamentos. ² Médias seguidas de mesmas letras minúsculas na coluna, em cada época de avaliação, não diferem entre si pelo teste de Tukey a p≤5.

Tabela 4. Diâmetro de colmo (DC) em mm, altura de plantas (AP) em m, massa verde de colmos (MVC) em kg ha⁻¹ e massa verde total (MVT) em kg ha⁻¹ da cultivar de sorgo sacarino BRS 509, em função da aplicação de herbicidas em pré ou pós-emergência. UFFS/Erechim/RS, 2015/16.

Tratamentos	DC	AP	MVC	MVT
Testemunha infestada	14,6 ¹ bcd	2,46 cd	33800 b	49244 ab
Testemunha capinada	19,3 a	2,79 a	45644 a	58933 a
Atrazine	14,6 bcd	2,52 abcd	28800 bcde	37000 bcde
Atrazine + simazine	16,2 b	2,71 abc	25778 bcdef	33956 de
Atrazine	15,1 bc	2,67 abc	20800 ef	32400 de
Atrazine + 2,4-D	12,9 d	2,45 cd	23600 cdef	41378 bcd
Atrazine + bentazon	14,6 bcd	2,49 bcd	31333 bc	47733 abc
Atrazine + simazine + s-metolachlor	14,4 bcd	2,58 abcd	20933 ef	35111 cde
Atrazine + s-metolachlor	14,8 bcd	2,77 ab	30267 bcd	39000 bcde
Atrazine + flumioxazin	16,3 b	2,36 d	28933 bcde	39267 bcde
2,4 - D	13,8 cd	2,47 bcd	19867 f	27800 e
Bentazon	14,2 bcd	2,58 abcd	21733 def	33000 de
CV (%)	5,58	4,61	12,56	13,02

¹ Médias seguidas de mesmas letras minúsculas na coluna, para cada variável, não diferem entre si pelo teste de Tukey a p≤5.