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Abstract
Control parameter studies assist practitioners to select optimization algorithm parame-
ter values that are appropriate for the problem at hand. Parameter values are well suited
to a problem if they result in a search that is effective given that problem’s objective
function(s), constraints, and termination criteria. Given these considerations a many-
objective tuning algorithm named MOTA is presented. MOTA is specialized for tuning
a stochastic optimization algorithm according to multiple performance measures, each
over a range of objective function evaluation budgets. MOTA’s specialization con-
sists of four aspects: (1) a tuning problem formulation that consists of both a speed
objective and a speed decision variable; (2) a control parameter tuple assessment pro-
cedure that utilizes information from a single assessment run’s history to gauge that
tuple’s performance at multiple evaluation budgets; (3) a preemptively terminating
resampling strategy for handling the noise present when tuning stochastic algorithms;
and (4) the use of bi-objective decomposition to assist in many-objective optimiza-
tion. MOTA combines these aspects together with differential evolution operators to
search for effective control parameter values. Numerical experiments consisting of
tuning NSGA-II and MOEA/D demonstrate that MOTA is effective at many-objective
tuning.

Keywords
Tuning, multiobjective optimization, many-objective optimization, objective function
evaluation budgets.

1 Introduction

The performance of an optimization algorithm differs depending on the control pa-
rameter values (CPVs) specified by the practitioner. For this reason control parameter
studies are often conducted on well-understood testing problems, to better understand
the effects of different CPVs on an algorithm’s search behavior. Two important consid-
erations when performing control parameter studies are sensitivity to characteristics of
the optimization problem, and sensitivity to the termination criteria used. The charac-
teristics of the optimization problem, such as the objective function(s), the constraints
imposed, and the initialization conditions, need to be taken into consideration when
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selecting CPVs, since different CPV tuples are better suited to certain characteristics than
others. In particular, the search mechanics of an algorithm, which are controlled by the
CPVs, can be beneficial or detrimental depending on the problem at hand (Wolpert
and Macready, 1997). Similarly, CPV tuples well suited to certain termination criteria
perform poorly for others; take, for example, the sensitivity of CPV performance to
objective function evaluation (OFE) budgets (Dymond et al., 2013).

To aid control parameter studies, a new evolutionary algorithm named MOTA
(many-objective tuning algorithm) is proposed. MOTA aims to efficiently tune an opti-
mization algorithm according to multiple performance measures over a range of OFE
budgets. Even though no such algorithm has been proposed before, tuning an optimiza-
tion algorithm to multiple performance measures for multiple OFE budgets could be
achieved by using existing tuning algorithms. Specifically, existing tuning algorithms
can be used to solve multiple subproblems, where each subproblem is focused on a
different performance measure preference articulation. However, segregating a multi-
objective problem in this manner is wasteful, since no information is shared between
the subproblems. Consider two subproblems, each focused on tuning an algorithm to
the same problem but at different OFE budgets. Or consider the case where common
CPV trends exist between these subproblems, such as a larger optimal population size
as the OFE budget increases. For these scenarios, information flow between subprob-
lems should be beneficial to the tuning process. MOTA overcomes these segregation
limitations through the use of multiobjective optimization.

The design of MOTA is motivated by the in-depth control parameter studies a
many-objective tuning algorithm would allow (Deb and Srinivasan, 2006). Consider
studies investigating robust or generalist CPV tuples that perform well over numer-
ous problems (Smit and Eiben, 2010b; Eiben and Smit, 2011). Multiobjective tuning
can efficiently search for these robust CPV tuples by solving a tuning problem with
an objective corresponding to each problem that the robust CPVs are required to per-
form well on. After tuning is completed, the generalist CPV tuples can be found by
examining the CPVs tuples found during the multiobjective optimization, each of
which is optimal for a different trade-off compromise among the tuning objectives.
Furthermore, common practice when assessing a multiobjective algorithm’s perfor-
mance is to make use of a series of unary performance indicators (Zitzler et al., 2003),
each of which measures a different aspect of the solution quality. As such, tuning ac-
cording to multiple performance indicators would allow multiobjective algorithms to
be tuned more holistically compared to tuning them according to one performance
metric only. Moreover, even if an optimization algorithm is to be tuned to multi-
ple problems separately to determine CPVs well suited to individual problems only,
tuning an algorithm to all problems congruently may result in a higher efficiency
compared to handling each problem in isolation, since common CPV trends may be
present.

The outline of this article is as follows. Related work and MOTA’s contribution
are discussed in Section 2. The MOTA algorithm is described in Section 3. Thereafter,
Section 4 presents the numerical setup used to assess MOTA’s performance, and Section
5 gives the results from those numerical experiments.

2 Related Work

The proposed tuning algorithm is related to the fields of control parameter tuning and
many-objective optimization.
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2.1 Control Parameter Tuning

Control parameter tuning entails adjusting an algorithm’s CPVs in order to improve
performance (Smit and Eiben, 2009). Accordingly, the control parameters adjusted could
refer to real-valued control parameters such as crossover probability, or option-based
control parameters such as the crossover method used, or both. The MOTA algorithm is
designed for real-valued control parameter tuning. Tuning is done according to a utility
metric, which measures the performance of the algorithm being tuned as a function of
the CPV tuple being assessed. Traditional examples of utility measures are the objective
function value achieved on a given problem for a specified OFE budget, and the number
of OFEs required to reach a specified solution accuracy on a given problem. Tuning an
algorithm entails solving an optimization problem, where the decision variables are the
CPVs, and the objective function consists of the utility metric.

Control parameter tuning differs from parameter control (Eiben et al., 1999). For
parameter control an algorithm’s CPVs are varied throughout the optimization run ac-
cording to a predefined strategy, whereas control parameter tuning aims to determine
CPVs that remain constant throughout the course of an optimization run. Adaptive
algorithms are built on the principle of parameter control, with adaptive algorithms
adjusting their CPVs throughout the course of an optimization run in order to tune
themselves to the problem being optimized. Superficially adaptive algorithms there-
fore eliminate the need for control parameter tuning, since CPVs are tuned online by
using feedback from the optimization process itself. However, in reality, the practi-
tioner’s task simply changes from selecting approximate CPVs to selecting appropri-
ate parameter control strategies for the problem at hand (Pedersen, 2010). Moreover,
since parameter control strategies can be expressed parametrically, the task of selecting
appropriate control strategies can be expressed as a control parameter tuning problem
itself.

Numerous applications of control parameter tuning have been conducted. Initially,
Grefenstette (1986) used a genetic algorithm to tune another genetic algorithm to five
testing problems. François and Lavergne (2001) proposed the use of statistical methods
to model the relation between an algorithm’s CPVs and the resulting performance, with
the aim of helping practitioners select CPVs for genetic algorithms. Bartz-Beielstein
et al. (2005) presented the sequential parameter optimization (SPO) tuning framework,
which has been used to tune numerous algorithms such as particle swarm optimization
(PSO) algorithms (Eberhart and Kennedy, 1995). Similarly, Nannen and Eiben (2007)
proposed the relevance estimation and value calibration (REVAC) tuning algorithm,
and demonstrated its effectiveness by tuning the mutation and crossover rates of genetic
algorithms. Hutter et al. (2009) presented the ParamILS framework and applied it to
tune the CPLEX mixed-integer programming solver. Smit and Eiben (2010a) improved
the performance of the winning algorithm from the CEC 2005 competition (Suganthan
et al., 2005) using control parameter tuning. There have also been applications of control
parameter tuning to investigate the speed versus accuracy trade-off present in many
evolutionary algorithms using multiobjective optimization (Dréo, 2008, 2009; Ugolotti
and Cagnoni, 2014).

Substantial work has gone into tuning stochastic algorithms. When tuning stochas-
tic algorithms, the utility resulting from a CPV tuple forms a probabilistic distribution.
Consequently, stochastic algorithms are typically tuned to the mean of the utility dis-
tribution. However, since analytical expressions for the utility distribution mean are
normally unavailable or too difficult to calculate, numerical techniques are normally
used to determine which CPV tuple results in the best mean utility. The resampling
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strategy (Beyer, 2000) is the easiest of these numerical techniques to implement, and
entails running the algorithm being tuned multiple times for each CPV tuple assessed,
to approximate the mean of the CPV tuple’s utility distribution. Although effective,
the resampling strategy is prohibitively expensive, since the computational cost of as-
sessing each CPV tuple is multiplied by the resampling sample size, a sample size
that needs to be large to accurately approximate the mean of a CPV tuple’s utility dis-
tribution. Pedersen (2010) showed that the computational cost of resampling can be
drastically reduced through the use of preemptive termination, whereby the sampling
gathering process for a CPV tuple is interrupted if it is already clear that the CPV tuple
being assessed is worse than CPV tuples previously evaluated. The F-race algorithm
proposed by Balaprakash et al. (2007) makes use of such a preemptively terminating
resampling technique. Starting with a large number of candidate CPV tuples, F-race
generates one additional sample run for each CPV tuple still in the race. After each
iteration of sample generation is completed, a Friedman statistical test is conducted on
the sampled utility values. CPV tuples found to be inferior according to the Friedman
test given a specified significance level, are then eliminated from the race. This process
of generating additional samples and elimination continues until only one CPV tuple
remains in the race. Since many CPV tuples are eliminated early in the race, a large
reduction of computational expense is achieved.

Control parameter tuning is not intended to be applied directly to application prob-
lems, which typically consist of objective or constraint functions that are computation-
ally expensive to evaluate. Rather, control parameter tuning is intended to be applied
to computationally cheap testing problems to perform control parameter studies. The
extent to which the results of the control parameter studies can be effectively applied to
an unseen application problem depends upon various factors. Among these factors are
similarity of the tuning problem’s objective and constraints to those of the application
problem as well as the similarity in termination criteria used. Given these consider-
ations, the applicability of tuning results generated using a single-objective utility is
limited. Tuning according to multiple criteria via multiobjective optimization is there-
fore preferred.

Currently multiobjective tuning algorithms can be split into two groups, namely,
tuning to multiple problems each for a single termination criterion, and tuning algo-
rithms designed to tune to a single problem under multiple termination criteria. Smit
et al. (2010) proposed the M-FETA algorithm, which is designed for tuning an opti-
mization algorithm to multiple problems, each using one termination criterion. Branke
and Elomari (2012) developed the Flexible Budget Method for tuning to a single prob-
lem under multiple OFE budgets. For most tuning setups when approximating the
performance of a CPV tuple after a specified OFE budget, the algorithm being tuned
needs to be run from initialization to that specified OFE budget. The Flexible Budget
Method uses this history information and other heuristics to tune under multiple OFE
budgets. In particular, each CPV tuple being assessed is run up to the maximum OFE
budget of interest. The CPV tuple’s run history is then used to gauge performance
at each OFE budget being tuned under. Dymond et al. (2015) proposed the tMOPSO
algorithm for tuning a single problem under multiple OFE budgets. tMOPSO tunes an
optimization algorithm according to a bi-objective utility measure consisting of the best
objective function value found, and the number of OFEs used to generate that objec-
tive function value. Solving a tuning problem formulated using this bi-objective utility
measure allows tMOPSO to determine multiple CPV tuples, each of which is optimal
for a different OFE budget. Similarly to the Flexible Budget Method, tMOPSO uses the
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history information from the CPV assessment calculations to enhance efficiency. Addi-
tionally, tMOPSO uses Mann-Whitney U tests (MWUTs; Conover, 1999) specialized for
its bi-objective formulation to efficiently perform preemptively terminating resampling.

Here, we propose an algorithm named MOTA, for tuning an algorithm to multiple
performance measures under multiple OFE budgets. Such a tuning problem has a utility
measure consisting of at least three objectives. When the utility measure consists of four
or more objectives, then MOTA needs to solve a many-objective optimization problem.

2.2 Many-Objective Optimization

Multiobjective optimization entails searching for the optimal trade-off compromises for
a problem consisting of multiple conflicting objectives. In the context of real-valued
optimization problems, each objective f maps a point in the searched decision vector
space x to a real value, f : �nx �→ �, where nx is the dimensionality of the search space.
For the case when the multiobjective optimization problem has constraints, the valid
search space is typically expressed through ng inequality functions and nh equality
functions. Formally, a constrained real-valued multiobjective minimization problem
(Engelbrecht, 2007) is defined as

minimize F(x) =

⎡
⎢⎢⎣

f1(x)
f2(x)
· · ·

fnf
(x)

⎤
⎥⎥⎦ (1)

subject to gi(x) ≤ 0, i = 1, . . . , ng (2)

hj (x) = 0, j = 1, . . . , nh, (3)

where F is the multiobjective function, nf is the number of objectives comprising
F, g1, g2, . . . , gng

are the inequality constraints, and h1, h2, . . . , hnh
are the equality

constraints.
The principle of Pareto dominance is commonly used to identify which x are optimal

for different trade-off compromises. A decision vector x1 Pareto dominates another
decision vector x2 (x1 ≺ x2), if x1 is better or equal than x2 in all objectives, and if x1
is better than x2 for at least one objective. For minimization problems this implies that
x1 ≺ x2 when

fi(x1) ≤ fi(x2),∀ i ∈ 1, 2, . . . , nf , (4)

and
∃i ∈ 1, 2, . . . , nf : fi(x1) < fi(x2). (5)

If neither x1 ≺ x2 nor x2 ≺ x1, then x1 and x2 are relatively nondominated. A decision
vector is nondominated if no decision vector exists in the search space that Pareto
dominates it.

The set of all nondominated decision vectors for a multiobjective optimization
problem is referred to as the Pareto-optimal set (PS), where the PS is often of infi-
nite size. The set of objective function values corresponding to the PS is referred to
as the Pareto-optimal front (PF). Two special points in the objective space that are
commonly used by multiobjective optimization algorithms are the utopia point Fu

and the nadir point Fn, where for minimization problems Fu
i = min{Fi ∀ F ∈ PF} and

Fn
i = max{Fi ∀ F ∈ PF}. When the optimization problem consists of two or three objec-

tives, multiobjective evolutionary algorithms typically aim to determine a finite evenly
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spaced set of nondominated decision vectors to accurately approximate the entire PF.
However, approximating the entire PF for many-objective optimization is intractable.

Approximating the entire PF for many-objective optimization problems is problem-
atic for two reasons. First, the computational overhead of maintaining the PF approx-
imations (Mostaghim and Teich, 2005) grows linearly as the size of the approximation
increases. Consequently, the computational overhead requirements are too high to ap-
proximate the entire PF of many-objective optimization, since the size of the set required
to represent the entire PF grows exponentially with the number of objectives. Second,
even if a huge Pareto-optimal front approximation (PFA) could be maintained effi-
ciently, the limiting factor would be the OFE budget of the multiobjective optimization
algorithm. Suppose that an ultimate multiobjective optimization algorithm existed that
with every new decision vector, evaluation was able to find a new nondominated deci-
sion vector. Even this ultimate algorithm’s PFA would be limited to the size of the OFE
budget assigned to it.

Many-objective optimization algorithms therefore do not try to approximate the
entire PF but rather make use of other criteria in addition to Pareto dominance to
guide the optimization process. A commonly used approach to differentiate between
Pareto nondominated decision vectors during the course of an optimization run is
to make use of performance indicators (Zitzler and Künzli, 2004). An example is the
SMS-EMOA algorithm proposed by Beume et al. (2007), which uses the hypervolume
(HV) performance indicator in conjunction with Pareto dominance in order to optimize
a multiobjective problem. Alternatively, Di Pierro et al. (2007) proposed a preference-
ordering strategy that considers a decision vector’s dominance status according to
various subsets of objectives, thereby allowing for further differentiation. Then there
are decomposition-based approaches (Zhang and Li, 2007), for which the multiobjective
problem is divided into subproblems that are all solved simultaneously. All these many-
objective approaches ultimately require some a priori input from the practitioner as to
which sections of the PF or preference articulations are more important than others.
The indicator-based approaches favor decision vectors aligned with indicators chosen,
whereas preference-ordering strategies favor decisions close to the center or the edges
of the PF depending on the parameters specified, and decomposition-based approaches
focus on areas of the PF specified in the subproblem construction. This a priori input is
undesirable, as it breaks from the clean a priori free approach followed when three or
fewer objectives are optimized. However, because of the intractability of approximating
the entire PF for many-objective optimization problems, some a priori input is required.

Objective reduction approaches can in certain scenarios assist with many-objective
optimization. For certain applications it may occur that not all the objectives are in
conflict, in which case some objectives can be disregarded without changing the PS.
For such scenarios, objective reduction approaches are able to identify and remove
redundant objectives to make the optimization problem easier to solve. Brockhoff and
Zitzler (2009) covered both the theoretical aspects of objective reduction and present
ε-based objective reduction approaches. Saxena et al. (2013) presented a framework
based on principal component analysis and maximum variance unfolding for objective
reduction. An aspect of objective reduction approaches that can prove useful even
when applied to nonredundant problems is the ability of these approaches to identify
objectives that are only slightly in conflict. These slightly conflicting objectives can be
disregarded without major changes to the PS. Objective reduction is not incorporated
into the proposed MOTA algorithm, as MOTA is designed for tuning problems where
all the objectives are in conflict.
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3 MOTA Algorithm

The many-objective tuning algorithm (MOTA) is specialized for tuning stochastic algo-
rithms to multiple criteria under multiple OFE budgets. MOTA’s specialization consists
of four parts:

• A tuning problem formulation that has both a speed objective and a speed
decision variable (Section 3.1)

• A CPV tuple assessment procedure that uses the history information from a
CPV tuple assessment run in order to gauge performance simultaneously at
multiple OFE budgets (Section 3.2)

• A bi-objective decomposition approach to assist in the many-objective opti-
mization (Section 3.3)

• A preemptively terminating resampling strategy to handle the noise resulting
from tuning stochastic algorithms (Section 3.4)

The discussion of these four aspects of MOTA’s specialization is followed by an algo-
rithm overview in Section 3.5.

3.1 Tuning Problem Formulation

The tuning problem formulation solved by MOTA makes use of a decision vector
consisting of control parameter values v1, v2, . . . , vn together with an auxiliary variable
βa , where βa specifies at which OFE budget the v1, v2, . . . , vn CPV tuple is to be assessed.
MOTA’s tuning problem formulation uses a multiobjective utility measure to tune an
optimization algorithm to multiple utility indicators for multiple OFE budgets. The
multiobjective utility measure u, which MOTA minimizes, is defined as

u =

⎡
⎢⎢⎢⎢⎣

u1
u2
· · ·
unu

βa

⎤
⎥⎥⎥⎥⎦ , (6)

where u1, u2, . . . , unu
are utility indicator values for which lower values indicate better

performance, and βa is the OFE budget used when determining those u1, u2, . . . , unu

values. Since lower utility indicator values indicate better performance, and a greater
number of OFEs allows for lower u1, u2, . . . , unu

values, the βa objective is in conflict
with the u1, u2, . . . , unu

objectives. Formulating the tuning problem in this manner al-
lows MOTA to directly incorporate sensitivity to OFE budgets into the multiobjective
problem it solves.

The choice of utility indicators for u depends on the control parameter study being
performed. When tuning a single-objective algorithm to multiple problems, a sensible
choice for the utility indicators would be the lowest solution error achieved for each
of those problems. Alternatively, when tuning a multiobjective optimization algorithm,
a utility indicator for each unary performance indicator of interest could be used. The
computational cost of evaluating the utility indicators should be accounted for by
tuning practitioners when specifying how extensively the history information from a
CPV tuple assessment run should be used.
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3.2 Utilizing the History Information from a CPV Tuple Assessment Run

Analytical expressions for the utility indicator values as a function of the specified CPV
tuple and OFE budget are rarely available. As such, common practice entails numerical
calculation of utility indicator values by running the algorithm being tuned from initial-
ization to the assessment OFE budget, using the CPV tuple being assessed. Calculating
a utility indicator value in this manner therefore also allows for determining utility in-
dicator values of the CPV tuple being assessed for OFEs lower than the assessment OFE
budget without performing additional sample runs. Consider calculating an arbitrary
utility indicator’s (ui’s) values using a sampling run, for an evolutionary algorithm with
population size of N. If the sample run is set up to record the best solution found after
each iteration (i.e., every N OFEs), utility values can then be determined for each OFE
usage all the way up to the assessed OFE budget, βa . Expressed symbolically, one CPV
tuple sampling run can be used to generate the following:

ui(N ) → ui(2N ) → · · · → ui(βa), (7)

where ui(j ) is the utility indicator value after j OFEs. Another factor to consider when
performing a sampling run to assess a CPV tuple’s utility is that utility values at OFE
budgets higher than βa can be determined at a reduced cost compared to calculating
them from scratch.

Because of computational overhead considerations and storage requirements, tun-
ing practitioners are normally not interested in determining effective CPV tuples for
every OFE budget less than the maximum OFE budget of interest, βmax. Normally, a tun-
ing practitioner is only interested in a subset of OFE budgets ∈ {1, 2, . . . , βmax}, such as
OFE budgets spaced logarithmically between the minimum OFE budget of interest and
βmax. Given this consideration, MOTA calculates the following utility indicator values

ui(β) ∀β ∈ B : β ≤ β+, (8)

where B is the target OFE budgets selected by the tuning practitioner, and the overshoot
budget β+ specifies the maximum OFE budget for which the utility indicator values
are to be calculated from the sampling runs. For MOTA, β+ is calculated according to
a user-specified function of βa , for example, β+ = 1.6βa + 100. The optimal function
for determining β+ is expected to be problem-specific but is also not expected to dras-
tically alter performance because of the noise-handling strategy used by MOTA (see
Section 3.4).

By making use of the additional utility indicator values from a CPV tuple assessment
sampling run, MOTA breaks from traditional multiobjective optimization where one
decision vector evaluation results in one objective vector. Instead, one decision vector
evaluation by MOTA results in multiple objective vectors. In particular, each CPV tuple
assessment results in a multidimensional line of objective function values, where the
OFE budget objective can be considered as the independent variable. Given this one-
to-many relation, a 2D decomposition strategy is used by MOTA.

3.3 Bi-objective Decomposition

Solving a problem via decomposition entails expressing the original problem as a se-
ries of subproblems that when solved give the solution to the original problem. In the
context of multiobjective optimization, a variety of approaches exist for decomposing a
multiobjective problem into single-objective subproblems (Zhang and Li, 2007). Decom-
position, however, need not be limited to breaking a problem down into single-objective
subproblems. Zhang and Li (2007) argued that it is beneficial to decompose problems
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into single-objective subproblems, since a significant amount of work has been done in
evolutionary computation on single-objective optimization and therefore decomposi-
tion into single-objective subproblems is favorable, since it allows for all this previous
work to be utilized. Following this same argument, it is viable to decompose a problem
into bi- or tri-objective subproblems because a substantial amount of work and success
has been achieved when optimizing problems with only two or three objectives (Deb
et al., 2002; Zitzler et al., 2001).

In the case of MOTA, bi-objective decomposition is used, as it is well suited to
processing the additional utility indicator values generated from a CPV tuple’s sampling
run. The generalized objective function for the bi-objective decompositions that are to be
minimized is composed of one objective consisting of a scalarization of the u1, u2, . . . , unu

utility indicator values and the second objective, the OFE budget used to calculate
those utility indicator values. Two commonly used scalarization approaches are the
aggregated or weighted sum approach and the Tchebycheff approach (Zhang and Li,
2007). Both of these approaches make use of a weights vector w in the scalarization
process. Specifically, the weighted sum scalarized value ûw is determined as

ûw =
nu∑
i=1

wiui, (9)

and the Tchebycheff scalarized value ûT for minimization problems is determined as

ûT = max{wi(ui − zi) ∀ i ∈ 1, 2, . . . , nu}, (10)

where the zi values correspond to a chosen reference point. In order to make the process
of selecting w easier for tuning practitioners, MOTA by default normalizes the objec-
tive values passed to the selected scalarization function. Specifically, the ui values are
normalized between the utopia and nadir points of MOTA’s current PFA. When the
objective values are normalized, zero values are used for all the zi reference values in
Eq. (10).

The choice of a scalarization approach for the utility indicator values should be
made according to the PF characteristics and according to preference articulations of
interest. The Tchebycheff approach is able to handle both convex and concave PFs, while
the weighted sum approach can only handle concave PFs, as illustrated in Figure 1.
However, the Tchebycheff approach is more prone than the weighted sum approach to
being controlled by a single objective only. If the user selects the Tchebycheff approach
for the j’th subproblem, the corresponding bi-objective minimization function that needs
to be minimized u2D

j is defined as

u2D
j =

[
max{wi ũi ∀ i ∈ (1, 2, . . . , nu)}

βa

]
, (11)

where ũi are the normalized utility indicator values.
Another key aspect to decomposition-based approaches is neighborhoods. Neigh-

borhoods are vital, since they are used to share information between subproblems,
thereby differentiating decomposition-based approaches from approaches where sub-
problems are optimized in isolation from each other. Here, neighborhoods are split into
two categories:

• Candidate generation neighborhoods. When generating a candidate decision
vector for a target subproblem, this neighborhood specifies the additional
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Figure 1: Illustration of the weighted sum and the Tchebycheff scalarization approaches.
Contour lines of equal value according to the scalarization approach are shown for the
values c1, c2, and c3.

subproblems from which information is used for operations such as crossover
and mutation.

• Update neighborhoods. After evaluating a decision vector generated for a
target subproblem, the resulting objective function values are also used to
update the solutions of the subproblems in this neighborhood.

MOTA allows for the use of different neighborhoods for the purposes of generating can-
didate decision vectors and updating subproblem solutions. Having different neighbor-
hoods for these two operations allows for a flexibility particularly well suited for tuning
optimization algorithms. Consider tuning a single-objective optimization algorithm to
multiple problems over multiple OFE budgets, with the focus on determining specialist
CPVs well suited to each problem on its own. A sensible neighborhood configuration
for this tuning problem would be to have a large neighborhood for candidate genera-
tion, together with zero-sized update neighborhoods. The large candidate generation
neighborhood should be beneficial, since it allows for the CPV candidate generation
process to exploit trends observed from other subproblems, while the zero-sized update
neighborhoods save computational resources, since only one of nu objectives needs to
be evaluated.

3.4 Handling the Noise Resulting from Tuning Stochastic Algorithms

When tuning optimization algorithms with stochastic elements, standard utility in-
dicator values become probabilistic distributions. A noise-handling strategy aims to
approximate a probabilistic distribution when an analytical expression is unavailable,
which is typically the case. Noise handling in the context of parameter tuning under
multiple OFE budgets is complicated by varying noise distribution characteristics de-
pending on the location in the objective space (Dymond et al., 2015). This variance rules
out many specialized noise (Bui et al., 2009) or uncertainty (Xi et al., 2012) handling
strategies, which assume a uniform uncertainty distribution throughout the objective
space.
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Given the varying uncertainty distributions throughout the objective space, MOTA
uses a resampling approach (Beyer, 2000). Resampling-based approaches entail tuning
algorithms according to the approximated mean of the utility indicator’s probabilistic
distribution. Specifically, the resampling technique consists of performing multiple in-
dependent runs for the CPV tuple being assessed, and then using the resulting sample to
approximate the mean utility indicator value. Based on tMOPSO (Dymond et al., 2015),
MOTA uses a preemptively terminating resampling strategy whereby the sampling
gathering processes is interrupted if Mann-Whitney U tests (MWUTs; Conover, 1999)
indicate that the decision vector being assessed is unlikely to result in an improvement
on the current approximation of the PF.

MOTA’s noise-handling procedure starts with a group of decision vectors X, where
each x ∈ X has an associated CPV tuple, assessment OFE budget, and target subproblem.
Initially a small number of samples are generated for each x, for the OFE budgets xB .
As outlined in Section 3.2, xB is controlled by the user-specified target OFE budgets B
and the overshoot function β+ as

xB = {β ∀β ∈ B : β ≤ β+}. (12)

Resampling interruption checks are then conducted against x’s subproblem and x’s
update neighborhood. Specifically, if j is the subproblem index, and Tu is the set of
indexes of the subproblems in x’s neighborhood together with j, then the approximation
of the j’th subproblem’s bi-objective decomposition u′2D

j is discarded if

Pk ≤α u′2D
j ∀ k ∈ Tu, (13)

where ≤α denotes “likely to be dominated” given the significance level of α, and Pk is
the k’th subproblem’s PFA.

Depending on the computational cost of calculating the utility indicators compared
to performing a CPV sampling run, two different options are available for conducting
Pareto nondominance likelihood checks:

• Removing the largest OFE budget in xB until an OFE budget is reached for
which x is not likely to be dominated by all Pk for k ∈ Tu

• Checking all OFE budgets in xB , and eliminating the OFE budgets for which
the u′2D

j decompositions are likely to be dominated by Pk for all k ∈ Tu

For the case where a cheap utility indicator value is used, such as the objective solution
error achieved by a single-objective algorithm, the option of reducing the maximum
OFE is sensible. Alternatively, when an expensive utility indicator such as HV is used,
then the option of checking all the OFE budgets is more appropriate.

Resampling interruption checks continue until either xB is empty or the desired
resampling size ns is reached. If the desired resampling size ns is reached, the approxi-
mated utility values are used to update the Tu subproblems’ PFAs. MOTA users control
the aggressiveness of the resampling interruption through two control parameters,
namely, the number of sample increments between resampling interruption checks,
�ns

, and the interruption significance level used, α. The bi-objective nature of the sub-
problems is exploited in order to efficiently perform PFA dominance and dominance
likelihood checks, as in Dymond et al. (2015). A flow chart for the CPV tuple assessment
procedure for the check all noise-handling approach is shown in Figure 2.
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Figure 2: Flow chart of MOTA’s CPV tuple assessment procedure when computationally
expensive utility indicator values are calculated.

3.5 Algorithm Overview

MOTA tunes an optimization algorithm to multiple criteria over a range of OFE bud-
gets, using the aforementioned concepts. The decision space MOTA searches is set up
according to the tuning formulation presented in Section 3.1, where each decision vector
is of the following form:

x =

⎡
⎢⎢⎢⎢⎢⎣

v1
v2
...

vn

ln βa

⎤
⎥⎥⎥⎥⎥⎦ , (14)

where v1, v2, . . . , vn are the real CPVs optimized, and βa is the OFE budget at which the
v1, v2, . . . , vn CPV tuple is to be assessed. The natural logarithm of βa is optimized in
place of βa directly, because of the logarithmic trends typically observed when tuning
under multiple OFE budgets (Dymond et al., 2015).

Tuning begins with MOTA randomly generating decision vectors throughout the
CPV decision space for each of the tuning subproblems. Each initial decision vector x0
is generated as

x0 = Il + r() ◦ (Iu − Il), (15)

where Il is the lower initialization bound, Iu is the upper initialization bound, ◦ is the
Hadamard product operator, and r() is a function returning a vector whose individual
element values are randomly generated independently of each other between 0 and
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1 with a uniform probability density. These initial decision vectors are evaluated as
outlined in the Section 3.4 to generate the initial subproblem PFAs.

After initialization, MOTA uses operators based upon differential evolution (DE;
Storn and Price, 1997) to generate new candidate decision vectors. Before explaining
the manner in which the DE operators are extended into the context of MOTA’s tuning
formulation, the traditional single-objective DE operators are described. DE has numer-
ous strategies available, such as rand/1/bin and best/1/bin. The DE rand/1/bin candidate
decision vector generation process for the i’th member of the population begins with
generating a mutant vector mi as follows:

mi = xr1 + F (xr2 − xr3 ), (16)

where xk is the decision vector of the k’th member of the population, the indexes r1, r2,
and r3 are randomly selected, and F is the user-specified scaling factor. The population
indexes r1, r2, and r3 are randomly selected, with each member from the population
having an equal likelihood of selection, subject to all the indexes being different and
none being equal to i. After mutation, crossover takes place to generate the candidate
decision vector for the i’th member of the population xc

i as follows:

xc
i,k =

{
mi,k if r() < Cr or k = kf

xi,k otherwise,
(17)

where k is the dimension index, r() is a function that returns a number randomly
between 0 and 1 with a uniform probability density, Cr is the user-specified crossover
rate, kf is the dimension that is forced to crossover, and xi is the i’th population member’s
current decision vector. Further information about DE and its strategies can be found
in Das and Suganthan (2010).

MOTA’s candidate decision vector generation process for the i’th subproblem be-
gins by randomly selecting three subproblems indexes s1, s2, and s3 for the purposes
of mutation. The pool from which s1, s2, and s3 are randomly selected with equal like-
lihood consists of the indexes of the subproblems in the i’th subproblem’s candidate
generation neighborhood, together with i’th subproblem’s index, i. Contrary to the
rand/1/bin strategy, the constraints are omitted that s1, s2, and s3 all be unique and not
equal to i. These constraints are omitted because the Pareto set of a subproblem consists
of multiple decision vectors that can be used for the generation of a mutant vector.
Three decision vectors, xs1 , xs2 , and xs3 , are then selected from the PFAs of the s1, s2,
and s3 subproblems, respectively, according to a target improvement OFE budget, βt .
βt is selected randomly from the target OFE budgets B, with each element in B having
equal likelihood of selection. xs1 is selected as the decision vector from the PFA of the
s1 subproblem that performs best for an OFE budget of βr , where βr is perturbed about
βt as follows:

ln βr = ln βt + rg() · βδ · (ln Bmax − ln Bmin), (18)

where βδ is the user-specified perturbation factor with βδ ∈ [0, 1], rg is a function that
returns a value randomly generated using a Gaussian distribution with standard de-
viation of 0.25 and a mean of 0.0, Bmin is the minimum OFE budget in B, and Bmax is
the maximum OFE budget in B. xs2 and xs3 are selected in the same manner, using the
same βt but different βr values to exploit any CPV versus OFE budget trends that may
be present. Based upon the DE best/1/bin strategy, MOTA’s mutant vector is generated
as

mi = xs1 + r() ◦ F (xs2 − xs3 ), (19)
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where the r() term is added to promote search diversity (Salehinejad et al., 2014). DE
crossover is then conducted between the resulting mutant vector and the decision vector
from the i’th subproblem, which is optimal for an OFE budget of βt , as in Eq. (17). Last,
the assessment OFE budget of the generated candidate decision vector is set to βt .

Constraint handling is achieved by regenerating candidate vectors until all con-
straints are satisfied. Although this approach is not viable for applications consisting
of computationally expensive constraints, it is acceptable for tuning applications, since
tuning constraints are usually computationally cheap, e.g., N > 5. MOTA does not en-
force or have a specialized strategy for handling bound constraints, since for many
tuning problems sensible CPV bounds are difficult to determine a priori. Addition-
ally, MOTA has an internal constraint that requires that the candidate decision vector
be different from the xi vector it is trying to improve upon. This internal constraint
is necessary for the beginning stages of MOTA’s tuning optimization, for which the
subproblem’s PFAs consist of a low number of unique decision vectors. If for a given
subproblem, candidate generation using the DE operations in Eqs. (19) and (17) fails
to satisfy the constraints 10 times in a row during a single iteration, then a randomly
generated valid decision vector is used, as outlined in Eq. (15). Once the candidate
decision vectors are generated for all the subproblems, these candidate decision vectors
are assessed to update the subproblem PFAs, as outlined in Section 3.4.

Generation of the candidate decision vectors continues until all the subproblems
become inactive. A subproblem becomes inactive when one of its termination criteria
is satisfied, signaling that no more candidate vectors should be generated for that sub-
problem. If a subproblem is inactive but is in the update neighborhood of an active
subproblem, the inactive subproblem’s PFA is still updated when the active subprob-
lem’s candidate vector is assessed. Per subproblem termination or inactivity criteria are
appealing, since they allow for greater control compared to making all subproblems
inactive at the same time. Take, for instance, allocating differing amounts of computa-
tional resources for each subproblem, or adding stagnation termination criteria whereby
a subproblem becomes inactive if no substantial improvements has been made recently.

Our implementation of MOTA is available in the optTune Python package,1 and
the pseudocode is given as Algorithm 1.

4 Numerical Setup

Numerical experiments are conducted to gauge the effectiveness of MOTA. Experiments
are chosen based upon the potential benefits of many-objective tuning, benefits that
motivated MOTA’s development. In the introduction it was proposed that a many-
objective tuning algorithm could

• be more efficient at tuning an optimization algorithm to each problem of a test
suite compared to tuning an algorithm to each problem instance in isolation;

• be better suited to determining generalist CPV tuples that perform well over
an entire problem test suite; and

• would be able to tune MOEAs more holistically by tuning them according to
multiple unary performance metrics simultaneously.

1https://pypi.python.org/pypi/optTune/
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MOTA is benchmarked with regard to the first two statements. For brevity, the tuning
of multiobjective algorithms to multiple unary performance metrics is left for future
work.

4.1 Tuning Problems Used

The tuning problems used are built around the commonly used ZDT (Zitzler et al., 2000),
DTLZ (Deb et al., 2005), and WFG (Huband et al., 2006) multiobjective test problem
suites. These test problem suites are designed to gauge an algorithm’s performance
given a range of objective function characteristics. Furthermore, the ZDT problems
are scalable in the number of decision variables, while the DTLZ and WFG problems are
scalable in both the number of decision variables and the number of objectives. Since
the numerical experiments entail tuning algorithms to these problem suites, lower-
than-normal dimensional versions of the WFG and DTLZ problems are used, to make
computational costs of the experiments more manageable. For the bi-objective ZDT
problems, algorithms are tuned to ZDT problems 1, 2, 3, 4, and 6, where the standard
setup of 30 decision variables is used for problems 1, 2, and 3, while 10 decision variables
are used for problems 4 and 6. The fifth ZDT problem is omitted because it has binary
decision variables. Regarding the WFG problems, two position decision variables, ten
distance decision variables, and two objectives are used for all the problems. For the
DTLZ problems the number of decision variables is kept at the commonly used values
of 7, 12, 12, 12, 12, 12, and 22 for problems 1 through 7, respectively, while the number
of objectives is reduced from the standard three to only two.

Selected multiobjective optimization algorithms are tuned to these problem suites,
according to inverted generational distance (IGD; Zhang et al., 2008), which is sensitive
to both the distance to and coverage of the true PF. Initially tuning according to hyper-
volume (HV; Zhang et al., 2008) was considered, but was later discarded because of the
problem-specific effort of selecting HV reference points sensitive to the performance at
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low OFE budgets. The tuning objectives are to minimize the IGD for each problem in the
test suite the algorithm is being tuned to while minimizing the OFEs used. Therefore,
tuning an algorithm to the nine WFG problems entails solving a tuning problem with
the ten objectives:

F =

⎡
⎢⎢⎢⎢⎢⎣

IGDWFG1

IGDWFG2
· · ·

IGDWFG9

βa

⎤
⎥⎥⎥⎥⎥⎦ , (20)

where IGDWFGi is the IGD achieved on the i’th WFG problem given the CPV tuples
being assessed using an OFE budget of βa . Regarding the OFE budgets that algorithms
are to be tuned under, 51 OFE budgets spaced logarithmically between 10 to 10,000 are
used.

Separate problems are constructed for each algorithm tuned in order to have a
tuning problem that entails determining specialist CPVs only, and to have a tuning
problem for determining generalist and specialist CPVs together. For each specialist
tuning problem, the bi-objective PF sections of interest correspond to each problem in
the test suite in isolation together with the OFE budget objective. For example, the WFG
specialist tuning problems have nine subproblems with the utility weight vectors of
[1, 0, . . . , 0], [0, 1, 0, . . . , 0], . . . , [0, . . . , 0, 1]. For the generalist tuning problems, addi-
tional preference articulations are added to determine CPV tuples that perform well
for all utility objectives, i.e., [1, 1, . . . , 1], and for all leave-one-out combinations, i.e.,
[0, 1, . . . , 1], [1, 0, 1, . . . , 1], . . . , [1, . . . , 1, 0]. All the generalist subproblems make use
of weighted sum scalarization in the normalized objective space for their bi-objective
decomposition. The leave-one-out preference articulations are added to enable scrutiny
of the results of the [1, 1, . . . , 1] articulation, to determine if one objective has a dispro-
portionate effect even though scalarization uses a normalized objective space.

4.2 Algorithms Tuned

The algorithms tuned to the ZDT, DTLZ, and the WFG problems are the commonly used
second version of nondominated sorting genetic algorithm (NSGA-II; Deb et al., 2002)
and the multiobjective evolutionary algorithm based on decomposition (MOEA/D;
Beume et al., 2007). The NSGA-II and MOEA/D implementations, from the jMetal soft-
ware package (Durillo and Nebro, 2011)2 are used in these experiments. Selected real
and integer CPVs are tuned for NSGA-II and MOEA/D, while option-based control
parameters are left on their jMetal defaults. For NSGA-II the tuned control parameters
are the population size N, the crossover probability cp, and the mutation probability mp.
The selection, crossover, and mutation operators are fixed to binary tournament selec-
tion, simulated binary crossover (Deb and Agrawal, 1994), and polynomial mutation,
respectively. The tuning initialization bounds for NSGA-II are N ∈ [10, 200], cp ∈ [0, 1],

2jMetal version 4.3 from http://jmetal.sourceforge.net/ is used. The default NSGA-II and MOEA/D
implementations in jMetal 4.3 handle the OFE budget termination criteria in different manners. The
NSGA-II implementation checks against the OFE budget constraint after every pair of offspring are
created, i.e., every two OFEs. In contrast the MOEA/D implementation checks against the OFE budget
constraint at the end of each iteration after all the subproblem candidates have been evaluated. The
NSGA-II implementation is modified so that the same behavior as MOEA/D is achieved, so that the
tuning results can be compared against previous studies (Dymond et al., 2013).
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and mp ∈ [0, 1]. The tuning constraints for NSGA-II are

5 ≤ N ≤ 500 (21)

0 ≤ cp ≤ 1 (22)

0 ≤ mp ≤ 1. (23)

Concerning MOEA/D, the control parameters tuned are the number of subproblems Ns,
the neighborhood size fraction Tf, the DE crossover probability Cr, and DE scaling factor
F. The neighborhood size fraction controls the size of MOEA/D subproblem neighbor-
hoods, with the neighborhood size being equal to Ns multiplied by Tf. MOEA/D’s
initialization bounds are Ns ∈ [10, 200], Tf ∈ [0, 1], Cr ∈ [0, 1], and F ∈ [0, 2]. The tun-
ing constraints of MOEA/D’s are

5 ≤ Ns ≤ 500 (24)

0 ≤ Tf ≤ 1 (25)

2 ≤ Ns Tf (26)

0 ≤ Cr ≤ 1 (27)

0 ≤ F ≤ 2. (28)

For pragmatic reasons both NSGA-II’s N and MOEA/D’s Ns are restricted to a max-
imum of 500, since the computational overhead of NSGA-II and MOEA/D increases
proportionately with N and Ns, respectively.

The computational budget allocated to the tuning problems corresponds to the up-
per limit of what is deemed to be the standard use-case scenario. This upper limit is
chosen as the computational work produced by a high-end desktop or laptop computer
left to tune overnight. Specifically, the allowable computational budget is 12 hours of
fully utilizing a fourth-generation Intel©R CoreTM i7-4700MQ processor. For the tuning
problems described, the WFG generalist tuning problems are the most computationally
expensive. Given this limiting factor, a computational budget is assigned to each sub-
problem equivalent to assessing 1,000 CPV tuples up to the maximum OFE budget of
10,000 without resampling on a single problem of the relevant test suite, giving a tuning
budget (γ ) of 107. Since evaluating a CPV tuple on a generalist subproblem entails
assessing the CPV tuple on all problems in the test suite being tuned to, the specified γ

allows for fewer CPV tuples to be evaluated compared to a specialist subproblem.

4.3 Tuning Algorithms Compared

The tuning algorithms compared in the numerical experiments are MOTA, tMOPSO,
and a base-line heuristic RANDM . tMOPSO is compared against MOTA, since it has been
shown to be effective at tuning optimization algorithms under multiple OFE budgets
(Dymond et al., 2015). RANDM , which is a basic random search heuristic equipped with
MOTA’s CPV assessment procedure, is added to the numerical experiments to gauge
the benefits of MOTA’s DE-based process for generating candidate decision vectors.
RANDM generates a candidate decision vector for the i’th subproblem, xc

i using a
uniform random distribution as follows:

xc
i,k =

{
ln βt if k = 1

x
bt

i,k + (r() − 0.5)(Iu,k − Il,k) ∀ k ∈ 2, nx,
(29)

where βt is the target improvement OFE budget selected randomly from B, with each
OFE budget having the same likelihood of being selected, xbt

i is the decision vector
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from the i’th subproblem’s PFA, which performs the best at βt , Iu and Il are the tuning
problem’s initialization bounds, and r() is a random function returning a value between
0 and 1 using a uniform distribution. M-FETA (Smit et al., 2010) is not compared against
MOTA because the M-FETA algorithm is not designed to tune under multiple OFE
budgets.

In order to apply the bi-objective tMOPSO tuning algorithm to the many-objective
tuning problems, each tuning problem is broken up into uncoupled bi-objective sub-
problems where no information is shared. The tMOPSO runs to determine the general-
ist CPV tuples occur last, since those runs require information on the nadir and utopia
points, which are taken from the tMOPSO runs targeted on specialist CPVs. Regarding
the generalist tuning problems, MOTA and RANDM have an advantage over tMOPSO
in that these algorithms share information between the solution approximations of the
different subproblems. tMOPSO as a bi-objective tuning algorithm has no mechanics for
sharing this many-objective information. MOTA and RANDM use the same neighbor-
hood topology for the tuning problems. In particular, the specialist subproblem and the
overall generalist subproblem have a zero-sized update neighborhood, while each of the
leave-one-out generalist subproblems have an update neighborhood of size 3, consist-
ing of two other leave-one-out generalist subproblems as well as the overall generalist
subproblem. Admittedly, the choice of the update neighborhoods for the leave-one-out
generalist subproblems is rather arbitrary, being based only on what we deemed to
be sensible based upon our experience with the problems. For all cases, MOTA and
RANDM use a candidate generation neighborhood consisting of all the subproblems.

The same resampling interruption procedure is used by the compared tuning algo-
rithms. This commonality should ensure that any performance difference observed is
not influenced by the use of difference noise-handling procedures. For MOTA, tMOPSO,
and RANDM a total sampling size of 25 is used, with resampling interruption checks
occurring after sampling increments of 1, 2, 3, 4, 5, and 10 (�ns

= [1, 2, 3, 4, 5, 10]) us-
ing MWUTs given an interruption significance (α) of 60%. Since the IGD calculations
are of moderate computational cost, resampling interruption checks are conducted for
each OFE budget constraint under which a CPV tuple is being assessed. A common
constraint-handling approach is also used by the compared tuning algorithms. In par-
ticular, the candidate generation process repeats until a valid decision vector is found,
subject to a threshold of 10 attempts. After 10 attempts, random values are generated in-
side the initialization bounds until a valid candidate is generated. Finally, all algorithms
use an OFE budget overshoot function of β+ = 1.6βa + 100.

The comparison of MOTA and tMOPSO is complicated by the fact that the perfor-
mance of these algorithms is sensitive to their CPVs. These algorithms are therefore
tuned before being compared to ensure that MOTA and tMOPSO use CPVs suitable for
the problems on which they are going to be compared. In contrast, the base-line RANDM

does not require precomparison tuning because it does not have any control parameters.
The precomparison tuning of MOTA and tMOPSO is done using the tuning particle
swarm optimization (tPSO) algorithm (Dymond et al., 2015). tPSO is set up to search for
CPVs well suited for the NSGA-II ZDT specialist problem and for the NSGA-II DTLZ
specialist problem. The results from these tPSO runs are to be compared against each
other to check consistency. MOTA and tMOPSO are not tuned to the NSGA-II WFG
specialist tuning problem, since the WFG tuning problems are computationally expen-
sive in this numerical setup, being more than 10 times more expensive than their ZDT
and DTLZ counterparts. tPSO tunes each respective algorithm according to the utility
measure utPSO. utPSO is a weighted sum performance aggregation over all the respective

130 Evolutionary Computation Volume 25, Number 1



MOTA: A Many-Objective Tuning Mechanism

subproblems for the tuning problem. For the NSGA-II DTLZ specialist problem which
has seven subproblems or preference articulations, tPSO minimizes

utPSO = −
7∑

i=1

τi, (30)

where τi is the bi-objective HV of the i’th bi-objective subproblem’s PF, which has been
normalized between a commonly used nadir and utopia point. The same setup is used
for tuning to the NSGA-II ZDT specialist problem. To account for stochastic effects,
resampling over 20 independent runs is conducted. Based on Dymond et al. (2015),
the tPSO settings are a swarm size of 10 and an inertia factor of 0.5. The tPSO tuning
budget is 400 CPV tuple evaluations, which is equivalent to assessing 20 CPV tuples
using a resampling size of 20. tPSO performs preemptive resampling termination checks
after every resampling iteration using MWUTs and an interruption significance level of
66%. Regarding handling tuning constraints, if an invalid CPV tuple is generated, tPSO
continues to regenerate that tuple until all constraints are satisfied.

The MOTA CPVs that are tuned by tPSO are the DE scaling factor F, the DE
crossover rate Cr, and the OFE perturbation factor βδ . tPSO initialization bounds are
F ∈ [0, 4], Cr ∈ [0, 1], and βδ ∈ [0.1, 0.5]. The tPSO tuning constraints for MOTA are
F > 0, Cr ∈ [0, 1], and βδ ∈ [0, 1]. For tMOPSO, the swarm size N, the inertia factor ω, the
personal acceleration constant cp, the global acceleration constant cg, and tMOPSO’s OFE
perturbation factor cβ are tuned by tPSO. The initialization bounds for tMOPSO CPVs
are N ∈ [2, 10], ω ∈ [0, 1], cp ∈ [0, 3], cg ∈ [0, 3], and cβ ∈ [0.1, 0.5]. After initialization
tPSO’s search constraints are N ≥ 2, ω ∈ [0, 1], cp ≥ 0, cg ≥ 0, and cβ ∈ [0, 1].

After the tPSO tuning is completed and effective CPVs for MOTA and tMOPSO
are determined, MOTA, tMOPSO, and RANDM are applied to the 12 ZDT, DTLZ, and
WFG tuning problems. To account for stochastic effects, comparison is conducted using
a sample of 20 independent runs per tuning problem.

5 Numerical Results

The results from the numerical experiments are presented in three parts. First the results
are given from the tPSO tuning to determine effective CPVs for MOTA and tMOPSO.
Thereafter, the numerical results from the specialist tuning problems are presented,
followed by those of the generalist tuning problems. For brevity, extensive results are
not included in this paper but are made available as supplementary material. Included
in the supplementary material are the utopia and nadir points used in the result analysis.

When analyzing the results from the tuning problems, the objective function values
of respective PFAs are normalized using a common objective normalization function.
Use of a common objective normalization function is required, since some variance is
expected in the utopia and nadir points approximations made by MOTA, tMOPSO, and
RANDM . Therefore the objective value results are renormalized between a common
nadir and utopia point, for purposes of fair comparison. The comparison utopia and
nadir points were calculated after MOTA, tMOPSO, and RANDM were applied to the
specialist tuning problems, by combining the tuning results. Specifically, a PFA was
constructed for each tuning problem by combining all the results for that problem.
Thereafter, the utopia and nadir points used to compare the tuning algorithms were
taken from these constructed PFAs. This approach could not, however, be followed for
the tPSO tuning of MOTA and tMOPSO, since tPSO needs to compare performances
during the course of the tuning run, and as such cannot postpone the calculation of the

Evolutionary Computation Volume 25, Number 1 131



A. S. Dymond, S. Kok, and P. S. Heyns

Table 1: CPV tuples that tPSO found effective for MOTA on specialist problems.

Specialist Problem Run F Cr βδ

NSGA-II ZDT best 2.40 0.55 0.37
second best 2.55 0.83 0.44
worst 3.02 0.80 0.40

NSGA-II DTLZ best 1.94 0.73 0.17
second best 1.99 0.85 0.24
worst 1.54 0.79 0.18

Table 2: CPV tuples that tPSO found effective for tMOPSO on specialist problems.

Specialist Problem Run N ω cp cg cβ

NSGA-II ZDT best 4 0.44 0.73 2.76 0.02
second best 7 0.31 1.62 2.10 0.23
worst 6 0.30 1.82 1.83 0.29

NSGA-II DTLZ best 5 0.28 1.35 2.34 0.02
second best 7 0.73 0.89 1.59 0.15
worst 6 0.26 3.10 1.31 0.30

normalization utopia and nadir points. Therefore tMOPSO was applied to the relevant
specialist tuning problem to determine normalization utopia and nadir points for use
in the tPSO tuning runs. In particular, the results from 10 independent runs of tMOPSO
using the CPV settings from Dymond et al. (2015) were combined into one PFA to
determine the tPSO normalization utopia and nadir points.

5.1 Selecting the CPVs for the Compared Tuning Algorithms

Three independent runs were conducted for each tPSO tuning of MOTA and tMOPSO,
respectively, to check consistency among the tPSO results. Furthermore, the CPV rec-
ommendations from the three runs for tuning to the NSGA-II ZDT specialist problem
are compared to those of the three runs for tuning to the NSGA-II DTLZ specialist
problem. The aim of these consistency checks is to ensure that tPSO does not return
an outlier CPV tuple that is unlikely to be reproduced by an independent third party
conducting the same experiments.

Table 1 shows the CPV tuples that tPSO found to be effective for MOTA on the
NSGA-II ZDT and DTLZ specialist problems. An acceptable level of consistency is ob-
served among the tPSO CPV recommendations for MOTA, with similar values for F, Cr,
and βδ being returned. Regarding tMOPSO, Table 2 shows tPSO’s CPV recommenda-
tions. An acceptable level of consistency in terms of exploitation versus exploration is
observed again, if the combined effects of ω, cp + cg (Clerc and Kennedy, 2002) and the
tMOPSO OFE perturbations cβ factor are considered. For example, the tPSO recommen-
dation that has a far higher ω than the other tPSO ω recommendations is accompanied
by a lower cp + cg value relative to the other tPSO runs. As expected, different CPV
recommendations were made for the NSGA-II ZDT specialist problem compared to
that of the NSGA-II DTLZ specialist problem.
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Table 3: Mean performances on the NSGA-II specialist tuning problems.

τ (×103)

Suite Problem tMOPSO MOTA RANDM

ZDT 1 946.743 946.265 944.384
2 934.845 935.562 931.651
3 932.770 931.857 929.537
4 960.120 960.496 955.470
6 938.548 939.447 935.492

DTLZ 1 966.481 966.385 963.242
2 969.295 969.101 967.557
3 950.034 950.824 946.185
4 936.064 934.882 935.222
5 969.339 969.345 967.734
6 808.841 810.097 801.350
7 957.173 956.581 953.861

WFG 1 795.679 805.681 793.968
2 912.616 913.655 908.411
3 969.683 969.162 967.491
4 932.710 931.937 928.284
5 951.742 951.456 950.191
6 928.772 930.064 921.503
7 934.793 934.787 932.267
8 927.275 927.262 924.992
9 939.018 941.294 938.045

Notes: Friedman test: χ2 24.100, p-value 5.8 × 10−6. Boldface
entries indicate the best value in each row. Italic entries indi-
cate samples whose difference in mean relative to the sample
with the best mean is not statistically significant according to
Mann-Whitney U-test with a 95% confidence.

Given that no outliers were observed, the CPVs used in the remainder of the
experiments for MOTA and tMOPSO are taken from the best tPSO run for tuning to the
NSGA-II DTLZ specialist problem. The tPSO results from the NSGA-II DTLZ specialist
problem are chosen in place of the results from NSGA-II ZDT specialist problem, since
the DTLZ specialist problem is considered more representative in terms of number of
tuning objectives. Specifically, the DTLZ problems have eight tuning objectives if the
speed objective is included, while the ZDT problems have six tuning objectives, and the
WFG problems have ten tuning objectives.

5.2 Specialist Tuning Results

MOTA, tMOPSO, and RANDM were applied to the specialist and generalist tuning
problems in order to generate 20 independent runs for each problem. Analysis of
the results from these tuning problems is conducted according to the τ performance
metric, where τ measures the HV achieved for a given bi-objective decomposition in
the normalized objective space as outlined in Eq. (30).

Comparison according to performance on the NSGA-II specialist tuning problems
is conducted quantitatively according to MWUTs, as summarized in Table 3. Two sam-
ple means are considered statistically similar if a MWUT indicates that the difference
of the sample means is not statistically significant given a confidence level of 95%. On
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Table 4: Mean performances on the MOEA/D specialist tuning problems.

τ (×103)

Suite Problem tMOPSO MOTA RANDM

ZDT 1 978.496 978.324 975.777
2 975.150 975.154 972.183
3 963.370 963.768 960.094
4 969.652 969.875 965.638
6 987.639 987.392 985.198

DTLZ 1 967.943 969.541 965.065
2 978.276 977.818 976.321
3 947.300 955.056 944.539
4 975.730 974.372 971.954
5 977.851 977.553 976.276
6 994.090 993.891 993.032
7 982.132 981.473 979.793

WFG 1 795.654 796.439 773.524
2 897.245 897.224 892.643
3 976.787 975.889 974.403
4 912.752 910.685 909.565
5 988.313 987.905 987.498
6 900.856 902.272 898.140
7 932.921 932.576 930.612
8 920.745 920.254 917.489
9 930.300 928.280 927.276

Notes: Friedman test: χ2 25.200, p-value 3.4 × 10−6. Boldface
entries indicate the best value in each row. Italic entries indi-
cate samples whose difference in mean relative to the sample
with the best mean is not statistically significant according to
Mann-Whitney U-test with a 95% confidence.

the NSGA-II ZDT specialist problem, tMOPSO outperforms MOTA on 2/5 subprob-
lems and is outperformed by MOTA on the 1/5 subproblems, and performs statistically
similar on the remaining 2/5 subproblems. For the NSGA-II DTLZ specialist problem,
tMOPSO beats MOTA on 2/7 subproblems, is outperformed by MOTA on one subprob-
lem, and is statistically similar on the other 4/7 subproblems. Regarding the NSGA-II
WFG specialist problem, tMOPSO outperforms MOTA on 1/9 subproblems, is outper-
formed by MOTA on 2/9 subproblems, and is statistically similar to MOTA on the
remaining 6/9 subproblems. RANDM is outperformed by tMOPSO and MOTA on all
the subproblems for the NSGA-II specialist tuning problems, with the exception of the
DTLZ4 subproblem, where the difference in sample means is not statistically significant.

For the MOEA/D specialist tuning problems, comparison is conducted in the same
manner, with Table 4 summarizing the MWUT comparisons. On the MOEA/D ZDT
specialist problem, MOTA and tMOPSO produce similar performances on all of the five
subproblems. For the MOEA/D DTLZ specialist problem, tMOPSO outperforms MOTA
on 5/7 subproblems, while MOTA performs better on the remaining 2/7 subproblems.
Regarding the MOEA/D WFG specialist problem, tMOPSO outperforms MOTA on 3/9
subproblems, while for the other 6/9 subproblems MOTA and tMOPSO offer statistically
similar performances. RANDM is outperformed by MOTA and tMOPSO on all the
subproblems for all the specialist tuning problems, with the exception of the subproblem
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focused on determining CPVs for WFG9, for which statistically similar performance was
recorded.

The τ MWUT comparisons are supported through visual inspection of box plot
comparisons, through visual inspection of the PFA determined by the compared tuning
algorithms, and through Friedman tests. The box plot comparisons show that there
is a clear difference between the two samples, where a MWUT has shown the means
to be different given a 95% significance level. Comparing the bi-objective PFA of the
subproblems shows that the τ performance metric is adequate for comparing tuning
performance in these experiments. The box plot comparisons and PFAs found by the
tuning algorithms are available in the supplementary material of this paper. Friedman
test p-values, which are also available in Tables 3 and 4, show that the null-hypothesis of
there being no difference between tMOPSO, MOTA, and RANDM can be safely rejected.

Taking the specialist results into account as a whole, it is concluded that MOTA and
tMOPSO offer similar performance, while both algorithms outperform the base-line
RANDM . It was postulated in the introduction that MOTA’s ability to share information
among subproblems may be of benefit even for the case when an algorithm is to be
tuned under multiple OFE budgets to each instance of a problem suite on an individual
basis only. In particular, information-sharing could aid tuning by exploiting common
trends among the tuning solutions to these problem instances. For these experiments,
MOTA’s information-sharing strategy via candidate generation neighborhoods and DE
operators is not able to outperform tMOPSO, even though CPV trends are present, as
shown in the supplementary material. Whether these results are due to MOTA search
mechanics or reflect the validity of the idea of sharing information to aid in determining
specialist CPVs over multiple OFE budgets as a whole, is left as a question for future
research.

5.3 Generalist Tuning Problems

On the generalist tuning problems, MOTA’s CPV tuple assessment procedure, which
utilizes update neighborhoods, had a significant effect. On the NSGA-II generalist prob-
lems MOTA outperformed tMOPSO on all the ZDT, DTLZ, and WFG subproblems, as
shown in Table 5. RANDM is more competitive against MOTA on the NSGA-II general-
ist problems compared to the specialist problems. Specifically, on 6/24 subproblems the
difference in sample τ means between RANDM and MOTA is not statistically significant
according to MWUTs given a 95% confidence level. MOTA outperformed RANDM on
the remaining 18/24 NSGA-II generalist subproblems. Regarding the MOEA/D gener-
alist problems MOTA outperformed tMOPSO on all but 1/24 subproblems, as shown in
Table 6. RANDM outperformed MOTA on 1/24 subproblems, while performing worse
than MOTA on the remaining 23/24 subproblems. Additional result verification similar
to that done for the specialist tuning problems shows that MOTA’s superior perfor-
mance according to the τ performance metric is supported by box plot comparisons,
plots of the PFAs found by the tuning algorithms, and Friedman tests. The box plot
comparisons and PFAs found for the generalist tuning problems are available in the
supplementary material for this paper.

The superior performance of MOTA on the generalist tuning problem is expected
given MOTA’s design. Unlike tMOPSO, MOTA is designed to be a many-objective
tuning algorithm. Therefore MOTA is designed to share information between subprob-
lems, whereas tMOPSO is a bi-objective optimization algorithm and therefore has no
mechanics to propagate information among the different subproblems it solves. The
out-performance of tMOPSO by RANDM on the generalist tuning problems, compared
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Table 5: Mean performances on the NSGA-II generalist tuning problems. The 1i �=j no-
tation indicates a vector whose elements are all equal to 1 with exception of the j’th
element, which is equal to 0.

τ × 103

Suite w tMOPSO MOTA RANDM

ZDT 1 882.125 932.601 929.575
1i �=1 902.718 929.089 923.368
1i �=2 913.863 932.617 928.565
1i �=3 920.730 935.314 929.664
1i �=4 907.071 928.597 925.018
1i �=5 908.475 931.625 927.993

DTLZ 1 834.185 884.049 880.356
1i �=1 826.849 864.007 857.315
1i �=2 823.796 865.996 857.257
1i �=3 844.050 869.802 869.114
1i �=4 858.144 904.283 891.732
1i �=5 832.369 864.767 857.945
1i �=6 894.699 921.736 920.040
1i �=7 847.747 868.590 859.925

WFG 1 851.983 879.122 876.701
1i �=1 890.162 916.305 915.295
1i �=2 852.251 870.980 870.457
1i �=3 840.971 861.910 860.170
1i �=4 856.030 874.207 872.268
1i �=5 839.367 866.008 862.065
1i �=6 848.161 871.661 868.776
1i �=7 850.533 869.538 867.419
1i �=8 848.610 869.767 865.051
1i �=9 847.614 869.408 866.949

Notes: Friedman test: χ2 39.000, p-value 3.4 × 10−9. Boldface
entries indicate the best value in each row. Italic entries indi-
cate samples whose difference in mean relative to the sample
with the best mean is not statistically significant according to
Mann-Whitney U-test with a 95% confidence.

to tMOPSO completely outperforming RANDM on the specialist tuning problems, fur-
ther emphasizes the importance of information sharing.

MOTA’s results were scrutinized in regard to producing sensible CPV recommen-
dations. Subproblems were added in the generalist tuning problem formulations for
all the leave-one-out generalist combinations. Comparing the results from these sub-
problems against the w = [1, 1, . . . , 1] subproblem gives an indication of the validity
of MOTA’s results. For the NSGA-II problems, a high level of consistency among the
generalist subproblems in terms of crossover and mutation probabilities for similar OFE
budgets is observed, while the majority of population size CPV recommendations fol-
lowed a similar trend. In particular, for very low OFE budgets the optimal population is
equal to the OFE budget. Thereafter, a drop in the optimal population size is observed,
at the OFE budget where the NSGA-II operators become more effective than random
search. The optimal population size then continues to increase as the available OFE
budget increases. The observed population size trend is consistent with Dymond et al.
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Table 6: Mean performances on the MOEA/D generalist tuning problems. The 1i �=j

notation indicates a vector whose elements are all equal to 1 with exception of the j’th
element, which is equal to 0.

τ × 103

Suite w tMOPSO MOTA RANDM

ZDT 1 954.444 964.325 963.128
1i �=1 955.393 961.119 958.943
1i �=2 957.256 963.529 961.398
1i �=3 962.893 965.680 963.138
1i �=4 968.530 969.579 969.613
1i �=5 951.967 957.607 955.255

DTLZ 1 930.843 958.360 953.098
1i �=1 934.621 955.802 948.353
1i �=2 929.119 952.000 944.280
1i �=3 939.228 962.001 956.258
1i �=4 930.771 953.190 944.010
1i �=5 927.883 954.376 944.924
1i �=6 923.124 950.179 941.941
1i �=7 929.391 954.263 944.859

WFG 1 847.868 882.793 880.510
1i �=1 881.356 904.044 898.567
1i �=2 850.824 880.573 877.219
1i �=3 831.903 866.881 864.155
1i �=4 836.309 878.954 876.121
1i �=5 836.376 866.981 863.358
1i �=6 854.657 879.328 876.132
1i �=7 845.944 872.224 868.259
1i �=8 850.214 874.633 870.659
1i �=9 849.236 881.582 878.529

Notes: Friedman test: χ2 40.333, p-value 1.7 × 10−9. Boldface
entries indicate the best value in each row. Italic entries indi-
cate samples whose difference in mean relative to the sample
with the best mean is not statistically significant according to
Mann-Whitney U-test with a 95% confidence.

(2013). For the MOEA/D problems, an acceptable level of consistency is also observed,
with similar DE scaling factors, crossover probability, and neighborhood fractions being
recommended among similar OFE budgets, while similar population size trends as for
the NSGA-II generalist problem were observed. Given the levels of consistency being
observed, and agreement with previous work, MOTA’s results are deemed acceptable.

Before concluding this paper, a disclaimer is given pertaining to the CPV tuples
found to be optimal in these numerical experiments. NSGA-II and MOEA/D practi-
tioners are reminded that these CPV tuples are only guaranteed of producing favorable
results for optimization problems similar to those used in these experiments, that is,
the ZDT, DTLZ, and WFG problems. Therefore, if an optimization problem is tackled
that is different from these problems, practitioners are advised to use MOTA or another
tuning algorithm to determine CPV tuples that are effective on testing problems more
representative of the problem being tackled.
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6 Conclusion

The MOTA algorithm is proposed for tuning stochastic optimization algorithms ac-
cording to multiple utility measures under multiple OFE budgets. MOTA uses many-
objective optimization to achieve this end, with an objective for each utility measure and
an extra speed objective to tune under multiple OFE budgets. Decomposition is used
to solve the resulting many-objective optimization problem, with the original problem
being broken up into multiple bi-objective subproblems. When tuning stochastic algo-
rithms, analytical expressions for determining utility as a function of the CPV tuple
being assessed at the assessment OFE budget are typically unavailable. Therefore, an
assessment run is used to calculate the utility of a CPV tuple for stochastic algorithms,
where the algorithm being tuned is run from initialization to the assessment OFE budget.
MOTA utilizes the history information from these assessment runs, so that a CPV tuple
assessment run is used to gauge utility at multiple OFE budgets. In particular, MOTA’s
bi-objective decomposition scheme is aligned to make use of this history information.
To further increase efficiency, MOTA uses a preemptively terminating resampling ap-
proach based on MWUTs for handling noise. Finally, MOTA uses DE-based operators
to generate new candidate designs using candidate generation neighborhoods, while
using different update neighborhoods to propagate information among the bi-objective
subproblems.

Numerical experiments were conducted to gauge MOTA’s performance. The nu-
merical experiments entailed tuning NSGA-II and MOEA/D in order to determine
specialist and generalist CPVs for the ZDT, DTLZ, and WFG test problem suites, re-
sulting in a total of 12 tuning problems. Using these problems, MOTA was compared
against the tMOPSO and the RANDM tuning algorithms. For fair comparison, MOTA
and tMOPSO were compared using CPVs that are well suited for tuning problems used
in these numerical experiments. These CPV tuples were determined by tuning MOTA
and tMOPSO to the DTLZ specialist problem. For the specialist tuning problems, MOTA
is effective at determining specialist CPV tuples over a range of OFE budgets, having
a comparable performance to the tMOPSO algorithm. For the many-objective gener-
alist tuning problems, MOTA clearly outperforms the other tuning algorithms. This
superior performance is attributed to MOTA’s being designed from the ground up as a
many-objective tuning algorithm.
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