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ABSTRACT: 
 
Monitoring agricultural crops constitutes a vital task for the general understanding of land use spatio-temporal dynamics. This paper 
presents an approach for the enhancement of current crop monitoring capabilities on a regional scale, in order to allow for the 
analysis of environmental and socio-economic drivers and impacts of agricultural land use. This work discusses the advantages and 
current limitations of using 250m VI data from the Moderate Resolution Imaging Spectroradiometer (MODIS) for this purpose, with 
emphasis in the difficulty of correctly analyzing pixels whose temporal responses are disturbed due to certain sources of interference 
such as mixed or heterogeneous land cover. It is shown that the influence of noisy or disturbed pixels can be minimized, and a much 
more consistent and useful result can be attained, if individual agricultural fields are identified and each field's pixels are analyzed in 
a collective manner. As such, a method is proposed that makes use of image segmentation techniques based on MODIS temporal 
information in order to identify portions of the study area that agree with actual agricultural field borders. The pixels of each portion 
or segment are then analyzed individually in order to estimate the reliability of the temporal signal observed and the consequent 
relevance of any estimation of land use from that data. The proposed method was applied in the state of Mato Grosso, in mid-western 
Brazil, where extensive ground truth data was available. Experiments were carried out using several supervised classification 
algorithms as well as different subsets of land cover classes, in order to test the methodology in a comprehensive way. Results show 
that the proposed method is capable of consistently improving classification results not only in terms of overall accuracy but also 
qualitatively by allowing a better understanding of the land use patterns detected. It thus provides a practical and straightforward 
procedure for enhancing crop-mapping capabilities using temporal series of moderate resolution remote sensing data. 
 
 

1. INTRODUCTION 

Proper monitoring of agricultural lands is extremely important 
for assessing land use changes and understanding their spatio-
temporal dynamics. Indeed, the availability of good estimates of 
agricultural crop distributions on a regional scale is valuable for 
assessing agriculture impacts over the environment, including 
their consequences for issues such as carbon budget estimation, 
water and soil pollution and deforestation (Shimabukuro et al., 
2004; Morton et al, 2006). In addition to that, such monitoring 
is also important for identifying and understanding the socio-
economic factors and drivers involved in agriculture expansion 
and land use dynamics.  
 
In this context, data from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) have been proven to be useful for 
mapping land cover and land use at a regional scale (Huete et al., 
1999; Strahler et al., 1999). In fact, MODIS provides a high 
quality, low cost source of surface reflectance satellite data 
whose moderate spatial resolution (250m) and very high 
temporal resolution (almost daily) are ideal for assessing 
vegetation phenological dynamics over extensive areas. More 
specifically, the sensor’s MOD13Q1 VI (Vegetation Indices) 
product, with gridded and corrected 16-day composite data, has 
been found to be efficient in performing this task. In this sense, 
Anderson (2005) and Jonathan (2006) used this product in order 
to map vegetation covers in mid-western Brazil, covering areas 
in the Amazonian and Cerrado biomes. 
 
Specifically in relation to agriculture, it has also been shown 
that multi-temporal MODIS imagery allows one to observe 
temporal VI profiles that present typical patterns or “signatures” 

that can be associated with distinct crop types. As such, 
Wardlow (2007) and Doraiswamy (2007) also employed 
MOD13Q1 data in order to differentiate between crops in the 
US Central Great Plains. 
 
However, despite the success of these past experiences, some 
limitations can be pointed out when attempting to apply this 
kind of approach for large-scale classification and monitoring of 
agricultural crops. Indeed, general land use assessments with 
MODIS temporal data often display errors caused by pixels 
with noisy or atypical temporal profile patterns (Jonathan, 2005), 
which can be associated with mixed pixels (i.e., pixels 
containing non-homogeneous land cover) and eventual 
imperfections in MODIS lower-level detection and correction 
algorithms, along with other sources of signal interference. 
 
In particular, Jonathan (2005) observed that MODIS temporal 
profiles are particularly affected by pixels close to a border 
between distinct land covers, especially when the transition 
between those covers is very abrupt. This is due to the fact that, 
at each date of observation, there is a slight variation in the 
portion of the gridded pixel effectively captured by the signal 
obtained by MODIS. As such, over the course of the time 
sequence there is also a corresponding variation in the amount 
of influence produced by the neighbouring land covers, leading 
to frequent and abrupt deviations in the observed temporal 
signal. 
 
Within the context of agriculture assessments, it must thus be 
pointed out that the transitions observed between crops very 
often display such abrupt transitions. As such, proper 
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monitoring of these crops is hindered by a significant amount of 
noise present at the limits of each agricultural field, leading to 
sub-optimal results even when the fields themselves are 
considerably larger than the MODIS pixel (250m x 250m, or 
6.25 ha). 
 
In a more general way, during the last years it has been widely 
stated in the literature that per-pixel classification procedures 
often lead to unrealistic land cover assessments, yielding the so-
called "salt and pepper" effect due to a relatively high number 
of isolated misclassified pixels (Lillesand et Kiefer, 2000). As 
such, several authors have proposed to employ classification 
approaches based on the characteristics of segments or regions 
of the input image, as provided by image segmentation 
algorithms (Meinel and Neubert, 2004). These approaches, 
often called "object-oriented" classifications (Blaschke and 
Strobl, 2001; Meinel and Neubert, 2004), have been 
traditionally applied to high-resolution imagery, where image 
regions are computed based mainly on spectral similarities 
between neighbouring pixels.  
 
In this work, it is thus proposed that a technique based on the 
same principles may be applied to MODIS temporal imagery in 
order to enhance classification results for agricultural areas with 
large fields, as is the case for the study region in mid-western 
Brazil. As such, it is suggested that the influence of noisy or 
disturbed pixels can be minimized, and a much more consistent 
and useful result can be attained, if individual agricultural fields 
are identified and each field's pixels are analyzed collectively. 
For that matter, a special methodology is presented here that is 
capable of taking advantage of the cleaner and more reliable 
samples within each segment, as opposed to those more affected 
by noise and thus more prone to lead to misclassification. 
 
 

 
 

Figure 1. Location of the Brazilian State of Mato Grosso. 
 
 

2. STUDY AREA 

The study area used for this work corresponds to the Brazilian 
State of Mato Grosso (906 000 km²). It is located in mid-

western Brazil, at the southern border of the Amazon Basin 
(Figure 1). In this region, high deforestation rates have been 
occurring for the last three decades, which can be related to 
colonization movements initiated in the 1970s and the 
consequential expansion of areas dedicated to crops and pasture 
use. The main planted crops are soybean (more than 6 millions 
of hectares according to IBGE, 2007), corn, rice and cotton.  
 
 

3. MATERIALS 

Ground truth data from an extensive field trip in the area was 
available. Data were acquired through interviews and comprise 
agricultural land use information for almost 50 farms and over 
1300 parcels, covering the 2005-2006 and 2006-2007 harvest 
years. Harvest years considered in this study consist of periods 
between July (DOY 209) of a given year and July (DOY193) of 
the following year. In this way, a total of 93,424 hectares were 
mapped for the 2005-2006 year, whereas 151,627 hectares were 
mapped for the 2006-2007 year. The ground truth data quality 
was also tested and validated through a methodology based on 
outlier detection (Arvor et al., 2008). Data were acquired at 
field scale, with parcels generally larger than 25 ha, being thus 
suitable for surveying procedures with 250m resolution MODIS 
data. Land cover classes charted by the survey consisted of 
single-crop (soybean and cotton separately) as well as double-
crop production systems (soybean + millet, soybean + sorghum, 
soybean + corn and soybean + cotton), leading to a total of six 
classes considered in this study. 
 
MODIS Data: MODIS/TERRA 250m resolution, 16-day 
composite VI data (product MOD13Q1) were acquired, 
processed and filtered for the 2005-2006 and 2006-2007 years, 
so as to build annual temporal sequences for both years, with 23 
images each. The Enhanced Vegetation Index (EVI), proposed 
by Huete et al. (1999), was used in the analyses presented in this 
paper due to its ability to better avoid atmosphere and soil 
disturbances. In addition to that, it has been shown that EVI is 
more sensitive than NDVI in areas that present high vegetation 
activity (Huete et al., 1999), which is the case of the study area 
of Mato Grosso. The EVI is defined as:  
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where R, NIR and B correspond respectively to red, near infra-
red and blue bands. L, C1 and C2 are adjusting parameters to 
minimise aerosol effects (Huete et al., 1999). 
 
The 16-day temporal resolution of the MOD13Q1 product is 
actually the result of the application of a Maximum Value 
Composition (MVC) algorithm on daily data, which is intended 
to eliminate noisy data caused by the presence of cloud cover. 
However, in some tropical areas such as Mato Grosso, this has 
been seen to be insufficient due to the extremely frequent cloud 
cover observed during the long 6-months rainy season. Thus, a 
smoothing algorithm based on the Savitzky-Golay filter 
(Savitsky and Golay, 1964) has been applied to that data.  
 
 

4. METHODOLOGY 

The proposal of this methodology is that, in order to enhance 
the assessment of agricultural land use with MODIS multi-
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temporal data, individual agricultural fields should be identified 
and each field's pixels should be analyzed in a collective 
manner. In this sense, it is reasoned that, within each 
agricultural field, more credit should be given to cleaner and 
more reliable samples, as opposed to those samples that are 
more affected by noise and thus more prone to misclassification. 
 
In practice, this method proposes that two tasks need to be 
carried out. First of all, an image segmentation process should 
be performed in order to identify continuous and homogeneous 
patches of agricultural fields. This actually consists of a multi-
band segmentation procedure, in which each band is associated 
with a date within the temporal sequence. This way, this process 
can be understood as a temporal segmentation of the area under 
study, meaning that homogeneous patches are identified based 
on similarities between the temporal signals observed for each 
point within the area. This way, it is intended that neighboring 
pixels that have suffered the same agricultural practices, and 
thus present similar temporal phenological behaviors, will be 
grouped together so as to form homogeneous segments or 
patches that agree with actual agricultural field borders. In this 
sense, it is argued that each of these segments will correspond to 
a region with uniform agricultural practices, and as such can 
confidently be assigned a single agricultural land use class. 
Finally, it is also suggested that a region growing segmentation 
algorithm (Bins et al., 1996; Tilton and Lawrence, 2000) should 
be used for this task, since this kind of algorithm is more 
concerned with internal homogeneity of each segment rather 
than clear distinction between neighboring segments, which is 
the case of many other segmentation processes such as the 
watershed segmentation algorithm (Beucher and Meyer, 1993).  
 
As a second step in the methodology, once the segments are 
identified, all of the pixels belonging to each segment can then 
be analyzed in order to identify the most probable class for the 
patch as a whole, thus providing a “field-wise” assessment of 
the area under study. For that matter, traditional approaches for 
segment or object-oriented image classification generally take 
into consideration two sets of data: overall segment measures 
(e.g., size, relation between the perimeter and the area) and 
mean values computed for all pixels within the segment, which 
in this situation corresponds to the mean temporal phenological 
behavior observed in each segment. However, it can be argued 
that taking these mean segment values into consideration can be 
inappropriate in this case, given that pixels with disturbed or 
noisy signals (such as those located close to the borders) end up 
influencing the overall segment measure as much as cleaner and 
more reliable pixels. In fact, as pointed out in the introduction, 
this (negative) influence can be particularly strong in agriculture 
areas, hindering the classification estimates for the area. 
 
In this context, it is argued that a better approach consists of 
evaluating each of the segment's pixels individually, using 
posterior probabilities to estimate the chances by which each 
pixel may belong to each agricultural land use class. In fact, as 
observed in Jonathan (2005, 2006), higher posterior 
probabilities can actually be related to higher levels of 
classification confidence, in such a way that these pixels 
actually display higher accuracy rates than others. As such, it is 
argued that giving priority to evaluations with higher 
classification confidence should effectively lead to more 
accurate final mapping results. Thus, it is proposed that each 
segment as a whole should be evaluated as being covered by 
that land use class which displays the highest average posterior 
probability for all of its pixels, that is: 
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where cseg corresponds to the final class to be assigned to a 
segment, nseg corresponds to the number of pixels within that 
segment and P(c|xi) corresponds to the posterior probability by 
which pixel i of the segment may belong to class c, according to 
the measures xi of that pixel. 
 
In this way, the influence of pixels with low posterior 
probabilities (usually associated with unrecognisable, atypical 
or disturbed temporal behaviors) is minimized in the final 
evaluation of each segment. It should be noted that this is also 
quite a different approach than individually classifying each 
pixel of a segment and then choosing the class associated with 
the most number of pixels. In this case, the presence of a high 
number of disturbed pixels could lead to misclassification (e.g., 
for “elongated” segments with a long borderline). Instead, the 
proposed method should manage to almost eliminate the 
influence of such disturbed pixels, mainly taking into account 
those points where high posterior probabilities were found for a 
class. As such, a more stable and reliable assessment of the area 
is achieved. 
 
 

5. EXPERIMENT 

A region-growing segmentation algorithm was employed based 
on the 23 bands available for the 2006-2007 year, so as to 
generate regions that displayed temporally homogeneous 
phenological behavior during the referred period. For that 
matter, the algorithm present in the freely available software 
SPRING (Câmara et al., 1996) was employed. The parameters 
used were 100 for the similarity threshold and 4 for the area 
threshold. As such, resulting segments were computed with a 
minimum area of four MODIS pixels or 25 ha. 
 
Several supervised classification approaches were then applied 
in order to test the methodology in a comprehensive way. The 
classification algorithms tested included the Maximum 
Likelihood approach (Duda and Hart, 2001), a C4.5 decision-
tree (Quinlan, 1993), a Random Forest algorithm (Breiman, 
2001), a Multilayer Perceptron (Neural Network) method using 
the backpropagation algorithm for training (Duda and Hart, 
2001), and a Support Vector Machine (SVM) using a Sequential 
Minimization Optimization algorithm for training (Platt, 1998). 
The Maximum Likelihood approach was implemented as an 
independent program, whereas the implementations available in 
the WEKA data-mining package (Witten and Frank, 2005) were 
used for the remaining classifiers. 
 
In all cases, training was performed during the 2005-2006 year, 
with the trained classifiers being applied to the 2006-2007 
MODIS data. Experiments were carried out considering two 
different subsets of land cover classes, in order to assess 
different levels of classification complexity. Namely, the sets 
testes were the following: 

• 6 class test case (more complex), comprising two 
single crop classes (soybean, cotton) and four double 
crop classes (soybean + millet, soybean + sorghum, 
soybean + corn and soybean + cotton) 

• 3 class test case (less complex), comprising cotton, 
soybean + cotton, and soybean + other crops (i.e., 
areas occupied by soybean, soybean + millet, soybean 
+ sorghum and soybean + corn). This test case 
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eliminates a relevant amount of ambiguity and 
confusion due to the similarity between the temporal 
responses given by soybean in double crop systems 
with millet, sorghum or corn. 

 
As such, for each test case and each classifier, three 
classification predictions were computed: 

• Regular per-pixel classification 
• Application of the image segmentation procedure and 

per-segment classification based on traditional mean-
value measures 

• Application of the image segmentation procedure and 
per-segment classification based on the proposed 
method using posterior probabilities. 

 
The classification accuracies and kappa coefficients of all 
results were then computed based on ground truth data available 
for the 2006-2007 year. 
 
 

6. RESULTS AND DISCUSSION 

Of the two test cases, the one with 6 classes corresponded to the 
most comprehensive and complex classification task. In this 
case, a significant amount of confusion can be expected 
between certain classes (notably soybean + sorghum, soybean + 
millet and soybean + corn), thus accuracies are not expected to 
be extraordinarily high. After running these experiments, the 
following results were reached (Table 1): 
 
 

 Max 
Like 

C4.5 
Tree 

Neural 
Net 

Random 
Forest SVM 

Per-pixel 
0.5157 
61.78% 

0.5104 
63.21% 

0.5605 
66.90% 

0.5125 
63.03% 

0.5749
68.21%

Segment. 
Normal 

0.5670 
65.66% 

0.5352 
65.91% 

0.6397 
73.09% 

0.5534 
66.72% 

0.6027
70.43%

Segment. 
Method 

0.6157 
69.86% 

0.6093 
71.35% 

0.6600 
74.76% 

0.6421 
73.54% 

0.6401
73.13%

 
Table 1. Kappa coefficients (above) and overall classification 

accuracies (below) computed for each classifier and 
each classification procedure, considering the 6 
classes test case. 

 
It can be readily seen in Table 1 that indeed the per-pixel 
classification approach consistently yielded the worst 
classification results for this test case, independently from the 
classifier algorithm being considered. In addition to that, it can 
be seen that performing image segmentation and attempting a 
“per-field” classification using the traditional method with mean 
segment values did increase classification accuracy in all cases 
studied. On average, the improvement observed for the kappa 
coefficient was 0.0448 with this approach. However, it can also 
be verified that even better results were obtained by applying 
the proposed method with posterior probabilities for estimating 
the most probable class for a segment. Indeed, improvements in 
accuracy relative to the traditional method were again 
consistently observed across al the classification algorithms. 
This way, an average increase of 0.0538 was observed for the 
kappa statistic when compared to the traditional method using 
mean segment values. Thus, when compared to the regular per-
pixel classification approach, the application of the proposed 
field-oriented assessment of the area yielded results 0.0986 
superior for the kappa statistic. 

 
In a similar way, results were also computed for the test case 
with 3 classes (Table 2). Here, there is much less confusion 
between the land use classes and general classification 
accuracies are expected to be much higher. 
 
 

 Max 
Like 

C4.5 
Tree 

Neural 
Net 

Random
Forest SVM 

Per-pixel 
0.7762
88.54%

0.7202
85.58%

0.7554 
87.11% 

0.7242 
85.95%

0.7608
87.60%

Segment. 
Normal 

0.8412
91.77%

0.7084
85.21%

0.8223 
90.55% 

0.7519 
87.27%

0.7898
89.05%

Segment. 
Method 

0.8543
92.42%

0.7694
88.04%

0.8321 
91.07% 

0.7755 
88.37%

0.7768
88.40%

 
Table 2. Kappa coefficients (above) and overall classification 

accuracies (below) computed for each classifier and 
each classification procedure, considering the 6 
classes test case. 

 
Once more, worst results were always obtained when using a 
per-pixel classification approach. This time, however, the 
improvements observed were not so significant. Again, using a 
per-segment classification approach always increased the 
classification accuracy, regardless of whether the proposed 
method or the traditional method with mean segment values was 
employed. Moreover, usage of the proposed method yielded 
better results on average than those obtained with the traditional 
per-segment approach (0.0189 for the kappa statistic). However, 
it should be pointed out that, for one case (classification with a 
Support Vector Machine), the traditional approach did reach a 
superior final classification accuracy rate (0.0130 better for 
kappa). Overall, comparison between the per-pixel approach 
and the proposed method showed an average improvement of 
0.0543 for the kappa statistic when using the latter procedure. 
 
Indeed, the less significant improvements observed for the 3-
class test case can be related to the less complex nature of the 
classification task. In fact, it can reasoned that the lower amount 
of ambiguity between the classes enables the regular per-pixel 
approach to correctly estimate land use classes even when some 
amount of noise or disturbance is present. Another interesting 
issue to be discussed relative to the 3-class test case is the 
relatively worse performance observed for the method when 
using the SVM classifier. This may be related to the not so 
efficient procedure used by this classifier for obtaining proper 
posterior probability estimates, which is done by fitting a 
logistic regression model to the outputs of the support vector 
machine. As such, it is useful to note that the proposed method 
is more appropriate when using a classification algorithm that 
can properly estimate reliable probabilities for class assignment, 
rather than mostly concerning itself with identifying thresholds 
for proper class discrimination, as is the case of the SVM. 
 
Finally, is should also be pointed out that a field-oriented 
approach such as the one proposed here can yield not only 
quantitative improvements in terms of accuracy but also 
qualitative improvements in terms of ease of interpretation and 
understanding of the land use patterns detected, as illustrated by 
Figure 2.  
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Likelihood approach (left and center), along with the ground truth (right) 
for a particular area in the study region. Red corresponds to soybean, 
dark green to cotton, yellow to soybean + cotton, blue to soybean + corn, 
light green to soybean + millet and magenta to soybean + sorghum. 
 

Figure 2. Classification results obtained with the Maximum  
 

Indeed, by observing this figure we can readily see not only the 
improvement in accuracy but especially the much better picture 
of the actual agriculture land use patterns in the area. This way, 
isolated errors and disturbances are eliminated and it becomes 
possible to compare the results obtained with the ground truth in 
a deeper and more comprehensive way. For example, the small 
field of class “cotton” (dark green) detected in the center of the 
area can be clearly seen to disagree with the large fields of class 
“soybean + cotton” (yellow) seen in the ground truth. However, 
when the MODIS EVI temporal signal for that area was 
analyzed, it could be seen that, indeed, there was virtually no 
sign of the characteristic soybean patterns in the area, meaning 
that either the soybean crop failed at that location or that there is 
an error in the ground truth collected. In any case, it becomes 
clear that, with this kind of approach, more practical and useful 
lessons can be learnt from the results, leading to the correction 
of errors in reference data, the identification of limitations in the 
possibilities of class discrimination, or the occurrence of 
specific situations in the field. 
 
 

7. CONCLUSION 

Results showed that the usage of temporal segmentation 
improves final classification accuracies in all cases. 
Improvements were more significant when using the new 
method proposed for evaluating each segment, particularly 
when similar classes were present and the classification task 
was harder. In this case, an increment of about 0.1 was attained 
for the kappa statistic, as opposed to a value of about 0.05 when 
using the traditional method based on mean segment 
characteristics. Moreover, using segment-oriented approaches 
enhanced results not only quantitatively but also qualitatively, 
since the resulting classification maps displayed much more 
realistic and visually understandable patterns, with actual 
agricultural fields and parcels being readily identified. Finally, 
the remaining classification errors could also be more easily 
interpreted, indicating that, with this approach, these errors 
become more related to specific field conditions or structural 
similarities between class responses, rather than caused by 
isolated noises and mixed pixels. As such, it is concluded that 
this methodology does provide a practical and straightforward 
way of enhancing crop-mapping capabilities using temporal 
series of moderate resolution remote sensing data. 
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