## XXXI CONGRESSO NACIONAL DE MILHO E SORGO



"Milho e Sorgo: inovações, mercados e segurança alimentar"

## Compartimentalização e Redistribuição de Zinco em Plantas de Milho sob Dois Níveis de Adubação em Latossolo no Cerrado

<u>Aarón Martínez Gutiérrez</u> (1); Carine Gregório Machado Silva<sup>(1)</sup>; Álvaro Vilela de Resende<sup>(2)</sup>; Eduardo de Paula Simão<sup>(3)</sup>; Denize Carvalho Martins<sup>(3)</sup>; Paulo Evaristo Oliveira Guimarães<sup>(2)</sup>

(1) Estudante do Curso de Mestrado em Ciências Agrárias - PPGCA; Universidade Federal de São João Del Rei - UFSJ; Sete Lagoas – MG; E-mail aaron\_0715@hotmail.com; (2) Pesquisador; Embrapa Milho e Sorgo; Sete Lagoas – MG; E-mail alvaro.resende@embrapa.br; (3) Doutorando(a) em Fitotecnia; Universidade Federal de Viçosa; Viçosa – MG.

**RESUMO:** O objetivo deste trabalho foi caracterizar os compartimentos de acúmulo e a redistribuição do Zn absorvido pelo milho. Foram cultivados três genótipos de milho, sendo um transgênico e dois convencionais, em ambientes com alto e médio investimento em adubação. Nos estádios R2 (início do enchimento de grãos) e R6 (maturação fisiológica), foram coletadas plantas quantificação da extração de Zn nos terços inferior, médio e superior, separando-se as folhas e colmos, além da palha, sabugo e grãos. O milho direciona o Zn absorvido para o terço superior da planta, mas, em condições de maior suprimento, as partes inferiores funcionam como órgãos de reserva. O colmo armazena 23 a 42%, a palha da espiga 19 a 26% e os grãos de 29 a 33% do Zn absorvido. A maior disponibilidade Zn no ambiente de alto investimento adubação incrementa em significativamente a extração total, mas não influencia os teores nos grãos e a exportação do micronutriente, que corresponde a cerca de 16 g t<sup>-1</sup>.

**Termos de indexação:** Micronutriente, remobilização, nutrição vegetal, demanda nutricional

## INTRODUÇÃO

Dentre os fatores que afetam a produtividade do milho, é frequente o manejo inadequado da adubação. Requeridos pelas plantas em pequenas quantidades, os micronutrientes ganham importância crescente para o desenvolvimento das culturas à medida que se buscam maiores produtividades. A fertilização deve ser equilibrada a fim de atender à demanda de nutrientes da cultura, sendo necessária sua reposição também para manter a fertilidade do solo adequada aos cultivos subsequentes.

A agricultura brasileira, especialmente no cerrado, está sujeita a deficiências ou desequilíbrios de micronutrientes em função da baixa fertilidade natural do solo, da exportação pelas colheitas, ou pelo uso excessivo de calcário e adubos fosfatados que contribuem para a insolubilização de

micronutrientes como o zinco (Bataglia & Raij, 1989). Isso exige maior atenção no manejo da adubação, evitando criar situações que dificultam a absorção dos micronutrientes pelas plantas.

A deficiência de zinco (Zn) compreende uma das principais limitações nutricionais em áreas do cerrado (Malavolta et al., 1997; Gonçalves Júnior et al., 2006), o que pode provocar diminuição da produtividade, sendo o milho uma das culturas mais sensíveis. Dessa forma, conhecer o comportamento do Zn no sistema solo-planta é de especial interesse quando se visa alto potencial produtivo, tornando relevante caracterizar a demanda de extração, a dinâmica interna na planta e a exportação pelo milho em diferentes sistemas de cultivo ou níveis de investimento tecnológico.

O objetivo deste trabalho foi caracterizar os compartimentos de acúmulo e a redistribuição do zinco absorvido pelo milho, quando cultivado sob dois níveis de adubação em Latossolo da região do Cerrado.

### **MATERIAL E MÉTODOS**

O trabalho foi conduzido no ano agrícola 2014/2015, na área experimental da Embrapa Milho e Sorgo, situada a 19°28'30" de latitude S, 44°15'08" de longitude W, a uma altitude de 732 m, em Sete Lagoas – MG. A área experimental é constituída de Latossolo Vermelho distroférrico (EMBRAPA, 2013), com textura muito argilosa (660 g kg<sup>-1</sup> de argila).

Foram cultivados três genótipos de milho, sendo um transgênico (híbridos simples DKB 310 PRO 2) e dois convencionais (híbrido experimental 11873 e BRS 1040, da Embrapa), em ambientes com alto e médio investimento em adubação. Em cada ambiente, utilizou-se o delineamento de blocos casualizados com quatro repetições. As parcelas constituíram-se de quatro linhas de 6 m de comprimento, espaçadas de 0,5 m, sendo considerada como área útil as duas linhas centrais com bordaduras de um metro nas extremidades (4 m²). Previamente à instalação do experimento, foram aplicados a lanço no ambiente de alto

## XXXI CONGRESSO NACIONAL DE MILHO E SORGO



"Milho e Sorgo: inovações, mercados e segurança alimentar"

investimento 2 t ha<sup>-1</sup> de calcário dolomítico, 1 t ha<sup>-1</sup> de gesso e 200 kg ha<sup>-1</sup> de mistura 3:1 de cloreto de potássio e FTE BR 12, com a finalidade de proporcionar condições diferenciais de fertilidade do solo naquele ambiente.

Também no ambiente de alto investimento, as sementes foram tratadas com o inseticida Cropstar® (350 mL 100 kg<sup>-1</sup>) mais o fertilizante Biozyme® (600 mL 100 kg<sup>-1</sup>), que contém 2,43% de Zn. No caso do ambiente de médio investimento, as sementes receberam somente o inseticida. Na adubação de semeadura, foram utilizados 500 e 340 kg ha<sup>-1</sup> da fórmula NPK 08-28-16 + 0,3% de B, para alto e médio investimento, respectivamente.

A primeira adubação de cobertura para ambos os ambientes, foi de 90 kg ha<sup>-1</sup> de N (200 kg ha<sup>-1</sup> de ureia) no estádio V4. No ambiente de alto investimento, foram realizadas ainda mais duas adubações de cobertura, fornecendo-se 70 kg ha<sup>-1</sup> de N e de K<sub>2</sub>O (350 kg ha<sup>-1</sup> de NPK 20-00-20) no estádio fenológico V5, e 40 kg ha<sup>-1</sup> de N + 44 kg ha<sup>-1</sup> de S (200 kg ha<sup>-1</sup> de sulfato de amônio) no estádio V7. Por fim, ainda no estádio V7, neste ambiente foi realizada uma adubação foliar com uma mistura dos  $\mathsf{Biozyme}^{\mathbb{8}}$ ha<sup>-1</sup>), fertilizantes (2 L monoamônico - MAP (2,5 kg ha<sup>-1</sup>) e nitrato de cálcio (1,5 kg ha<sup>-1</sup>), utilizando pulverizador costal. No estádio V9, os teores de Zn (extrator Mehlich 1) na camada de 0 a 20 cm de profundidade eram de 5,4 e 3,4 mg dm<sup>-3</sup> nos ambientes de alto e médio investimento, respectivamente.

Nos estádios R2 (início do enchimento de grãos) e R6 (maturação fisiológica), foram coletadas plantas em cada parcela para análise de tecidos e quantificação da extração de zinco. As plantas foram cortadas rente ao solo e fragmentadas em terço inferior, médio e superior, separando-se as folhas e colmos dessas partes, além da palha, sabugo e grãos (este último somente em R6). As amostras das diferentes partes da planta foram secas em estufa a 65°C até ficarem com peso constante. Na sequência, foram pesadas, moídas e enviadas ao laboratório para as determinações dos teores de Zn, segundo metodologia descrita em Silva (2009). A partir do teor de Zn e massa seca, foi calculado o acúmulo do micronutriente em cada compartimento, expressando os resultados por hectare, admitindo-se uma população de 70 mil plantas. Após a colheita da área útil, determinou-se a produtividade de grãos com 13% umidade.

Os dados foram submetidos à análise de variância conjunta para verificar a existência de interação entre híbridos e ambientes de investimento em adubação. Utilizou-se o programa Sisvar (Ferreira, 2011).

## **RESULTADOS E DISCUSSÃO**

Não houve interação significativa entre ambientes

de investimento em adubação e híbridos para teor ou acúmulo de Zn nos compartimentos avaliados nas plantas de milho, tanto no enchimento de grãos (R2) quanto na maturação fisiológica (R6). Em alguns casos, detectou-se efeito isolado de ambiente e, em outros, efeito de híbridos. Assim sendo, optou-se por apresentar os resultados considerando a média dos valores expressos pelos três híbridos, de modo a se obter uma caracterização do Zn absorvido em função dos dois ambientes de adubação (Tabelas 1, 2 e 3).

Observa-se que os teores de Zn nas folhas no estádio R2 variaram de 15,2 a 38,1 mg kg-1 nos ambientes de médio e alto investimento, respectivamente (Tabela 2), enquadrando-se na faixa considerada adequada para a cultura do milho, entre 15 e 100 mg kg-1 (Bull,1993; Raij & Cantarella,1996). Entretanto, as folhas superiores é que expressaram os teores mais elevados. Essa mesma tendência foi observada para as partes do colmo.

Diferenças estatisticamente significativas devido aos ambientes de investimento em adubação foram detectadas para o teor e acúmulo de Zn no estádio R2 apenas nas folhas e colmo dos terços médio e inferior (Tabela 2). Desse modo, constata-se que o milho prioriza a alocação desse micronutriente para as partes mais jovens e, mesmo sob condições de menor disponibilidade (médio investimento em adubação), consegue manter o terço superior mais bem suprido em relação ao restante da planta. Por outro lado, percebe-se que em condições de maior fornecimento (alto investimento em adubação) o Zn é armazenado nas partes mais velhas, sobretudo no terço inferior do colmo.

Verifica-se que no período até a maturação fisiológica (estádio R6) ocorreram alterações substanciais na distribuição do Zn entre os compartimentos da planta (Tabelas 1 e 3) em comparação ao existente em R2 (Tabela 2). O novo dreno criado para a formação dos grãos fez com que houvesse redistribuição do Zn que havia sido acumulado nas partes vegetativas, notadamente nas folhas. Com o desenvolvimento das espigas, houve redução da proporção de Zn acumulado nas folhas e nos colmos. Segundo Jurkowska et al. (1990), quanto maior o teor no tecido vegetativo, maior é a remobilização e acúmulo deste micronutriente nos grãos.

Para todos os ambientes e épocas de amostragem, o colmo mostra-se como importante repositório de Zn, armazenando de 23 a 42 % do que foi alocado na parte aérea. No estádio de maturação fisiológica, a espiga passa a constituir o principal local de acúmulo de Zn (Tabela 3). É interessante notar que, após os grãos, a palha da espiga é o compartimento que isoladamente estoca mais Zn, representando cerca de um quarto do acúmulo total. Assim como os grãos, a palha acaba





"Milho e Sorgo: inovações, mercados e segurança alimentar"

**Tabela 1.** Variação relativa (%) do Zn acumulado entre os estádios R2 e R6, em diferentes compartimentos da planta de milho, sob dois níveis de investimento em adubação. Média de três híbridos.

| Compartimento – | Investimento em adubação |       |  |  |
|-----------------|--------------------------|-------|--|--|
| Compartimento — | Alto                     | Médio |  |  |
| Folha inferior  | -46,7                    | -33,5 |  |  |
| Folha média     | -44,0                    | -48,7 |  |  |
| Folha superior  | -23,4                    | -49,7 |  |  |
| Colmo inferior  | -49,2                    | -8,0  |  |  |
| Colmo médio     | -18,9                    | -2,0  |  |  |
| Colmo superior  | 35,0                     | -1,6  |  |  |
| Palha           | 60,6                     | 63,6  |  |  |
| Sabugo          | 6,8                      | -13,9 |  |  |
| Planta inteira  | 32,4                     | 46,2  |  |  |

representando um forte dreno de Zn, visto que há incremento de mais de 60% no conteúdo do micronutriente na palha entre os estádios R2 e R6 (Tabela 1).

A extração de Zn pelo milho perdura até o final do ciclo, sendo que um terço ou mais da absorção total ocorre tardiamente, a partir do início do enchimento de grãos até a maturação. Do total de 563 e 493 g ha-1 de Zn acumulados na planta inteira no estádio R6, 61,1 e 66,4 % foram direcionados para as espigas, nos ambientes alto e médio investimento, respectivamente. Esse resultado reforça os relatos de que o Zn é o micronutriente que acumula mais nas espigas em relação à planta inteira (Duarte et al., 2003).

No presente estudo, a maior disponibilidade de Zn no ambiente de alto investimento incrementou significativamente a extração total, mas não influenciou os teores nos grãos ou a exportação do micronutriente (Tabelas 2 e 3). Na média dos híbridos, não houve efeito do nível de adubação sobre a produtividade de grãos, a qual foi 10,7 e 10,0 t ha<sup>-1</sup> para alto e médio investimento, respectivamente, resultando em potencial de exportação de 165 e 162 g ha1 de Zn com a quantidades colheita dos grãos. Essas corresponderam a 29,4 e 32,9 % do total acumulado na parte aérea, para os ambientes de alto e médio investimento tecnológico, respectivamente (Tabela 3). As quantidades de Zn presentes nos grãos estão próximas à obtida por Martínez et al. (2015), que foi de 182 g ha<sup>-1</sup> para uma produtividade de 12.9 t ha<sup>-1</sup>, na média de 10 híbridos. Se assemelham também ao valor de 170 g ha<sup>-1</sup> relatado por Malavolta et al. (1997), para uma produtividade de 9.0 t ha-1.

Todavia, tanto a proporção extraída pelas plantas a partir da fase de enchimento da espiga quanto o percentual do Zn absorvido que foi alocado nos grãos foram de menor magnitude em comparação aos padrões encontrados por Bender et al. (2013), ao avaliarem o comportamento de seis híbridos transgênicos em dois locais dos EUA, com produtividade ao redor de 12 t ha-1. Esses autores observaram que 52% da absorção total ocorreu após o florescimento e que o acúmulo nos grãos correspondeu a 62% do Zn extraído. Tais variações reforçam a necessidade de mais estudos regionalizados, que considerem os efeitos de cultivares, ambientes, tratos culturais e potencial produtivo, de modo a aprimorar os conhecimentos e subsidiar melhorias no manejo de micronutrientes na cultura do milho.

#### **CONCLUSÕES**

O milho direciona o Zn absorvido para o terço superior da planta, mas, em condições de maior suprimento, as partes inferiores funcionam como órgãos de reserva.

O colmo armazena 23 a 42%, a palha da espiga 19 a 26% e os grãos de 29 a 33% do Zn absorvido.

A maior disponibilidade Zn no ambiente de alto investimento em adubação incrementa significativamente a extração total, mas não influencia os teores nos grãos e a exportação do micronutriente, que corresponde a cerca de 16 g t<sup>-1</sup>.

#### **AGRADECIMENTOS**

À FAPEMIG, pelo apoio financeiro. Ao CONACYT do México, pela concessão de bolsa de estudo ao primeiro autor.

## REFERÊNCIAS

BATAGLIA, O. C.; RAIJ, B. V. Eficiência de extratores de micronutrientes na análise do solo. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 13, n. 2, p. 205-212, 1989.

BENDER, R.R HAEGELE, J.W; RUFFO, M.L; BELOW, F.E. Nutrient uptake, partitioning, and remobilization in modern, transgenic insect-protected maize hybrids. **Agronomy Journal** 105:161-170. 2013.

DUARTE, A.P.; KIEHL, J.C.; CAMARGO, M.A.F. et al. Acúmulo de matéria seca e nutrientes em cultivares de milho originarias de clima tropical e introduzidas de clima temperado. **Revista Brasileira de Milho e Sorgo**, v.2, n.3, p.1-20, 2003.

FERREIRA, D.F. Sisvar: A computer statistical analysis system. **Ciência e Agrotecnologia**, Lavras, v.35, n.6, p.1039-1042. 2011.

GONÇALVES JUNIOR, A.C. et al. Avaliação de extratores e fitodisponibilidade de zinco para a cultura do milho em Latossolo Vermelho eutroférrico. **Acta Sci. Agron.**, Maringá, v. 28, n. 1, p. 7-12, 2006.

# CNMS 2016

### XXXI CONGRESSO NACIONAL DE MILHO E SORGO

"Milho e Sorgo: inovações, mercados e segurança alimentar"

JURKOWSKA, H.; WISNIOWSKA-KIELIAN, B.; ROGOZ, A.; WOJCIECHOWICZ, T. The effect of N-fertilization rate on the levels of mineral components in various plant species: Part II. Microelements. **Rolnictwo Z**, v.29, p.51-64, 1990.

MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. **Avaliação do estado nutricional das plantas:** princípios e aplicações. 2. ed. Piracicaba: Associação Brasileira para a Pesquisa da Potassa e do Fosfato, 1997. 319p.

MARTINEZ, A. G.; PADILHA, F. A.; SILVA, C. G. M.; RESENDE, A.V.; MOREIRA, S.G.; SIMAO, E. Teor nos grãos e exportação de micronutrientes pelo milho em dois níveis de investimento tecnológico.. In: XXXV Congresso Brasileiro de Ciência do Solo, 2015, Natal - RN. O Solo e suas Múltiplas Funções. **Anais...** Natal - RN: SBCS/EPARN, 2015. p. 1-4.

SILVA, C.S. **Manual de análises químicas de solos, plantas e fertilizantes.** Brasília: Embrapa Informação Tecnológica, 2009. 627p.

**Tabela 2**. Teor (mg kg<sup>-1</sup>), acúmulo (g ha<sup>-1</sup>) e acúmulo relativo (%) de Zn em diferentes compartimentos da planta de milho no estádio R2, sob dois níveis de investimento em adubação. Média de três híbridos.

|                |        | Investimento em adubação |              |        |         |              |  |
|----------------|--------|--------------------------|--------------|--------|---------|--------------|--|
| Compartimento  |        | Alto                     |              |        | Médio   |              |  |
|                | Teor   | Acúmulo                  | Ac. relativo | Teor   | Acúmulo | Ac. relativo |  |
| Folha inferior | 24,4 a | 35,4 a                   | 8,3          | 15,2 b | 19,1 b  | 5,7          |  |
| Folha média    | 20,0 a | 40,3 a                   | 9,5          | 18,1 b | 34,3 b  | 10,2         |  |
| Folha superior | 38,1 a | 46,4 a                   | 10,9         | 37,5 a | 42,5 a  | 12,6         |  |
| Colmo inferior | 13,6 a | 79,6 a                   | 18,7         | 9,0 b  | 48,0 a  | 14,2         |  |
| Colmo médio    | 25,0 a | 54,4 a                   | 12,8         | 17,6 b | 35,0 b  | 10,4         |  |
| Colmo superior | 39,3 a | 42,4 a                   | 10,0         | 35,8 a | 36,2 a  | 10,8         |  |
| Palha          | 30,3 a | 80,9 a                   | 19,0         | 28,2 b | 77,5 a  | 23,0         |  |
| Sabugo         | 38,2 a | 45,5 a                   | 10,7         | 35,2 a | 44,4 a  | 13,2         |  |
| Total          | -      | 425,0 a                  | 100          | -      | 337,0 b | 100          |  |

Para cada variável, médias seguidas pela mesma letra na linha não diferem pelo teste F a 5% de probabilidade.

**Tabela 3**. Teor (mg kg<sup>-1</sup>), acúmulo (g ha<sup>-1</sup>) e acúmulo relativo (%) de Zn em diferentes compartimentos da planta de milho no estádio R6, sob dois níveis de investimento em adubação. Média de três híbridos.

|                | Investimento em adubação |         |              |        |         |              |  |
|----------------|--------------------------|---------|--------------|--------|---------|--------------|--|
| Compartimento  |                          | Alto    |              |        | Médio   |              |  |
|                | Teor                     | Acúmulo | Ac. relativo | Teor   | Acúmulo | Ac. relativo |  |
| Folha inferior | 21,1 a                   | 18,9 a  | 3,4          | 14,5 b | 12,7 b  | 2,6          |  |
| Folha média    | 13,2 a                   | 22,5 a  | 4,0          | 11,7 b | 17,6 b  | 3,6          |  |
| Folha superior | 28,9 a                   | 35,6 a  | 6,3          | 23,4 b | 21,4 b  | 4,3          |  |
| Colmo inferior | 8,9 a                    | 40,4 a  | 7,2          | 10,2 a | 44,1 a  | 9,0          |  |
| Colmo médio    | 15,2 a                   | 44,1 a  | 7,8          | 16,8 a | 34,3 a  | 7,0          |  |
| Colmo superior | 48,8 a                   | 57,3 a  | 10,2         | 41,9 b | 35,7 a  | 7,2          |  |
| Palha          | 51,5 a                   | 130,0 a | 23,1         | 51,0 a | 126,8 a | 25,7         |  |
| Sabugo         | 26,3 a                   | 48,6 a  | 8,6          | 21,5 b | 38,2 b  | 7,8          |  |
| Grão           | 15,4 a                   | 165,2 a | 29,4         | 16,0 a | 161,9 a | 32,9         |  |
| Total          | -                        | 563,0 a | 100          | -      | 493,0 b | 100          |  |

Para cada variável, médias seguidas pela mesma letra na linha não diferem pelo teste F a 5% de probabilidade.