

"Milho e Sorgo: inovações, mercados e segurança alimentar"

Controle de pragas iniciais de sorgo sacarino com inseticidas químicos

<u>Paulo Afonso Viana</u>⁽¹⁾, Simone Martins Mendes⁽¹⁾, Matheus de Oliveira Leal⁽²⁾; Carla Camila da Silva⁽²⁾; Josyane Santos Rocha⁽²⁾

(1) Pesquisadores; Embrapa Milho e Sorgo; Sete Lagoas, Minas Gerais; pviana@uai.com.br; (2) Estagiários; Embrapa Milho e Sorgo.

RESUMO: A cultura do sorgo é hospedeira de diversos grupos de insetos polífagos que atacam a fase inicial de desenvolvimento das plantas. O objetivo deste trabalho foi avaliar a eficácia de diferentes inseticidas utilizados no tratamento de sementes ou pulverizados no sulco de plantio para o controle de pragas iniciais do sorgo sacarino. Foram avaliadas oito moléculas de inseticidas utilizadas em tratamento de sementes e/ou em pulverização no sulco de plantio em bioensaios de campo e de casa de vegetação. Na avaliação (25 DAP) a ocorrência de tenebrionideos foi menor nas parcelas tratadas com tiodicarbe, fipronil, imidacloprido e clorpirifós. A larva-arame não ocorreu nos tratamentos com o imidacloprido e clorpirifós. Na segunda avaliação (50 DAP), não houve incidência de cupim nas parcelas tratadas com carbofuran, tiametoxan, imidacloprido+tiodicarbe, imidacloprido clorpirifós. Para a elasmo, o clorpirifós pulverizado no sulco de plantio ou os tratamentos de sementes utilizando-se o imidacloprido+tiodicarbe e o tiodicarbe são opões para o controle. Concluiu-se que as pragas iniciais do sorgo sacarino são controladas com inseticidas utilizados em tratamento de sementes ou em pulverização no sulco. A escolha do inseticida dependerá do grupo de pragas a ser controlada.

Termos de indexação: Sorghum bicolor, artrópodes, elasmo.

INTRODUÇÃO

A cultura do sorgo é hospedeira de vários grupos de insetos polífagos que atacam a fase inicial de desenvolvimento das plantas, danificando as sementes após o plantio, o sistema radicular e a base do colmo. O ataque

acarreta falha na lavoura e, na maioria das vezes, as plantas sobreviventes tornam-se improdutivas. A ocorrência de insetos-pragas é um dos fatores de prejuízos na cultura do sorgo, seja qual for a sua exploração. Mendes et al. (2014) descreveram as principais espécies de insetos-praga da fase inicial da lavoura de sorgo, destacando-se, como de importância econômica, a lagarta-elasmo, os cupins subterrâneos, a larva-arame, a larvaangorá, os corós, os percevejos do solo e a lagarta-rosca. Entre as pragas relatadas, a lagarta-elasmo é considerada a principal espécie desse grupo, causando prejuízos a entre várias culturas. gramíneas leguminosas, principalmente quando ocorre um período de estiagem logo após a emergência das plantas (VIANA, 2007).

Para evitar o ataque precoce do sorgo, o uso do tratamento de sementes e/ou de solo pode trazer benefícios significativos visando mitigar o problema das pragas iniciais (WAQUIL et al., 2003; VIANA, 2004; TILKARI et al., 2006; MENDES et al., 2014). Essa prática é considerada tão importante quanto usar uma semente de boa genética e qualidade tecnológica. Embora o método seja relevante para o estabelecimento da lavoura com uma população ideal de plantas, a disponibilidade de inseticidas registrados no Brasil para essa finalidade é bastante restrita para a cultura do Atualmente são disponíveis sorgo. registrados apenas quatro ingredientes ativos para o controle das pragas iniciais (AGROFIT, 2016). Deve-se ressaltar ainda que o tratamento de sementes pode ter a sua ação limitada quando a disponibilidade de água no solo é deficiente (VIANA, 2004). Nesse contexto, torna-se importante o estudo de novas moléculas e do modo de aplicação que possam diversificar a escolha e assegurar uma proteção adequada da lavoura de sorgo sacarino ao ataque dessas pragas. O objetivo

"Milho e Sorgo: inovações, mercados e segurança alimentar"

deste trabalho foi avaliar a eficácia de diferentes inseticidas utilizados no tratamento de sementes ou pulverizados no sulco de plantio para o controle de pragas iniciais do sorgo sacarino.

MATERIAL E MÉTODOS

Os experimentos foram conduzidos Embrapa Milho e Sorgo, sendo um realizado em campo visando o controle de pragas iniciais e o outro em casa de vegetação direcionado especificamente para o controle da lagarta-elasmo. No campo, foi semeada a cultivar de sorgo sacarino BRS 508 e, após a emergência, cada planta foi infestada artificialmente com duas lagartas neonatas de elasmo. O delineamento experimental foi de blocos ao acaso e quatro repetições As parcelas foram constituídas de seis fileiras de 10.0 m de comprimento, espacadas de 0.7 m. e a infestação foi natural para as demais pragas. Em casa de vegetação, as parcelas foram constituídas por vasos de 5 L, semeadas para se obter um estande de 15 plantas/vaso. O delineamento experimental foi de blocos ao acaso e seis repetições. Foram experimentalmente diversas avaliadas moléculas de inseticidas utilizadas tratamento de sementes e/ou em pulverização no sulco de plantio. Os tratamentos foram compostos por uma testemunha e de oito ingredientes ativos de inseticidas respectivas doses médias registradas junto ao Mapa para uso em gramíneas em geral (Tabela 1). No experimento de campo foram realizadas avaliações aos 25 e 50 dias após o plantio (DAP) de ocorrência de pragas, coletando-se 10 amostras de solo (20x20x20 cm) aleatoriamente por parcela. Foram também avaliados o estande e o efeito fitotóxico. A avaliação do ataque de elasmo foi feita em ambos os experimentos em dias alternados, desde a emergência das plantas até o final de susceptibilidade (30 cm de altura). No final desta fase foi avaliado o sobreviventes número de plantas parcelas.

RESULTADOS E DISCUSSÃO

A avaliação de artrópodes subterrâneos realizada no campo aos 25 DAP mostrou que o grupo de maior ocorrência foi o de larva de coleópteros da família Tenebrionidae, seguido da larva-arame, considerada praga residente atacando diversas culturas (Figura 1). A incidência de tenebrionideos foi menor nas parcelas tratadas com tiodicarbe, fipronil, imidacloprido e clorpirifós. Não houve

incidência de larva-arame para os tratamentos com o imidacloprido e clorpirifós.

Para a avaliação realizada aos 50 DAP, a maior incidência foi de cupim, seguido por diplopoda, tenebrionideos e larva-arame (Figura 2). Não houve incidência de cupim nas parcelas tratadas com carbofuran, tiametoxan, imidacloprido+tiodicarbe, imidacloprido clorpirifós. Entre esses grupos, o cupim destaca-se como de maior importância para a cultura, principalmente se o plantio ocorre em sucessão à pastagem e/ou cana-de-açúcar, contribuindo significativamente para a redução do estande. A larva-arame não ocorreu no tratamento com tiodicarbe e a menor incidência de tenebrionideos foi com o carbofuran.

Os resultados das avaliações realizadas em campo e em casa de vegetação para o controle de E. lianosellus são mostrados na Tabela 1. No campo, a menor percentagem de plantas atacadas ocorreu para o tratamento com o clorpirifós pulverizado no sulco de plantio, seguido dos tratamentos de sementes utilizando-se o imidacloprido+tiodicarbe e o tiodicarbe. Enquanto que para o ensaio conduzido em casa de vegetação os menores ataques foram para o clorpirifós e o fipronil. Observou-se que o resultado obtido no campo alguns inseticidas utilizados tratamento de sementes não se repetiu em casa de vegetação. A explicação é que no ambiente controlado de casa de vegetação, o experimento foi conduzido intencionalmente sob estresse hídrico, visando simular uma condição favorável para a desfavorável para a planta. Essa situação ocorre frequentemente em veranicos em lavouras das regiões Sudeste e Centro-Oeste do país maximizando o prejuízo causado pela elasmo (WAQUIL; VIANA, 2004). Neste caso, a baixa umidade do solo deve ter prejudicado ação de alguns inseticidas que são dependentes da umidade do solo para atingir o seu potencial de controle (VIANA, 2004).

Nas doses utilizadas, não foi observado nenhum efeito fitotóxico dos inseticidas avaliados para as plantas de sorgo sacarino. Portanto, a escolha deverá ser de acordo com o registro do inseticida, toxicidade, seletividade, custo e espécie de praga a ser controlada.

Outro aspecto observado foi que a ocorrência dos grupos de pragas iniciais apresenta uma variabilidade considerada e possivelmente é influenciada por diversos fatores como local,

"Milho e Sorgo: inovações, mercados e segurança alimentar"

tipo de solo e cobertura vegetal. O desempenho dos inseticidas está relacionado com o grupo de pragas controladas. Houve baixa ocorrência de cupim nos tratamentos com os inseticidas fipronil, imidacloprido+tiodicarbe ou carbofuran. Para a elasmo, o clorpirifós pulverizado no sulco de plantio ou os tratamentos de sementes utilizando-se o imidacloprido+tiodicarbe e o tiodicarbe são opções para o controle.

CONCLUSÕES

As pragas iniciais do sorgo sacarino são controladas com inseticidas utilizados em tratamento de sementes ou em pulverização no sulco. A escolha do inseticida dependerá do grupo de pragas a ser controlado.

AGRADECIMENTOS

Os autores agradecem à ANP pelo apoio financeiro às pesquisas realizadas e à FAPEMIG para a participação no congresso.

REFERÊNCIAS

AGROFIT. Sistema de Agrotóxicos Fitossanitários. Brasília: Ministério da Agricultura, Pecuária e Abastecimento, 2016. Disponível em: http://extranet.agricultura.gov.br/agrofit_cons/princ ipal_agrofit_cons>. Acesso em: 17 jun. 2016.

MENDES, S. M.; WAQUIL, J. M.; VIANA, P. A., PIMENTEL, M. A. G. Manejo de pragas. In: BOREM, A.; PIMENTEL, L.; PARELLA, R. (Ed.). **Sorgo**: do plantio à colheita. Viçosa, MG: UFV, 2014. cap. 9, p. 207-241.

TILKARI, J.; GOTARKAR, S. B.; SURADKAR, A.; KATOLE, S. R.; DHUMALE, U. M. Evaluation of some newer insecticides against sorghum shootfly, *Atherigona soccata* Rondani. **Journal of Applied Zoological Researches**, v. 17, n. 2, p. 187-188, 2006

VIANA, P. A. Lagarta-elasmo. In: SALVADORI, J. R.; ÁVILA, C. J.; SILVA, M. T. B. da (Ed.). **Pragas de solo no Brasil**. Passo Fundo: Embrapa Trigo; Dourados: Embrapa Agropecuária Oeste; Cruz Alta: Fundacep Fecotrigo, 2004. cap. 13, p. 379-408.

VIANA, P. A. Manejo da lagarta-elasmo em grandes culturas: gargalos da pesquisa. In: REUNIÃO SUL-BRASILEIRA SOBRE PRAGAS DE SOLO, 10., 2007. Dourados. **Pragas-Solo-Sul**: anais e ata. Dourados: Embrapa Agropecuária Oeste, 2007. p. 67-76. (Embrapa Agropecuária Oeste. Documentos, 88).

WAQUIL, J. M; VIANA, P. A. Ocorrência e controle de pragas na cultura do sorgo no Sudoeste de Goiás safrinha. Sete Lagoas: Embrapa Milho e Sorgo, 2004. 14 p. (Embrapa Milho e Sorgo. Circular técnica, 50).

WAQUIL, J.M.; VIANA, P. A.; CRUZ, I. **Manejo de pragas na cultura do sorgo**. Sete Lagoas: Embrapa Milho e Sorgo, 2003. 25 p. (Embrapa Milho e Sorgo. Circular técnica, 27). Disponível em: http://ainfo.cnptia.embrapa.br/digital/bitstream/CN PMS/16181/1/Circ_27.pdf>. Acesso em: 13 jun.

.

"Milho e Sorgo: inovações, mercados e segurança alimentar"

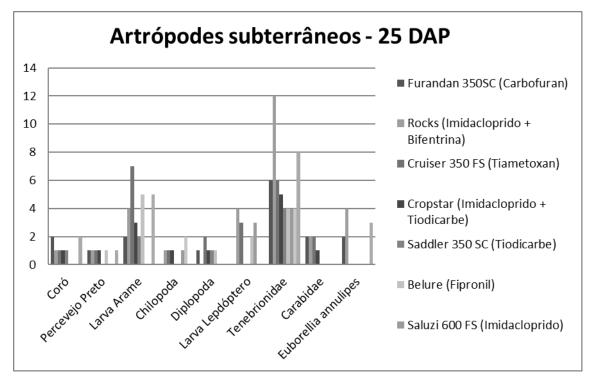


Figura 1. Incidência de artrópodes subterrâneos em parcelas tratadas com inseticidas, 2014.

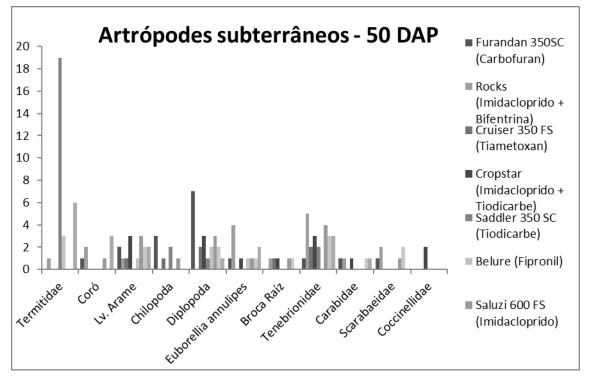


Figura 2. Incidência de artrópodes subterrâneos em parcelas tratadas com inseticidas, 2014.

"Milho e Sorgo: inovações, mercados e segurança alimentar"

Tabela 1. Percentagem de plantas de sorgo sacarino atacada (±EP) por *Elasmopalpus lignosellus*¹ , 2014.

Tratamentos	Dose (p.c.)	Modo de aplicação	Pl. atac. (%) (campo)	Pl. atac. (%) (casa de veg.)
Furadan 350 SC (carbofuran)	4,0 L/ha	Pv. sulco	10,73±7,22 abc	14,90±5,56 b
Rocks (imidacloprido +	2,2 L/100 kg	Trat. sem.	16,88±5,20 ab	98,48±1,52a
bifentrina)	sem			
Cruiser 350 FS (tiametoxan)	0,6 L/100 kg sem	Trat. sem.	10,60±2,19 abc	100,00± 0,0a
Cropstar (imidacloprido +	1,5 L/100 kg	Trat. sem.	6,20±0,61 bc	81,10±13,27a
tiodicarbe)	sem			
Saddler 350 SC (tiodicarbe)	2,0 L/100 kg	Trat. sem.	6,00±0,67 bc	56,15±10,97a
	sem			
Belure (fipronil)	1,0 L/100 kg sem	Trat. sem.	8,95±4,55 abc	17,02±5,63 b
Saluzi 600 FS (imidacloprido)	0,4 L/100 kg sem	Trat. sem.	14,33±2,73 abc	82,30±16,49a
Lorsban 480 BR (clorpirifós)	2,4 L/ha	Pv. sulco	4,65±0,90 c	14,16±7,98 b
Testemunha	-	-	18,00±2,20 a	95,55±4,44 a
CV (%)			28,83	27,53

¹Médias seguidas pela mesma letra não diferem estatisticamente pelo teste Duncan a 5% de probabilidade.