CNMS 2016

XXXI CONGRESSO NACIONAL DE MILHO E SORGO

"Milho e Sorgo: inovações, mercados e segurança alimentar"

Ação de extratos de sorgo na germinação de sementes de milho, soja e picão preto

<u>Talita Camargos Gomes</u>⁽¹⁾; Décio Karam⁽²⁾; Isabela Goulart Custódio⁽³⁾, Wilton Tavares da Silva⁽³⁾, Maria Lúcia Ferreira Simeone⁽²⁾, Fabiano Okumura⁽²⁾.

(1) Mestranda em Ciências Agrárias; Universidade Federal de São João del-Rei; Sete Lagoas, Minas Gerais; talitacamargos21@gmail.com; (2) Pesquisador Embrapa Milho e Sorgo; (3) Graduandos Engenharia Agroômica Universidade Federal de São João del-Rei.

RESUMO: A busca por uma agricultura sustentável no controle de plantas daninhas se faz necessário uma vez que os herbicidas são hoje uma das maiores causas de contaminação do homem e do ambiente. O objetivo deste estudo foi a extração, purificação e quantificação de extratos de sorgo a partir de três genótipos e a avaliação da ação desses extratos na germinação de sementes de milho, soja e picão-preto. Os experimentos foram desenvolvidos em laboratórios e para a extração, foram utilizadas 150 raízes genótipo-1, em solução extratora. A % de germinação (%G) e o IVG Foram avaliados e seus resultados submetidos à ANOVA e as médias foram comparadas pelo teste de Tukey a 5% de probabilidade. Houve diferença do teor de sorgoleone entre os extratos, sendo CMSXS 206 B 96,7% mais concentrado que o extrato da cultivar BR 007 B. O menor teor de sorgoleone por grama de extrato foi observado para a cultivar BR 007 B.. BR 007 B e CMSXS 206 B reduziram a %G e o IVG de sementes de milho, soja e picão preto, atuando como supressoras desta daninha e das duas culturas.

Termos de indexação:, sorgoleone, *Bidens pilosa*, alelopatia.

INTRODUÇÃO

A busca por uma agricultura sustentável com produtos mais saudáveis que proporcionem uma saúde melhor, implica na redução do uso de pesticidas que é uma ação de extrema importância e urgência. Entretanto, os problemas fitossanitários estão presentes nas lavouras e precisam ser manejados. Como exemplo, temos a interferência causada pelas plantas invasoras, as quais causam perdas consideráveis na condução das grandes culturas (Karam et al., 2006; Gazziero et al., 2011) promovendo o alto consumo de herbicidas (IEA, 2013), os quais muitas vezes são aplicados da

forma incorreta contaminando o meio ambiente (Queiroz et al., 2011). Por esse motivo, torna-se necessário o desenvolvimento de novas tecnologias para o controle eficaz destas, com o menor impacto possível no ambiente.

Este estudo teve como objetivo a extração, purificação e quantificação de sorgoleone, a partir de três genótipos de sorgo, bem como a realização da avaliação da ação do sorgoleone sobre a germinação de sementes de milho, soja e picãopreto.

MATERIAL E MÉTODOS

O trabalho foi conduzido em laboratórios da Embrapa Milho e Sorgo, e foram usados três acessos de sorgo: CMSXS 206 B, BR 007 B, BRS 716

Obtenção dos extratos

Para a obtenção dos extratos um grupo de 150 raízes de cada genótipo em duas repetições, foram desinfetadas com hipoclorito de sódio 2,5% por 10 minutos e lavadas com água destilada. As sementes foram colocadas para germinar em caixas gerbox de acrílico forradas com papel-filtro umedecido com água destilada durante 7 dias no escuro em temperatura média de 30°C. Passados os 7 dias, as raízes foram destacadas e mergulhadas em solução de ácido acético glacial em diclorometano 0,0025% v/v por 5 minutos, para a extração do aleloquímico. Após este procedimento, a solução foi filtrada em algodão e levado para evaporador rotatório a 100°C.

Obtenção do padrão de sorgoleone

Foram utilizadas 1.300 sementes da cultivar BR 007 B, e o procedimento de extração foi o mesmo para a obtenção dos extratos já citados. A técnica utilizada foi de cromatografia camada delgada em uma placa de vidro de 20x20 cm, recoberta com uma camada de 1 mm de espessura de sílica em gel (Sigma-Aldrich- 60) com indicador fluorescente

"Milho e Sorgo: inovações, mercados e segurança alimentar"

de 254 nm, e pré-condicionada em estufa a 100°C por 12 horas. O extrato foi dissolvido previamente em diclorometano e submetido ao desenvolvimento ascendente. A solução de 100 ml contida na fase móvel da cuba foi de clorofórmio: metanol (95:5). A banda da extremidade superior da placa, de cor rosácea, foi removida com espátula e os compostos aderidos (fator de retenção) à sílica foram extraídos com diclorometano (10ml) e filtrados em papel de filtro comum e postas em balão. O solvente foi posteriormente evaporado em evaporador rotatório. A curva padrão de sorgoleone foi construída pela injeção do padrão de sorgoleone em metanol na concentração de 1,0 μg mL-1 em diferentes volumes de injeção: 1,3, 2,5, 5,0, 10,0 e 20,0 μL.

Quantificação dos extratos

Após a obtenção do padrão, foi realizada a quantificação dos outros acessos de sorgos (CNSXS 206 B e BRS 716 BR 007 B). A metodologia de extração foi a mesma utilizada para a obtenção dos extratos. A solução com o sorgoleone é apresentada em termos de pureza relativa, a qual representa a quantidade de sorgoleone em relação às substancias que absorvem apenas na frequência ultravioleta de 254 nm (BRAITHWAITE; SMITH, 1999) e foi calculada integrando a área correspondente ao pico de sorgoleone no cromatograma.

Testes de germinação

Foram testadas sementes de milho (BRS Cipotânea), soja (Riber M6210 1 PRO), e sementes de picão-preto da área de coleta de sementes da Embrapa Milho e Sorgo.

Foram testadas a porcentagem de germinação (%G) e o índice de velocidade de germinação (IVG) pela fórmula proposta por Wardle et al. (1991). Os testes ocorreram em sala de germinação 25°C e umidade relativa de 60% no escuro por sete dias após a semeadura. Os tratamentos foram dispostos em delineamento inteiramente casualizados, com quatro repetições. A unidade experimental constou de uma caixa de gerbox com papel de germinação e 25 sementes de cada espécie. Uma alíquota de 50 mg de cada extrato, foi diluída em 10 ml de etanol comum e completados com água deionizada para um volume de 50 ml. A solução (4 ml) foi aplicada nas placas com as sementes exceto para as parcelas controle onde apenas água foi adicionado. Posteriormente, as placas foram umedecidas com água deionizada, conforme a necessidade de cada espécie.

Delineamento e análise estatística

As variáveis de germinação e IVG foram submetidas à análise de variância e os tratamentos comparados por teste de comparação de médias

(teste de Tukey) a 5% de probabilidade utilizando o software SYSTAT 13.

RESULTADOS E DISCUSSÃO

Obtenção do padrão

Na Figura 1 pode ser observado a curva de calibração (A) e o cromatograma da sorgoleone do genótipo BR 007 B (B).

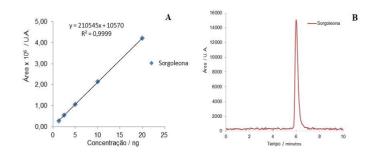
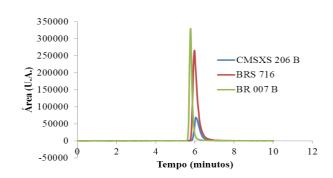



Figura 1: Curva de calibração (A) e cromatograma da sorgoleone na concentração de 1,3 ng (B).

Quantificação dos extratos

O cromatograma com os picos de sorgoleone encontrada nos três genótipos testados pode ser viso na figura 2. A área do pico do cromatograma do genótipo CMSXS 206 B, ficou fora o intervalo linear da curva padrão, portanto realizouse diluição em 10 vezes para comparação com os outros dois genótipos. As concentrações obtidas para cada extrato estão apresentadas na Tabela 1.

Figura 2: Cromatograma de sorgoleone dos genótipos testados.

"Milho e Sorgo: inovações, mercados e segurança alimentar"

Tabela 1: Quantidade de sorgoleone (SGL) encontrada a partir de análise cromatográfica.

(TM), Testemunha soja (TS), Testemunha picão-preto (TP).Para cada variável, médias seguidas da mesma letra, maiúscula na linha e minúscula na coluna, não diferem pelo teste de Tukey a 5% de probabilidade.

Genótipo	Extrato bruto / MS de raiz (g g ⁻¹)	SGL/extrato (µg g ⁻¹)	SGL/MS raiz (μg g ⁻¹)Para IVG, verificou-se diferenças significativas entre os três genótipos analisados para as espécies
CMSXS 206 B	0,014	382,2	82,6 de milho e picão preto, mostrando que a velocidade de germinação destas espécies foi afetada pelos
BRS 716	0,1	98	41,5 extratos com sorgoleone estudados e a cultivar BR
BR 007B	0,032	12,6	3,6 007 B afetou o IVG de sementes de milho em 11 vezes (4,5 dias) a menos que CMSXS 206 B

entre os três genótipos analisados para as espécies de milho e picão preto, mostrando que a velocidade de germinação destas espécies foi afetada pelos extratos com sorgoleone estudados e a cultivar BR 007 B afetou o IVG de sementes de milho em 11 vezes (4,5 dias) a menos que CMSXS 206 B (Tabela 3). Esse comportamento se inverte para sementes de picão-preto, em que a cultivar CMSXS 206 B inibiu a velocidade de germinação em cerca de 23 vezes (1 dia) a menos que BR 007 B (Tabela

O genótipo CMSXS 206 B apresentou uma concentração de sorgoleone por grama de extrato 30 vezes a mais que a cultivar BR 007 B, que obteve menor teor de sorgoleone por grama de extrato e a cultivar BRS 716 obteve a concentração cerca de 7 vezes menor que a mais concentrada (Tabela 1). Os dados obtidos estão de acordo com os dados apresentados por Franco (2009), que também notou diferenças entre os teores de sorgoleone, dos genótipos CMSXS 206 B e BR 007 B, similares aos detectados neste trabalho.

Tabela 3: Índice de velocidade de germinação de sementes de milho, soja e picão-preto, aos 6 dias após adição do extrato de sorgoleone (50 mg) de diferentes cultivares de sorgo.

Testes de germinação

GENÓTIPOS DE SORGO											
Espécie	BR 007 B		BR 7	716	CMSXS 206 B						
	l bVG										
Zea mays	0,208	Сс	4,37	Ab	2,488	Bb					
Bidens pilosa	1,154	Вс	1,733	Ac	0,05	Cbc					
Glycine max	0	Ac	0,342	Ac	0,32	Ab					
ТМ	12,21	Aa	11,85	Aa	11,8	Aa					
TP	2,55	Ab	2,59	Abc	2,89	Ab					

A germinação das sementes das três espécies estudadas foi estatisticamente diferente (p<0,05) em função das testemunhas e dos genótipos. As doses testadas em ppm de sorgoleone de solução foram: 0,38 (CMSXS 206 B), 098 (BRS 716) e 0,0126 (BR 007 B). Para a variável % de germinação, para o milho, apenas BR 007 B foi diferente e houve inibição de 90% relação média das outras duas cultivares, revelando uma sensibilidade do milho em relação a esse genótipo (Tabela 2).

> (TM), Testemunha soja (TS), Testemunha picão-preto (TP).Para cada variável, médias seguidas da mesma letra, maiúscula na linha e minúscula na coluna, não diferem pelo teste de Tukey a 5% de probabilidade.

Tabela 2: Porcentagem de germinação de sementes de milho, soja e picão-preto, aos 6 dias após adição do extrato de sorgoleone (50 mg) de diferentes cultivares de sorgo. Testemunha milho

> Apenas para a espécie de soja, não foi verificada diferença entre os três genótipos, mas houve redução do IVG quando comparados as testemunhas e os tratamentos com extratos. Essa variação foi de 100 (2 dias), 38 (2 dias) e 36 (2 dias e meio) vezes para os genótipos BR 007 B, BR 716 e CMSXS 206 B respectivamente.

	GENÖTIPOS DE SORGO								
Espécie	BR 007 B		BR 716		CMSXS 206 B				
	% GERMINAÇÃO								
Zea mays	5	Bc	67	Δb	41	Δb			
Bidens pilosa	17	Abc	27	Acd	1	Ac			
Glycine max	0	Ac	5	Ad	5	Ac			
TM	100	Aa	100	Aa	99	Aa			
TP	33	Δb	36	Ac	35	Δb			
TS	100	Aa	99	Aa	98	Aa			

CONCLUSÕES

Existe diferença entre genótipos, nos teores de sorgoleone em extratos de sorgo.

"Milho e Sorgo: inovações, mercados e segurança alimentar"

Portanto, não se recomenda a utilização desses genótipos para o controle de picão-preto em cultivos de milho e soja, ou dessas culturas em sucessão a esses genótipos de sorgo.

AGRADECIMENTOS

À coordenação da Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) pela concessão de bolsas de estudo.

REFERÊNCIAS

BRAITHWAITE, A.; SMITH, F. J. Chromatographic methods. 5 ed. Kluwer Academic Publishers, 1999.

FRANCO, F. H. S. Quantificação de sorgoleona produzida em raízes de diferentes acessos de sorgo. 2009. 40f. Dissertação (Mestrado)-Universidade Federal de Minas Gerais. Belo Horizonte. 2009.

GAZZIERO, D. P.; VOLL, E.; ADEGAS, F. S. Resistência de plantas daninhas aos herbicidas: situação atual e manejo. Boletim de pesquisa da soja, 2011.

IEA, Instituto de Economia Agrícola, Defensivos Agrícolas: vendas batem novo recorde em 2012 e segue em ritmo forte em 2013. Disponível em http://www.iea.sp.gov.br/out/LerTexto.php?codText 0=12700>. Acesso em 25 de maio de 2015.

KARAM, D.; MELHORANÇA, A. L.; OLIVEIRA, M. F. PLANTAS DANINHAS NA CULTURA DO MILHO. MINISTÉRIO DA AGRICULTURA PECUÁRIA E ABASTECIMENTO, SETE LAGOAS, 2006.

QUEIROZ, G. M. P.; SILVA, M. R.; BIANCO, R. J. F.; PINHEIRO, A.; KAUFMANN, V. Transporte de glifosato pelo escoamento superficial e por lixiviação em um solo agrícola. **Quimica Nova**, v. 34, n. 2, p. 190-195, 2011.

WARDLE, D. A.; AHMED, M.; NICHOLSON, K. S. Allelopathy influence os nodding thistle (*Carduus nutans* L.) seeds on germination and growth of pasture plants. **New Zealand Journal of Agricultural Research**, v. 34, n.2, p. 185-191, 1991.

"Milho e Sorgo: inovações, mercados e segurança alimentar"