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Pharmacophore based virtual screening was performed on DNA GyrB inhibitors. The best 

selected pharmacophore model explained that two each of hydrogen bond acceptor and 

hydrophobicity were critical for inhibition of DNA GyrB. On virtual screening of molecular 

databases using the pharmacophore model, three molecules were found to be promising as 

antibacterial agents which also confirmed by molecular docking and molecular dynamics 
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Abstract 

In the current study, we searched for potential DNA GyrB inhibitors using pharmacophore-

based virtual screening followed by molecular docking and molecular dynamics simulation 

approaches. For this purpose, a set of 248 DNA GyrB inhibitors were collected from the 

literature and a well-validated pharmacophore model was generated. The best pharmacophore 

model explained that two each of hydrogen bond acceptor and hydrophobicity were critical 

for inhibition of DNA GyrB. Good statistical results of the pharmacophore model indicated 

that the model was robust in nature. Virtual screening of molecular databases revealed three 

molecules as potential antimycobacterial agents. The final screened promising compounds 

were evaluated in molecular docking and molecular dynamics simulation studies. In the 

molecular dynamics studies, RMSD and RMSF values undoubtedly explained that the 

screened compounds formed stable complexes with DNA GyrB. Therefore it can be 

concluded that the compounds identified may have potential for the treatment of TB. 
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Introduction 

Tuberculosis (TB) is a prevalent infectious disease with high morbidity and mortality rates 

globally(1). It is an air-borne disease, caused by Mycobacterium tuberculosis (MTB) which 

mainly affects lungs but can also affect other organs. According to World Health 

Organization (WHO), in 2014 alone, there were about 1.5 million deaths caused by TB with 

9.6 million new cases of  TB(2).  95% of TB deaths in 2014 occurred in low income 

countries. Further challenges arise from the increasing incidence of drug resistant 

tuberculosis (DR-TB) including multi-DR tuberculosis (MDR-TB), extensive-DR 

tuberculosis (XDR-TB) and latest total-DR tuberculosis (TDR-TB). MDR-TB was first 

reported in the 1990s with resistance to rifampicin and isoniazid(3). XDR-TB denotes strains 

of MTB resistant to rifampicin and isoniazid along with at least three of second-line anti-TB 

drugs included aminoglycosides, polypeptides, fluoroquinolones, thioamides, cycloserine and 

para-aminosalicylic acid(4, 5). Each of 105 countries has had at least one case of XDR TB in 

2014(6) including United Kingdom and the United States of America. An estimated 9.7% of 

people with MDR TB have XDR-TB(6). TDR-TB was reported in 2007 in Italy but has also 

been found in Iran, India and South Africa(7) and this  refers to MTB strains that show 

resistant to all the first and second line drugs of TB(8). In South Africa, with a  2.2% burden 

of TB, a total US $158 million( 44% of the total national costs of diagnosing and managing 

all forms of TB) was consumed by DR-TB in 2011(9). Treatment of DR-TB is very complex  

and is characterised by long duration of treatments that are expensive and often the 

recommended medicines are not always available(10). Moreover, most of the first-line drugs 

used for the treatment of TB are more than forty years old and have serious side effects(11). 

Although there are a few newer chemical agents in clinical trial, including delamanid and 

fluoroquinolones, still there are no effective drugs available in the market for therapeutic 

treatment of DR-TB(12-14). Thus there is an urgent need to design and develop new anti-

tuberculosis drug candidates for TB. Currently, the DNA Gyrase enzyme, a type II 

topoisomerase from the gyrase, HSP 90, histidine kinase, MutL enzyme family is one of the 

important, most explored and corroborated targets for the development of novel and safer 

anti-mycobacterial leads(15).  

DNA gyrase is a crucial enzyme that interacts with negative supercoils of double-stranded 

closed-circular DNA and is part of the topoisomerases involved in the control of topological 

transitions of DNA. DNA gyrase is a good potential target to develop potent and safer lead 

compounds as this enzyme is absent in eukaryotic cells. It was observed that inhibitors of 
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DNA gyrase enzyme were effective against non-replicating, persistent mycobacteria and this 

is crucial in reducing the time for TB therapy(16). A novel and potential MTB gyrase 

inhibitor should be therapeutically effective against DR-TB. DNA gyrase performs enhanced 

relaxation, DNA cleavage and de-catenation activities(17). DNA gyrase is generally found as 

a heterotetramer (A2B2) with two subunits each of GyrA and B(18).  Generally GyrA plays a 

role in breaking and reuniting  of DNA, whereas GyrB involved in ATPase activity(19). It is 

reported that GyrA is one of the most understood targets and mostly targeted by the 

fluoroquinolones. Less is known about GyrB subunit as a receptor molecule for the 

development of potential inhibitors for TB. A previous FDA approved DNA GyrB entity 

(novobiocin) was developed but was later  withdrawn from the market due to severe safety 

issues and poor pharmacological properties(20). Additionally, DNA GyrB has been 

genetically confirmed to be a bactericidal drug target in MTB, but to date there has not been 

any active drug therapy established against this target(21). With this in mind the current study 

was initiated to identify potent and safer anti-TB molecules using pharmacoinformatics 

approaches. 

The concept of a pharmacophore is defined as collection of steric and electronic functional 

groups that provides an intuitive way of depicting and understanding the  binding properties 

of small molecules along with an account of optimum macro-molecular contacts with a 

particular biological target, to stimulate or inhibit its biological response(22, 23). 

Pharmacophore features hydrogen bond acceptor (‘a’) and donor (‘d’), hydrophobic (‘p’) and 

aromatic ring (‘r’) were found to be the crucially related to selectivity and potency in 

different enzymes including GyrB. Pharmacophore models have wider applicability in the 

field of drug discovery by providing important facts to study structure-activity relationships 

(SAR) and exposing the mechanism of ligand-target relationships from inferences of  the 

nature of functional groups and non-covalent bonding patterns(24-26). In the current work, an 

effort was made to find a well-validated pharmacophore hypothesis using key chemical 

features of DNA GyrB inhibitors with inhibitory activity. The final selected model was 

considered for virtual screening to select virtual hits from small molecular structural 

databases. The potential of the work is demonstrated by the credentials of finding three 

promising molecules as DNA GyrB inhibitors. The final proposed screened molecules were 

docked inside the receptor cavity of DNA GyrB to explain the binding interactions and 

preferred orientation for higher potency. Finally, to investigate stability and detailed binding 
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interactions of the final screened molecules inside the receptor cavity of DNA GyrB, a 

molecular dynamics study was performed. 

  

Materials and methods 

In order to discover novel and potent scaffolds of DNA GyrB inhibitors the pharmacophore 

space modelling approach was adopted. This is one of the crucial and most widely used 

versatile pharmacoinformatics techniques. The pharmacophore models can be developed 

using ligand-based and structure-based approaches and furthermore can be used for screening 

of novel chemical compounds from molecular databases. Ligand-based pharmacophore 

approaches use a set of ligands with their biological activity, while receptor-based approaches 

consider information of amino residues present in the receptor site to identify chemical 

functionalities important for binding interactions with small molecules. In the current 

research work, a ligand-based approach was implemented for a set of DNA GyrB inhibitors 

with known inhibitory activity (IC50). 

We used Discovery Studio 4.0 (DS)(27) for the pharmacophore model generation and virtual 

screening followed by molecular docking study. DS is a commercial software package 

consisting of several modules and widely used for pharmacoinformatics studies(28-30).  In 

DS, 3D QSAR pharmacophore generation module was used in which a set of DNA GyrB 

inhibitors and activity data were taken as input to create potential hypotheses. In the ligand-

based approach basically two modules, HypoGen and HipHop incorporated in DS were used. 

The HipHop module identifies the hypotheses conjoint in the ‘active’ molecules of training 

set but not present in the ‘inactive’ compounds, whereas, HypoGen module develops 

hypotheses present both in ‘active’ and ‘inactive’ molecules. In order to develop a 

pharmacophore model from DNA GyrB inhibitors the HypoGen module was used.  

 

Dataset 

A set of 248 compounds belonging to the class of DNA GyrB inhibitors(1, 15, 20, 31-34) 

along  with inhibitory activity (IC50) were collected from the literature. In order to develop 

the pharmacophore model and subsequently validate the model, the molecular dataset was 

randomly distributed into training and test set compounds respectively. Molecules in the 

dataset have a wide range of IC50 values, from 1.470 to 137.500 µM.  

 

 

Page 6 of 37Chemical Biology & Drug Design



6 
 

 

The entire dataset was classified into highly active (IC50 < 20 µM, +++), moderately active 

(20 ≤ IC50 < 50.000 µM, ++) and least active (IC50 ≥ 50.000 µM, +) based on the IC50 values. 

In order to develop pharmacophore model in DS the training set molecules from the dataset 

was considered according to the basic guidelines laid down by Li et al.(35). These explain 

that (a) compounds present in the set should provide strong and brief information with 

chemical features and range of activity, (b) a minimum of 16 diverse compounds should be 

considered in the set to confirm statistical significance and elude chance correlation, (c) the 

most and least active compounds of the dataset must be present in the set and (d) the activity 

of the compounds should span 4 orders of magnitude. Based on the above criteria 30 

molecules were selected in the training set along with most and least active compounds. The 

rest of the compounds of the dataset (total 218) were used as test set molecules and further 

used to evaluate the performance of the pharmacophore model. The 2D/3D visualizer module 

of DS was used to generate three-dimensional (3D) coordinates of the compounds. Each and 

every compound was considered to correct the coordinates and minimization of energy using 

the modified CHARMm force field(36, 37). The pharmacophore modelling, virtual screening 

and molecular docking studies were performed using the different packages of DS. 

Gromacs5.0.6(38) was used for molecular dynamics simulation.  

 

Pharmacophore model generation 

The 3D QSAR Pharmacophore Model Generation module of DS was used to develop the 

pharmacophore hypotheses. The training set molecules were converted into 3D structures and 

conformations were generated by Cat-Conf program of the DS software package. In order to 

generate various acceptable conformations, the BEST conformational generation method was 

used. This method offers complete and improved coverage of conformational space with help 

of rigorous energy minimization and optimizing the conformations with the help of poling 

algorithms(39). In the  BEST algorithm,  the chemical functionalities are arranged in space 

instead of simply by the arrangement of atoms(40). In order to search for the favourable 

features of the highly active compounds of the dataset the Feature mapping module was 

adopted and mapped features of the compounds were given as input features for 

pharmacophore model generation. Using the conformer along with chemical features the 

algorithm operates in two modes such as HipHop and HypoGen. Pharmacophore models 

develop  from the active set compounds using the HipHop approach, whereas the HypoGen 

approach generates models from both active and inactive compounds and finds a hypothesis 
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which is common in the active molecules and absent in  the inactive compounds(40). From 

the training set molecules the HypoGen module generates top ten hypotheses by considering 

conformational models and chemical features through following steps: constructive, 

subtractive and optimization(41). In the constructive step, hypotheses are created that are 

common in the most active molecules; in the second phase, inactive compounds are removed 

from those that fit the hypotheses. In the last phase, using the small perturbations, the rest of 

the hypotheses improve the score(40, 42). Finally, the best pharmacophore hypothesis was 

considered based on the best correlation coefficient (R), low root mean square deviation 

(RMSD), cost function analysis and good predictive ability for further analysis.  

Validation of pharmacophore model 

Validation of any in-silico model is a crucial step to verify predictive ability and applicability 

along with checking the robustness of the model. In this work, the selected pharmacophore 

model from the training set was validated by five different approaches, (a) internal validation, 

(b) cost function analysis, (c) Fischer’s randomization test, (d) test set prediction and (e) 

decoy set. 

 

Internal validation 

Internal validation is an important validation protocol to explain the predictivity and 

robustness of the model using the training set molecules. In this regard, the leave-one out 

(LOO) cross-validation approach was used, in which the model was developed by deleting 

one compound randomly from the training set and parameters used were the same as the 

original model. The new developed model was used to calculate estimated inhibitory activity 

of the deleted compound. Similarly, activity of all molecules of the training set were 

estimated and recorded for further analysis. Using the estimated inhibitory activity of the 

training set molecules two important statistical parameters, the LOO cross-validated 

correlation coefficient (Q2) and error of estimation (se) were calculated. It is reported that 

high Q2 (>0.5) and low se  explain  better predictive ability (43). In order to endorse the good 

predictive capability of the training set molecules the modified r2 (r2
m(LOO)) reported by Roy 

et al.(44, 45) was also calculated which measures the degree of deviation of the estimated 

activity from the experimental ones. It was reported that model may be considered with 

r
2

m(LOO)>0.5. 

 

Cost function analysis 
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In order to select the best pharmacophore hypothesis, several statistical parameters were 

noted at the time of hypothesis generation, such as spacing, uncertainty, and weight variation. 

The spacing signifies the minimum inter-features distance that may be permissible in the final 

hypothesis. The weight variation is the certain order of magnitude explored by the hypothesis 

in which every feature indicates some degree of magnitude of the compound’s inhibitory 

activity. In general 3.0 and 0.3 are the default values of spacing and weight variation 

respectively but it may vary from 4.0 to 1.0 and 1 to 2 respectively depending upon the 

different cases. Another parameter, uncertainty gives the error of prediction which indicates 

the standard deviation of the error cost. The default value of this parameter is 3 but in some 

cases it may vary from 1.5 to 4.0. The cost function was analysed by minimization of three 

cost factors, viz., weight cost, error cost, and configuration cost. The weight cost depends on 

the weight variation and is directly proportional to the deviation from input value. Error cost 

is the deviation between the predicted activities of the training set and their experimentally 

determined activities. A fixed cost penalizes the complexity of the hypothesis space. The 

configuration cost equals entropy of hypothesis space and it is reported that value should be 

<17 for a good pharmacophore model. The total cost, which is overall cost of a hypothesis is 

the summation of all three cost factors. For generation of a pharmacophore hypotheses, the 

HypoGen algorithm also develops the null hypothesis which is the postulation that there is no 

association in the data, and the experimental activities are distributed about their mean. It is 

reported that the higher (>60) cost difference (∆cost = null cost - total cost) indicated that the 

hypothesis does not reflect a chance correlation. 

Fischer’s randomization test   

The selected pharmacophore hypothesis was assessed for quality using CatsScramble(42) 

which is based on Fischer’s randomization test. The CatsScramble mainly verifies the strong 

association between the chemical compound and the biological activity of the training set 

molecules. In this approach, the new pharmacophore hypotheses were generated after 

scrambling activity and assigning new values of the training set molecules. Constraint and 

input features remain the same as original hypothesis. If any randomized run generates 

pharmacophore hypothesis with better statistical parameters then the original hypothesis may 

be considered to be developed by chance. Based on statistical significance a number of 

spreadsheets are generated. The statistical significance is given by following equation. 

[1 (1 ) / ]Significance a b= − +        (1) 
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Here, a describes the number of hypotheses with a total cost less than the original hypothesis, 

whereas b denotes a collection of HypoGen and random runs. For example, in case of 95% 

confidence level total number of random spreadsheets are generated as 19 (b = 20) when each 

generated spreadsheet is submitted to HypoGen using the same parameters as the initial run. 

In the current research, the developed pharmacophore model was tested at 95% confidence 

level which produced 19 spreadsheets.  

 

Test set prediction 

It is important to verify the external predictivity of the model beyond the molecules involved 

in the model generation. In this purpose, 218 test compounds were estimated by fitting with 

the selected pharmacophore model using Ligand Pharmacophore Mapping protocol in DS, 

given in Table S1 (Supplementary file). Different statistical parameters including R
2

pred 

(correlation coefficient) and sp (error of prediction)(46, 47) were calculated to check the 

quality of prediction of the model. As the value of R2
pred based on the mean observed activity 

of the training set may be attained for molecules with a wider range of activity value, this 

may not be guaranteed that the predicted activity values are very close to the observed 

activity. Therefore there is a chance of a significant numerical difference between the two 

values instead of a good overall correlation being maintained. To overcome above this, the 

modified r2 [r2
m(test)](48, 49) value was calculated (threshold value=0.5). 

 

Virtual screening 

Virtual screening based on a well validated pharmacophore model can be efficiently used to 

identify novel potent compounds from molecular databases that can bind to a particular 

receptor site to block or trigger activity. In the current research, the best pharmacophore 

hypothesis was used to screen the NCI (National Cancer Institute) 

(https://cactus.nci.nih.gov/ncidb2.2/) and IBS (InterBioScreen) (http://www.ibscreen.com/) 

databases to retrieve novel chemical entities for DNA GyrB inhibitors. The NCI and IBS 

databases contain 265,242 and 523,031 compounds respectively. Best pharmacophore 

hypothesis was submitted separately to the NCI and IBS databases with set ‘Limit Hits’ as 

‘Best N’ and ‘Maximum Hits’ as 600. The initial hit molecules were further screened with a 

number of criteria to achieve final potential molecules for the DNA GyrB. Furthermore, to 

analyse binding interactions between the final screened molecules and catalytic amino 

residues molecular docking was performed.  
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Molecular docking 

For the screening of molecules, molecular docking is one of the best techniques and a crucial 

step in the drug design process. In order to understand how the molecules identified by virtual 

screening (“drug-like hits”) bind to DNA GyrB, molecular docking was performed using the 

LigandFit protocol of DS. First of all this protocol detects the cavity to identify and select the 

region of the protein as the receptor site followed by docking the molecules in the selected 

site. The crystal structure of the DNA GyrB was collected from RCSB Protein Data Bank 

(RCSB-PDB) for the molecular docking study. The receptor size, resolution and date of 

deposit were considered to select the crystal structure of DNA GyrB and finally PDB ID: 

4B6C(16) was downloaded for further study. Both protein and ligands were prepared by 

using the Prepare Protein and Prepare Ligand tools of DS respectively. The CHARMm 

force field(50) was used for minimization of both protein and ligand. In the Prepare Protein 

module of DS the ‘Build Loop’ and ‘Protonate’ parameters were fixed to ‘True’ while, 

dielectric constant, pH, ionic strengths and energy cut-off were considered as default value. 

In case of Prepare Ligand module, preparation ‘Change ionization’, ‘Generate Tautomers’ 

and ‘Generate isomers’ were set to ‘False’, and ‘Generate Coordinates’ was fixed to ‘3D’. 

After preparing the protein, the receptor cavity was identified on the basis of volume 

occupied by the ligand. In order to overcome the false positive results of a molecular docking 

study validation is an essential step. In this purpose, the co-crystal small molecule bound in 

the receptor site was initially redrawn and the same docked into the active site of DNA GyrB 

(PDB ID: 4B6C). The binding interactions were analysed of the best docked pose of co-

crystalized ligand followed by superimposing the docked pose and the co-crystal. The RMSD 

value was calculated from superimposed ligands to examine docking parameters that were 

capable of reproducing a similar conformation to that of the co-crystal at the active site of 

DNA GyrB. The same parameters as were present in the co-crystalized docking were used in 

molecular docking studies of potential molecules retrieved from databases. For further 

analysis of binding interactions and dock score values, the top ten conformations for each 

ligand were considered.  

Molecular Dynamics 

It is not sufficient to analyse static complexes to completely understand protein-ligand 

complex as one also needs to understand the dynamic information generated by simulating 

their internal motions or dynamic processes. In this respect, molecular dynamic (MD) 
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simulation was performed on the best docked poses of DNA GyrB and the most active 

compound and final screened compounds from databases. MD simulation was carried out in 

Gromacs 5.0.6. For all ionisable residues the protonation states were fixed to their normal 

states at pH 7. For all complexes, simulations were carried out with GROMOS96 43A1 force 

field of the Gromacs 5.0.6 package installed on an in-house Linux-based desktop. In the MD 

simulation all proteins were surrounded by a cubic water box of SPC3 water molecules and it 

was extended 10Å from the protein. The PRODRG was used to generate the topology for 

small molecules. The periodic boundary conditions (PBC) were applied in all directions. 

Furthermore,  the role of the Na+ and Cl- counter ions which replace the water molecules, 

system was neutralized. The steepest descent algorithm was used to minimize each system for 

10,000 steps. Each system was considered for   100 ps position-restrained MD simulations. 

Further MD simulation was performed for a 10ns production with a time step of 2fs at 

constant pressure (1 atm) and temperature (300 K). The snapshots were recorded at every 1ps 

for further analyses of MD simulations. The RMSD, root mean-square fluctuation (RMSF) 

and radius of gyration were recorded to analyse the behaviour of each system.  

Drug-likeness analysis of screened compounds 

The drug-likeness attributes of the final screened compounds were compared with existing 

Food and Drug Administration (FDA) approved DNA GyrB inhibitors. For this purpose 

different parameters including dockscore, estimated activity, fit value, molecular weight, 

logP, violation of Lipinski’s rule of five (LoF), molecular volume, molecular refractivity, 

number of H-bonds and number of bump interactions were recorded. In order to   calculate 

the above properties DS(11) and an online program Molinspiration 

(www.molinspiration.com) were used.  Dockscore refers to the pool of internal energy of 

ligand-receptor complex and ligand only. Both estimated activity and fit score were predicted 

by fitting ligands onto the best pharmacophore model. logP reflects the hydrophobicity of the 

molecules. The LoF explain that for a drug-like molecule logP value should not be more than 

5, hydrogen bond acceptor and donor should not be more than 10 and 5 respectively, and 

molecular weight should not be more than 500. Molecular volume defines the transport 

features of molecules, such as intestinal absorption or blood-brain barrier penetration.  

 

Results and discussion 
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In order to develop pharmacophore models, the HypoGen module of DS was used on the 

training set molecules selected from whole dataset. The training set molecules are given in 

Figure 1 (D1 – D30) and the inhibitory activity values pIC50 (log[(1/IC50)x1000]) are 

provided within the parentheses.  

The pharmacophoric features of the molecules were identified using the Feature mapping 

protocol of DS, and ‘a’, ‘d’, ‘p’ and ‘r’ were found to be common chemical features in the 

dataset and were considered as inputs to the 3D QSAR pharmacophore generation.  Minimum 

and maximum feature values were set to ‘0’ and ‘5’ respectively. Based on excellent 

statistical parameters the top ten hypotheses were considered for further analysis. The 

statistical parameters along with correlation coefficient were noted and are depicted in Table 

1. Debnath’s analysis(25, 51) was used to select the best hypothesis which explains that best 

model should have the low RMSD, high correlation coefficient, low cost value and high cost 

difference. A well validated hypothesis should have the overall cost of the hypothesis distant 

from the null cost and close to the fixed cost. It is stated that differences between null cost 

and total known as ∆cost in the range of 40–60 bits explains the probability of the predictive 

correlation of 75–90%, while the cost difference more than 60 bits defines the hypothesis and 

has a correlation probability of more than 90%(52). In the current work, the cost difference of 

Hypo 1 (Table 1) was found to be 100.070 which clearly explained that selected hypothesis 

has more than 90% chance of being able to select DNA GyrB inhibitors.   

Table 1 explains that the best hypothesis (Hypo 1) was found to have a good correlation 

coefficient value (R = 0.883), which explains good predictive ability of the selected 

hypothesis. The total cost and fixed cost were found to be 199.281 and 87.247 respectively, 

along with the cost difference (∆cost) which was found to be 100.070. The top 10 hypotheses 

were selected to analyse the results and it was found that only Hypo 1 possessed high 

correlation coefficient, less RMSD, highest cost difference and minimum error values in 

comparison to other hypotheses. Consequently, Hypo 1 was selected as the best 

pharmacophore model for advanced analyses.  

The best model (Hypo 1, Fig. 2a) revealed the importance of two of each hydrogen bond 

acceptor and hydrophobic region. Hypo 1 mapped with the most active molecule (D5 in 

Figure 1) of the training set and inter-feature distances is depicted in Figure 2.  

 

Observed and predicted activity of individual compounds of training set molecules were 

analysed and revealed that one highly active (IC50 < 20 µm, +++) was overestimated as 

moderately active molecule, six moderately active molecules (20 ≤ IC50 < 50 µm, ++) 
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underestimated as highly active and two least active compounds underestimated as 

moderately active. The rest of the compounds in the training set were estimated correctly 

within their range. From the above discussion it can be explained that the Hypo 1 predicted 

inhibitory activity of the training set molecules correctly which is echoed by the high 

correlation between experimental and predicted biological activities.  

The most active compound of the dataset was mapped in Hypo 1 using Ligand 

Pharmacophore Mapping module of DS and delineated in Figure 2a. Mapping of the most 

active ligand (D5 in Figure 1) with pharmacophoric features explained that amine group of 

double ring system and oxo group attached to the same behave as hydrogen bond acceptors 

which suggest that these groups are crucial for forming hydrogen bond interactions with the 

catalytic amino residues of DNA GyrB. The presence of an alkyl group between two single 

rings and ethyl group attached to the pyperazine ring impart the hydrophobicity of the 

molecules. Therefore, the above observation and discussion clearly indicate that to design or 

synthesize new potential DNA GyrB inhibitors, hydrogen bond and hydrophobic features 

along with inter-feature distances will be crucial factors. 

 

Validation of pharmacophore model 

A Selected pharmacophore hypothesis should not  only be statistically robust but also well 

predictive for internal and external compounds. The best pharmacophore hypothesis (Hypo 1) 

was considered for validation using internal validation, cost function analysis, test set 

prediction, Fischer’s randomization test and decoy set. Its ability to consistently predict 

external data sets and discriminate active inhibitors from the inactive is an important criterion 

for high-quality models. 

 

Internal validation 

Predicted inhibitory activities calculated based on Hypo 1 along with observed activities of 

training set molecules are given in Table 2 and Figure 3. The error value is the ratio between 

observed and predicted activities which reflects the consistency between both activities. 

Table 2 explains that all compounds of the training set have error values within reasonable 

range. In order to further validate   the model using training set compounds, cross-validated 

correlation coefficient was calculated and it was observed that the best hypothesis gives Q2 of 

0.786 and se of 0.242. Further r
2

m and ∆r
2

m values were calculated and were found to be 

0.763 and 0.192 respectively. It is reported that for acceptance of the model r
2

m and ∆r
2

m 
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should be more than 0.500 and less than 0.200 respectively. The high Q2 and r2
m, and low se 

and ∆r
2

m of the Hypo 1 suggested that model is statistically robust in nature.  

 

Cost value analysis 

The HypoGen algorithm in DS computes and gives a number of parameters for preliminary 

assessment of the model. In this regard, the ∆cost which is the difference between null and 

total costs, the configuration cost, and RMSD between the estimated and the experimental 

inhibitory activities of the training set molecules were analysed as important parameters to 

judge statistical significance. As per Table 1, the cost difference of Hypo 1 was found to be 

100.070 which clearly explained that the selected hypothesis was not generated by chance. A 

consistent and robust pharmacophore model should also have a configuration cost value less 

than 17. Hypo 1 generated configuration cost of 15.117. It is also reported that lower 

differences between total and fixed costs is an indication of a robust model. For Hypo 1 the 

difference between total and fixed cost was found to be 11.964 and that is significant for the 

model.  

 

Test set prediction 

In order to check the predictive ability of compounds outside the training set molecules 

Pharmacophore Mapping module of DS was used to predict inhibitory activities of test set 

compounds. A total 218 compounds from the dataset were considered in the test set and the 

inhibitory activity values converted into logarithm values [pIC50 = log((1/IC50)x1000)]. 

Chemical compounds in SMILES format along with pIC50 values are given in the 

supplementary file (Table S1). The test compounds were categorised according to their pIC50 

values such that highly active (pIC50 >1.700), moderately active (1.300 < pIC50 ≤ 1.700) and 

least active/inactive (1.30 ≤ pIC50). On analysis of predicted and experimental inhibitory 

activities of the test set molecules it was observed that one highly active and six moderately 

active compounds were underestimated as moderately active and least active respectively. 

Fourteen moderately active and two least active compounds were overestimated as highly 

active compounds, whereas five least active compounds were overestimated as moderately 

active compounds. Therefore, among 218 test compounds twenty eight molecules were either 

underestimated or overestimated from their original activity, whilst the remaining 190 were 

estimated correctly within their range. Furthermore the correlation coefficients (R2
pred) 

between observed and predicted inhibitory activities and error of prediction (sp) were 

calculated and values found to be 0.701 and 0.232 respectively. The above observations 
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clearly indicate that Hypo 1 is competent enough to estimate the inhibitory biological activity 

of the compounds beyond the training set.   

 

In order to verify  better determination of predictive ability of the selected model another 

important statistical parameter r
2

m(test) was calculated which explains how the predicted 

inhibitory activities are adjacent to the equivalent experimental values as a high correlation 

coefficient value (R2
pred) cannot always put forward a low residual between the experimental 

and predicted activity data. Two parameters r
2

m(test) and ∆r
2
m(test) were recorded and values 

found to be 0.616 and 0.030 correspondingly which explains that selected hypothesis (Hypo 

1) has adequate predictive potential. Therefore, the above observations indicated that the 

selected hypothesis can reasonably predict the biological activities of new molecules. 

Fischer randomization test 

The best model was considered to adjudge the quality of the hypothesis through Fischer’s 

randomization in which statistical quality of the model was checked by assigning a particular 

confidence level. In current situation Hypo 1 was under taken for 95% confidence level. At 

95% confidence level, experimental activities of training set compounds are reorganised and 

generated into 19 random spreadsheets by creating a hypothesis on each spreadsheet. The 

consequence of the hypothesis was calculated as per equation (1). Total costs and the 

correlation values of all 19 spreadsheets were recorded and given in Table 3. From the Table 

3 it can be noted that not a single randomized run perceived predictive powers similar to or 

better than that of Hypo 1. 

The mean value of all 19 trials was found to be 0.700 and Hypo 1 achieved much lower total 

cost value compare to other 19 runs. The total costs of Hypo 1 of all 19 trials are given in 

Figure 3 and Table 4. The above observations of Fischer’s randomization approach 

undoubtedly indicated superiority of the hypothesis and Hypo 1 was not generated by chance. 

 

Decoy set 

In order to check the screening capability of the selected pharmacophore model, decoy set 

validation was performed. In this purpose, a set of 630 DNA GyrB decoys were collected 

through DecoyFinder1.1. The obtained decoy molecules were amalgamated with 30 active 

DNA GyrB inhibitors and screened using the Hypo 1. The model was further used to find out 

and discriminate between actives and decoys with good accuracy of 0.860. The true positive 

(TP), false positive (FP), true negative (TN) and false negative (FN) values were found to be 

26, 90, 530 and 4 respectively. The ROC plot of pharmacophore model was derived by 
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plotting true positive rate of actives vs. false positive rate of inactive compounds and 

delineated in Figure 5. The ROC curve clearly explained that actives and decoys are well-

classified. Further, the area under curve (AUC) was calculated and the value was found to be 

0.83 that undoubtedly explained that more true positives have been verified. The enrichment 

factor (EF 1%) and Boltzmann-enhanced discrimination of ROC were also calculated and the 

value of average EF (1%) value for pharmacophore model was found to be 15.48 which 

showed that hypothesis has acknowledged active compounds very well and the top 1% hit is 

enriched with active molecules. The mean BEDROC was found to be 0.650 which implies 

that the top hits is not only enriched with active compounds but also ranked higher than the 

decoys. The aforementioned observations of decoy validation strongly explain that the 

developed pharmacophore features in the selected model are impeccably acceptable for the 

mapping of DNA GyrB inhibitors. 
 

Virtual screening 

Screening of small molecular databases using pharmacophore model is a powerful technique 

to obtain novel and potential inhibitors. This is also an effective alternative to the approach of 

high-throughput screening methodologies. In order to obtain potent DNA GyrB inhibitors, 

Hypo 1 was used to explore the NCI and IBS databases. In the DS package the ‘Search 

Database’ protocol under ‘Pharmacophore’ module was used for screening of both 

databases. In the parameter list the protocol ‘Search Method’ and ‘Limit Hits’ were set to 

‘Best’ and ‘Best N’ respectively. ‘Maximum Hits’ was set to 600 for each screening method. 

The best pharmacophore model retrieved 596 hits from the NCI database while 595 retrieved 

from the IBS database. Molecules obtained from both databases were merged and there was 1 

redundant molecule found in the merged file. The remaining 1190 compounds of the dataset 

were considered under “Ligand Pharmacophore Mapping” protocol of DS with “Maximum 

Omitted Feature” set to ‘0’ to calculate the predicted inhibitory activity. After successful 

prediction, we compared the predicted activity of screened compounds with the experimental 

inhibitory activity (IC50 = 1.47 µM) of the most active compound (D5 in Figure 1) of the 

dataset. Compounds with estimated inhibitory activity less than 1.47 were considered for 

further analysis. It was observed that 657 compounds fulfilled the above criteria and were 

considered to pass the Lipinski’s Rule of Five and Viber’s rule. 430 compounds failed to pass 

both rules. Therefore the remaining 227 molecules along with D5 were analysed in a 

molecular docking study. On completion of molecular docking study it was observed that 32 
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molecules failed to fit into the active site of DNA GyrB. Dock scores of the remaining 195 

and D5 were compared, and we considered molecules that gave a higher dock score than D5 

(25.844). It was observed that 190 compounds had dock score higher than 25.844 and these 

then considered for further study. In addition, ADMET descriptors were calculated for more 

screening. The human intestinal absorption (HIA), aqueous solubility and blood brain barrier 

(BBB) were analysed and we found that one compound from NCI (NSC10716) and two from 

IBS (STOCK1N01341 and STOCK1N05628) databases show good absorption, aqueous 

solubility and penetration values (Figure 6). Therefore the above three molecules were 

considered to be promising DNA GyrB inhibitors and were analysed further to assess the 

critical interactions with the catalytic amino residues of DNA GyrB. 

Molecular docking 

In order to   observe preferred orientation and binding interactions of final screened 

molecules along with most active compound of the dataset, the dock complexes of the same 

were analysed. Best docked poses of D5, NSC10716, STOCK1N01341 and 

STOCK1N05628 are given in Figure 7.  

 

In order to perform molecular docking the crystal structure of DNA GyrB (PDB ID: 4B6C) 

was collected from RCSB-Protein Data Bank. Validation of molecular docking protocol is an 

important phase and in this regards self-docking(53) is one of the crucial approaches in which 

already bound small molecule is re-docked at the catalytic site of macro molecule and the 

conformer of the original bound small molecule is superimposed to the re-docked pose 

(Figure S1 in supplementary file) to calculate RMSD value. As per report RMSD < 2 Å value 

of original bound ligand validates the docking procedure(53). In the current study the RMSD 

value between co-crystal and docked conformer was found to be 1.305 Å, which clearly 

indicated that the protocol selected in the docking method was validated.  

It was observed from the docked pose between most active compound (D5) of the dataset and 

DNA GyrB that three catalytic amino residues (Arg82, Ile84 and Pro85) in the receptor 

cavity interacted with D5.  In detail, two hydrogen bonds were formed between Arg82 and 

D5, while Ile84 and Pro85 formed one bump interaction each with D5. All three screened 

compounds were found to interact with Glu56 and Val99. Each of NSC10716 and 

STOCK1N01341 interacted with Glu56 and Val99 via one hydrogen bond and two bump 

interactions, whereas STOCK1N05628 was found to clash with Glu56 and Val99 by one 

bump interaction separately. In addition Glu56 formed one hydrogen bond with 
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STOCK1N05628. Asn52, Asp79, Arg82 and Thr169 amino residues were crucial for 

interaction with NSC10716 via two, one, four and one bump interactions respectively. 

Moreover, Arg82 was formed from two potential hydrogen bonds with NSC10716. Both 

STOCK1N01341 and STOCK1N05628 interacted with Asp97 via one bump interaction 

separately. STOCK1N01341 was able to form hydrogen bond with Arg41, His89 and 

Gln102 via one, one and two connections respectively. Two amino residues, Arg82 and 

Pro85 were found to be important at the receptor site of DNA GyrB to form two and three 

bump interactions respectively with STOCK1N05628.  

 

Molecular dynamics 

For an in depth analysis of complex stability and to explain the inhibition mechanisms of the 

screened compounds and the most active compounds of the dataset, molecular dynamics 

study was performed. In this regards, Gromacs5.0.6 was used for a time span of 10ns. 

Backbone RMSD, RMSF and radius of gyration (Rg) were explored to analyse the complex 

constancy during simulation time and portrayed in Figure 7. 

 

The average RMSD values of protein backbone were found to be 0.294, 0.327, 0.260 and 

0.202 nm for the DNA GyrB complex with D5, NSC10716, STOCK1N01341 and 

STOCK1N05628 respectively. On analysis of RMSD trajectories (Figure 8) it was observed 

that average RMSD value of NSC10716 was found to be higher compared to the others. It 

was observed that compounds screened from IBS database achieved lower RMSD values 

compared to the most active compound (D5) of the dataset. Further it can be noticed that 

RMSD of STOCK1N01341 and STOCK1N05628 fluctuated initially but both achieved 

stability with new confirmations after about 7ns at around 0.25nm. The complex with D5 also 

attained stability after approximate 9ns of time span. In the case of the complex of protein 

with NSC10716, it was found that after up to about 3ns the RMSD value increases after it has 

attained stability, but at around 9.5ns the value increases which explains the instability of the 

complex. Average RMSF of complexes with D5, NSC10716, STOCK1N01341 and 

STOCK1N05628 were found to be 0.380, 0.235, 0.295 and 0.360 nm respectively, while 

differences between maximum and minimum RMSF were perceived as 0.331, 0.189, 0.300 

and 0.313 nm correspondingly. The RMSF trajectories (Figure 8) revealed that backbone of 

the all complexes fluctuated more around amino acid Pro85 to Thr95, Leu140 to Trp146 and 

Gln160 to Lys165. For complexes with STOCK1N05628 and NSC10716 respectively 

RMSF fluctuation was found more around Pro155 and Ala175. In order to correlate 
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conformational variations of the protein with respect to the protein’s initial structure Rg was 

recorded from all the complexes.  

 

The trajectories of the Rg is depicted in Figure 9. The trajectories explained that complexes 

with both STOCK1N01341 and STOCK1N05628 achieved almost similar Rg, while in case 

of complex with D5, Rg is reduced up to 6ns and increases afterwards up to the mark of the 

complex with STOCK1N01341. It was also noticed that in the complex with NSC10716 the 

Rg value decreases and after 10ns of time it is almost unchanged. The above findings of MD 

simulation clearly explained that the complex with both STOCK1N01341 and 

STOCK1N05628 achieved stable conformation at low RMSD while complex with D5 

reached stability at higher RMSD value. Moreover the complex with NSC10716 failed to 

show stability up to 10ns of time span. It was observed that both RMSD and RMSF analysis 

successfully correlate with findings of the molecular docking study. High Rg value of both 

complexes with STOCK1N01341 and STOCK1N05628 indicates the accessiblity of the 

ligand to receptor cavity by opening of the binding pocket of the protein molecule. The lower 

Rg value of the complex with NSC10716 indicates that there was no change of compactness 

of the protein molecule.  

 
 
Comparison of drug-likeness with FDA approved DNA GyrB inhibitors 

A few standard DNA Gyrase inhibitors approved by the FDA including Bedaquiline, 

Moxifloxacin and Novobiocin were considered for a comparison of the drug-likeness of 

screened compounds from databases. Different drug-like properties of FDA-approved and 

final screened compounds were calculated and given in Table 4. Parameters are included as 

dock score, estimated activity, fit value, hydrophobicity, molecular weight, violation of 

Lipinski’s rule of five, molecular volume, molecular refractivity, number of H-bonds and 

number of bump interactions. 

Analysis of different drug-like properties (Table 4) revealed that with the exception of 

Bedaquiline all molecules docked inside the receptor cavity of the DNA GyrB. The dock 

score of Novobiocin was found to be highest (100.694) whereas dock score of screened 

compounds were recorded higher than Moxifloxacin and D5.  The inhibitory activity and fit 

value were calculated by fitting compounds on the pharmacophore model. Both estimated 

activity and fit value explained that all three screened compounds may have more potential 

than Bedaquiline, Moxifloxacin and D5 as promising DNA GyrB inhibitors. Novobiocine, 
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Bedaquiline and D5 also violated ROF 3, 2 and 2 rules respectively whilst final screened 

compounds satisfied all the rules. The molecular docking study explained that NSC10716, 

STOCK1N01341 and STOCK1N05628 interacted with a greater number of hydrogen bonds 

and bump interactions. The molecular weight, molecular volume and molecular refractivity 

were also recorded and listed in Table 4. The above comparison results revealed that 

NSC10716, STOCK1N01341 and STOCK1N05628 may be promising DNA GyrB 

inhibitors for therapeutic application in TB.  

 

Conclusions 

A chemical feature-based pharmacophore model was developed from a set of DNA GyrB 

inhibitors to explore the structural and orientational factors important for potential inhibition 

of DNA GyrB. Among the several generated pharmacophore models from a set of 30 training 

set molecules, the best ten hypotheses were selected for further evaluation. Hypotheses were 

internally and externally validated using R, Q2, se, rm
2, Rpred

2, sp, rm(test)
2, ∆rm(test)

2, Fischer’s 

randomization and decoy set. The selected model explained that two of each of hydrogen 

bond acceptors and hydrophobic regions were crucial for inhibitory activity. The best 

hypothesis was used for virtual screening of NCI and IBS databases to retrieve promising 

DNA GyrB inhibitors. The initial 1191 hits from both databases were passed through a 

number of criteria and finally one from NCI (NSC10716) and two from IBS database 

(STOCK1N01341 and STOCK1N05628) were found to be promising for inhibition of DNA 

GyrB. The final selected three molecules with the most active molecule of the dataset were 

subjected to molecular docking study to explore binding interactions in the receptor cavity of 

the protein. Molecular docking study revealed that screened compounds were able to form a 

number of binding interactions with the catalytic amino residues of DNA GyrB. Furthermore, 

the complex between DNA GyrB and screened compounds along with most active compound 

of the dataset were subjected to molecular dynamics simulation study. RMSD, RMSF and Rg 

values from MD simulation study explained that both screened compounds from the IBS 

database might be promising inhibitors but NSC10716 requires some modification to achieve 

the goal. Finally it can be concluded that the final screened compounds might be promising 

lead candidates for the treatment of TB but further confirmation will require experimental 

validation, in vitro. 
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Figure 1: 2D chemical structures of the training set compounds and the inhibitory activity 
values (pIC50) are given in the parentheses. (pIC50 = log[(1/IC50)x1000]). 

 

Figure 2: a) Mapped pharmacophore features (Hypo 1) with most active compound; b) Inter-

feature distances of Hypo 1  

Figure 3: Observed and predicted inhibitory activity of DNA GyrB inhibitors as per Hypo 1. 

Figure 4: Comparison of total costs of best model (Hypo 1) and 19 random hypotheses 
generated in the Fischer’s randomization test. 
 

Figure 5: ROC curve for pharmacophore model derived from true positive rate of actives vs. 

false positive rate of inactive compounds. 

Figure 6: Screened promising DNA GyrB inhibitors from NCI (NSC10716) and IBS 
(STOCK1N01341 and STOCK1N05628) databases. 
 
Figure 7: Binding modes of the most active molecules of the dataset and final screened 
compounds from databases. 
 
Figure 8: Plot of RMSD vs. simulation time (left) and RMSF vs. residue number (right). 

 
Figure 9: Radius of gyration of Cα atoms of DNA GyrB over the simulation time 
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Figure 1: 2D chemical structures of the training set compounds and the inhibitory activity values (pIC50) are 
given in the parentheses. (pIC50 = log[(1/IC50)x1000]).  
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Figure 2: a) Mapped pharmacophore features (Hypo 1) with most active compound; b) Inter-feature 
distances of Hypo 1  
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Figure 3: Observed and predicted inhibitory activity of DNA GyrB inhibitors as per Hypo 1.  
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Figure 4: Comparison of total costs of best model (Hypo 1) and 19 random hypotheses generated in the 
Fischer’s randomization test.  
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Figure 5: ROC curve for pharmacophore model derived from true positive rate of actives vs. false positive 
rate of inactive compounds.  
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Figure 6: Screened promising DNA GyrB inhibitors from NCI (NSC10716) and IBS (STOCK1N01341 and 
STOCK1N05628) databases.  
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Figure 7: Binding modes of the most active molecules of the dataset and final screened compounds from 
databases.  
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80x55mm (300 x 300 DPI)  

 

 

Page 35 of 37 Chemical Biology & Drug Design



  

 

 

Figure 8: Plot of RMSD vs. simulation time (left) and RMSF vs. residue number (right).  
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Figure 9: Radius of gyration of Cα atoms of DNA GyrB over the simulation time.  
Figure 9  
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