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Abstract
In this paper, we use three existing schemes namely, Upwind Forward Euler, Non-Standard Finite Dif-
ference (NSFD) and Unconditionally Positive Finite Difference (UPFD) schemes to solve two numerical
experiments described by a linear and a non-linear advection-diffusion-reaction equation with constant
coefficients. These equations model exponential travelling waves and biofilm growth on a medical im-
plant respectively. We study the exact and numerical dissipative and dispersive properties of the three
schemes for both problems. Moreover, L1 error, dispersion and dissipation errors, at some values of
temporal and spatial step sizes have been computed for the three schemes for both problems.
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1 Introduction

The advection-diffusion-reaction partial differential equation provides a very useful and important math-
ematical model in a wide range of applications in natural sciences and engineering [10]. These applica-
tions include the transport of air, adsorption of pollutants in soil, diffusion of neutrons, food processing,
modelling of biological systems, modelling of semiconductors, oil reservoir flow transport and reaction
of chemical species etc. In hydrology, equations of this type govern the fate and transport of reactive
pollutants and biofilm-forming microbes in porous media. These equations are often used to predict
and control the extent of contamination in ground water systems [7]. In many of these applications,
the unknown variables in the governing partial differential equation represent physical quantities that
cannot take negative values such as pollutants, population, concentration of chemical compounds [6].
The application of advection-diffusion-reaction (ADR) equation is classified into three processes [9].
The first process is called convection and is due to movement of materials from one region to another.
The second process is called diffusion and is due to movement of materials from a region of high con-
centration to a region of lower concentration. The last process is called reaction and is due to decay,
adsorption and reaction of substances with other components. Qualitatively all the three processes form
the ADR model that describe how the disturbed quantity being studied in the medium changes under
the influence of these processes [9].

In many applications, the governing partial differential equation is non-linear elliptic and the analytical
solution is not easy to find [10]. The difficulties in obtaining analytical solution lead many researchers
and engineers to resort to numerical methods for approximating the solution to the problem. These
numerical methods have been active for about fifty years now and the development of new techniques
still attracts more attention [9]. However, there are also some challenges when applying these numer-
ical methods to approximate the solution to problems that are non-linear. One of the challenges is
numerical instabilities [10]. For the ADR model dominated with diffusion, the standard finite difference
methods (SFDM) and finite element method (FEM) produce satisfactory results while for problems
dominated by convection, numerical instabilities like oscillations and numerical dispersion appear in the
solution approximated by these methods [9]. These numerical instabilities can be overcomed for instance
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by applying the Non-Standard Finite Difference methods (NSFD). These methods are now playing an
important role in the design of reliable numerical schemes in several areas of science and engineering [12].

In this paper, we focus on the application of standard and Non-Standard Finite Difference methods
to solve the one dimensional advection-diffusion-reaction equation. This equation takes the form

∂u

∂t
+

∂

∂x
(au) =

∂

∂x

(
D
∂u

∂x

)
+ f(u),

where u(x, t) is the unknown quantity being investigated, a(x, t) is the velocity of the medium (also
called convective velocity), D(x, t) is the diffusion coefficient and f(u) is the reaction source. The
novelty in this work in regard to work in [6] is that the stability of the schemes have been obtained
and hence it allows a more effective way of comparing the performance of the three schemes. Also,
dissipation and dispersion properties of the schemes are studied.
The paper is organised as follows. In sections 2 and 3, we describe the numerical experiments considered
and how the quantification of errors is implemented. In section 4, we study the stability, consistency,
spectral analysis of three schemes when used to discretise ut+ux−uxx = −u and present the numerical
results in section 5. Sections 6 and 7 discuss the stability, consistency, spectral analysis of the three
methods when applied to ut − (Dux)x = ru(1 − u) and numerical results are presented. Section 8
highlights the salient features of the paper.

2 Numerical Experiments

We consider two problems. First, we consider the advection-diffusion-reaction equation for modelling
the exponential travelling waves [6]. This equation is given by

∂u

∂t
+

∂u

∂x
− ∂2u

∂x2
= −u, (x, t) ∈ [0, 10]× [0, 0.85], (1)

subject to the following initial condition and boundary conditions :

u(x, 0) = e−x, 0 ≤ x ≤ 10,

u(0, t) = et, 0 ≤ t ≤ 0.85, and

ux(10, t) = −u(10, t), 0 ≤ t ≤ 0.85.

Eq.(1) together with its initial and boundary conditions has the exact solution given by

u(x, t) = e(t−x). (2)

The most realistic applications involving equation Eq.(1) are for complex systems and as a result there
will be grid spacing limitation on the numerical method. Thus, if the grid spacing is not fine enough, the
numerical scheme will not compute stable solutions. Different methods have been proposed increasing
local grid refinement only in those regions where the solution is changing rapidly [15].

Secondly, we consider the advection-diffusion-reaction equation for modelling biofilm growth on a med-
ical implant [6]. This equation is given by

∂u

∂t
− ∂

∂x

(
D
∂u

∂x

)
= ru (1− u) , (x, t) ∈ [0, 1]× [0, 13], (3)
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with initial and boundary conditions given by

u(x, 0) =

{
0.7 e−σ(x−x0)2 , |x− x0| ≤ 0.06
0, otherwise

and

u(0, t) = 0 , 0 ≤ t ≤ 13,

u(1, t) = 0 , 0 ≤ t ≤ 13.

Eq.(3) together with the initial and boundary conditions have its exact solution described by a travelling
wave like solution [13] which is given by

u(x, t) =
1[

1 +

(
1−
√

u(x,0)√
u(x,0) exp( 1

6D

√
6Drx)

)
exp

(
−5

6rt+
1
6D

√
6Drx

)]2 . (4)

We solve problem 2 described by Eq.(3) using the same parameters as in [6], namely D = 0.0002,
x0 = 0.5, r = 0.05 and σ = 80.

3 Quantification of Errors

To quantify the errors from numerical results into dispersion and dissipation errors, we follow the work
of Takacs [18]. We let um represent the analytical solution and vm represent the numerical solution, at
grid point, m. Then, the absolute error is given by

E = |um − vm|.

The Total Mean Square Error is calculated as

ETMS =
1

N

N∑
m=1

(
um − vm

)2
, or

ETMS =
1

N

N∑
m=1

u2m − 2

N

N∑
m=1

umvm +
1

N

N∑
m=1

v2m,

where N is the number of grid points.

The sample variances for the analytical and numerical solutions are respectively given by

δ2(u) =
1

N

N∑
m=1

(
um − ū

)2
, and

δ2(v) =
1

N

N∑
m=1

(
vm − v̄

)2
, where ū and v̄ are the means of u and v respectively.

Expanding the sample variance, we obtain

δ2(u) =
1

N

N∑
m=1

u2m − 2

N

N∑
m=1

umū+
1

N

N∑
m=1

ū2,

δ2(v) =
1

N

N∑
m=1

v2m − 2

N

N∑
m=1

vmv̄ +
1

N

N∑
m=1

v̄2.
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The Total Mean Square Error can be expressed as

ETMS =
1

N

N∑
m=1

(
um − ū

)2
+

1

N

N∑
m=1

(
vm − v̄

)2
+

2

N

N∑
m=1

umū

+
2

N

N∑
m=1

vmv̄ − 1

N

N∑
m=1

(ū)2 − 1

N

N∑
m=1

(v̄)2 − 2

N

N∑
m=1

umvm.

or

ETMS = δ2(u) + δ2(v) + 2

(
1

N

N∑
m=1

umū

)
+ 2

(
1

N

N∑
m=1

vmv̄

)

− 1

N

N∑
m=1

(ū)2 − 1

N

N∑
m=1

(v̄)2 − 2

(
1

N

N∑
m=1

umvm − ū v̄

)
− 2 ū v̄.

Further simplification gives

ETMS = δ2(u) + δ2(v) + (ū− v̄)2 − 2 Cov(u, v). (5)

The correlation coefficient is defined as

ρ =
Cov(u, v)

δ(u) δ(v)
. (6)

Hence, the covariance can be expressed as

Cov(u, v) = ρ δ(u) δ(v). (7)

We thus have,

ETMS = δ2(u) + δ2(v) + (ū− v̄)2 − 2ρ δ(u) δ(v)

= δ2(u) + δ2(v) + (ū− v̄)2 − 2 ρ δ(u) δ(v) + 2 δ(u) δ(v)− 2 δ(u) δ(v)

= δ2(u) + δ2(v)− 2 δ(u) δ(v) + (ū− v̄)2 − 2 ρ δ(u) δ(v) + 2 δ(u) δ(v)

=
(
δ(u)− δ(v)

)2
+ (ū− v̄)2 + 2 (1− ρ) δ(u) δ(v).

Setting ρ = 1, we obtain

ETMS =
(
δ(u)− δ(v)

)2
+ (ū− v̄)2 .

Hence the dispersion error is

2(1− ρ) δ(u) δ(v),

while the dissipation error is (
δ(u)− δ(v)

)2
+ (ū− v̄)2 .

The total error is defined as the sum of the dispersion and dissipation errors [18].

The L1 error is given by

L1error = h
∑N

m=1 |um − vm|.

Some interesting applications of the concept of quantification of errors into dispersion and dissipation
can be found in [2, 3, 18].
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4 Numerical solution of ut + ux − uxx = −u

In this section, we use three finite difference schemes to solve ut+ux−uxx = −u subject to the specified
boundary conditions, as detailed in section 2.

4.1 Upwind Forward Euler Finite Difference Scheme

When Eq.(1) is discretised by the Upwind Forward Euler finite difference scheme [6], we get

un+1
m − unm

k
+

unm − unm−1

h
−

unm+1 − 2unm + unm−1

h2
= −unm,

which can be rewritten as

un+1
m = (1− k − λ− 2β) unm + (λ+ β) unm−1 + β unm+1, (8)

where λ = k
h , β = k

h2 , k and h are the temporal and spatial step sizes respectively.

Stability

To obtain the region of stability of the finite difference scheme, we use the Fourier series analysis. The
amplification factor is given by

ξ = 1− k − (λ+ 2β)(1− cosω)− Iλ sinω, (9)

where ω is the phase angle, ω = θh where θ is the wavenumber and h is the spatial step size.

The scheme is stable whenever the Von-Neumann condition, |ξ| ≤ 1 is satisfied. The modulus of
amplification factor is given by

|ξ| =
√

[ℜ(ξ)]2 + [ℑ(ξ)]2,

where ℜ(ξ) and ℑ(ξ) are the real and imaginary parts of ξ respectively. The modulus of the amplification
factor of the scheme given by Eq. (8) is obtained as

|ξ| =

√[
1− k −

(
k

h
+

2k

h2

)
[1− cos(ω)]

]2
+

[
k sin(ω)

h

]2
, (10)

with −π ≤ ω ≤ π.

We choose h = 0.1 as in the numerical experiment we have worked with h = 0.1. We thus get

|ξ|2 = [1− k − 210k(1− cos(ω))]2 + (10 k sin(ω))2. (11)

We then use maple software to solve for |ξ|2 ≤ 1 for ω ∈ [−π, π] and we obtain the region of stability
as 0 < k ≤ 0.00475.
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Consistency

To study the consistency of the Upwind Forward Euler finite difference scheme, we need to first obtain
the Taylor expansion of the terms in Eq.(8) about the point (m,n). We assume that u is continuous
and that the derivatives of u are bounded. The Taylor series expansion of un+1

m , unm+1 and unm−1 about
the point (m,n) are respectively given by

un+1
m = unm + k

∂u

∂t
+

k2

2!

∂2u

∂t2
+

k3

3!

∂3u

∂t3
+ · · · (12)

unm+1 = unm + h
∂u

∂x
+

h2

2!

∂2u

∂x2
+

h3

3!

∂3u

∂x3
+ · · · (13)

unm−1 = unm − h
∂u

∂x
+

h2

2!

∂2u

∂x2
− h3

3!

∂3u

∂x3
+ · · · (14)

Substituting Eqs.(12)-(14) in Eq.(8) and simplifying, we obtain

∂u

∂t
+

∂u

∂x
− ∂2u

∂x2
= −u− k

2

∂2u

∂t2
− k2

6

∂3u

∂t3
+

h

2

∂2u

∂x2
− h2

6

∂3u

∂x3
+ · · · (15)

As k → 0 and h → 0 , Eq.(15) reduces to Eq.(1) and therefore, the Upwind Forward Euler finite
difference scheme is consistent.

Spectral Analysis

We study the dissipative and dispersive behaviour of the Upwind Forward Euler finite difference scheme
when h = 0.1 at some different values of k. The values of k were chosen such that they are less than or
equal to the upper bound of the region of stability.

We let the elementary solution to Eq.(1) be [14]

u(x, t) = eαt eIθx. (16)

where α is the dispersion relation and θ is the wave number.

Using Eq.(16) and Eq.(1) and solving for the dispersion relation, α we obtain

α = −1− θ2 − Iθ. (17)

As a result of Eq.(17), the elementary solution is now expressed as

u(x, t) = e(−1−θ2)t e−Iθt eIθx. (18)

The term e(−1−θ2)t e−Iθt shows that the amplitude of the solution is decaying exponentially and hence
the exact amplification factor is given by

ξexact =
e(−1−θ2)(n+1)k e−Iθ(n+1)k

e(−1−θ2)nk e−Iθnk
,

= e(−1−θ2)k e−Iθk. (19)

Equivalently, the exact amplification factor can be expressed as

ξexact = (cos(θk)− I sin(θk)) e−(1+θ2)k. (20)
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The relative phase error, is given by

RPE =
arg(ξnum)

arg(ξexact)
, (21)

=
arg(ξnum)

tan−1(− tan(θk))
,

= − 1

kθ
arg(ξnum),

= − 1

kθ
tan−1

(
ℜ(ξnum)
ℑ(ξnum)

)
.

where ξnum is the numerical amplification factor obtained from the Fourier series analysis. Thus the
relative phase error for the Upwind Forward Euler scheme is given by

RPE =
1

kθ
tan−1

(
λ sinω

1− k − (λ+ β)(1− cosω)

)
. (22)

We next obtain plots of the variation of the modulus of exact amplification factor (exact AFM) and
modulus of the numerical amplification factor (numerical AFM), both versus phase angle at h = 0.1
and at some different values of k in Fig. (1).
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Figure 1: Plots of the exact AFM and AFM for Upwind Forward Euler scheme for Eq.(1), at some
values of k with h = 0.1.
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Figure 2: Plots of relative phase error vs phase angle for Upwind Forward Euler scheme discretising
Eq.(1), at some values of k, with h = 0.1.

From Fig. (1), we observe that at low phase angles, (i.e. 0 to 1), the curves of |ξnum| and |ξexact| are very
close to each other. In general, as the phase angle increases the numerical dissipation error increases.
Figs.2(a) and 2(b) show that at k = 0.001 and k = 0.85

527 , we have phase lag while at k = 0.85
180 and 0.85

212 , we
have phase lead for ω ∈ [0, π]. At k = 0.002, we have a phase lead for ω ∈ [0, 2.36]. The best dispersive
property is obtained at k = 0.85

527 for low phase angles.

4.2 Non-Standard Finite Difference Scheme

The Non-Standard Finite Difference scheme proposed by Mickens [11] for Eq. (1) is given by

un+1
m − unm

k
+

unm − unm−1

h
−

unm+1 − 2unm + unm−1

h2
= −un+1

m ,

which simplifies as

un+1
m =

(
1− λ− 2β

1 + k

)
unm +

(
λ+ β

1 + k

)
unm−1 +

(
β

1 + k

)
unm+1, (23)

where λ = k
h and β = k

h2 .

Stability

The amplification factor of the Non-Standard Finite Difference scheme is given by

ξ =
1− (λ+ 2β)(1− cosω)

1 + k
− I

(
λ sinω

1 + k

)
, (24)

and the modulus of its amplification factor is calculated as

|ξ| =

√[
1− (λ+ 2β)(1− cosω)

1 + k

]2
+

[
λ sinω

1 + k

]2
, (25)

with ω ∈ [−π, π].
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On plugging h = 0.1, we get

|ξ|2 = (1− 210 k (1− cos(ω))2 + (10 k sin(ω))2

(1 + k)2
. (26)

Solving |ξ|2 ≤ 1 for ω ∈ [−π, π] gives the region of stability as 0 < k ≤ 0.00477.

Consistency

To study the consistency of the Non-Standard Finite Difference scheme, we substitute Eqs.(12)-(14) in
Eq. (23). Substituting these equations and simplifying, we obtain

∂u

∂t
+

∂u

∂x
− ∂2u

∂x2
= −u− k

∂u

∂t
+

(
k2

2
− k

2

)
∂2u

∂t2
+

(
k3

6
− k2

6

)
∂3u

∂t3
+

h

2

∂2u

∂x2

− h2

2

∂3u

∂x3
+ · · · (27)

As k → 0 and h → 0, Eq.(27) reduces to Eq.(1), hence the scheme is consistent.

Spectral Analysis

We plot the variation of the modulus of the exact amplification factor and modulus of the numerical
amplification factor and relative phase error with respect to the phase angle at some different values of
k. The results are shown in Figs. (3) and (4).

Using Eqs.(21) and (24) with h = 0.1, the relative phase error is calculated as

RPE =
1

kθ
tan−1

(
−10k sinω

1 + 210k(1− cosω)

)
. (28)
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Figure 3: Plots of relative phase error vs phase angle for the Non-Standard Finite Difference Scheme
discretising Eq.(1) at some values of k, with h = 0.1.
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Figure 4: Plot of the exact AFM and AFM of the Non-Standard Finite Difference scheme for Eq. (1),
at some values of k, with h = 0.1.

Based on Figs.(2) and (3), we observed that the dispersive behaviours of Non-Standard Finite Difference
scheme is better than that of the Upwind Forward Euler scheme.

4.3 Unconditionally Positive Finite Difference Scheme

When discretised by the Unconditionally Positive Finite Difference Scheme [6], Eq.(1) gives

un+1
m − unm

k
+

un+1
m − unm−1

h
−

unm+1 − 2un+1
m + unm−1

h2
= −un+1

m ,

which simplifies as

un+1
m =

unm + (λ+ β)unm−1 + βunm+1

1 + k + λ+ 2β
, (29)
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where λ = k
h and β = k

h2 .

Stability

The amplification factor of the UPFD scheme is given by

ξ =
1 + (λ+ 2β) cosω

1 + k + λ+ 2β
− I

[
λ sinω

1 + k + λ+ 2β

]
. (30)

The scheme is positive definite for all k, h > 0. Hence, the scheme is unconditionally stable for all
h, k > 0.

Consistency

To obtain the truncation errors for the Unconditionally Positive Finite Difference method, we substi-
tute Eqs.(12)-(14) in the finite difference scheme given by Eq.(29). Substituting these equations and
simplifying, we obtain

∂u

∂t
+

∂u

∂x
− ∂2u

∂x2
= −u−

(
k +

k

h
+

2k

h2

)
∂u

∂t
−
(
k

2
+

k2

2
+

k2

2h
+

k2

h2

)
∂2u

∂t2

−
(
k2

6
+

k3

6
+

k3

6h
+

k3

3h2

)
∂3u

∂t3
+

h

2

∂2u

∂x2
− h2

6

∂3u

∂x3
+ · · · (31)

For the scheme to be consistent, we require k = h3 which gives

∂u

∂t
+

∂u

∂x
− ∂2u

∂x2
= −u−

(
h3 + h2 + 2h

)
∂u

∂t
− h3

2

(
1 + h2 + 2h+ h3

)
∂2u

∂t2

− h6

6

(
1 + h2 + 2h+ h3

)
∂3u

∂t3
+

h

2

∂2u

∂x2
− h2

6

∂3u

∂x3
+ · · · (32)

When h → 0 we can see that Eq.(32) reduces to Eq.(1), hence the Unconditionally Positive Finite
Difference Scheme is consistent when k = h3.

Spectral Analysis

Using Eqs. (17) and (30) with h = 0.1, the relative phase error is given by

RPE =
1

kθ
tan−1

(
−10k sinω

1 + 210k cosω

)
. (33)
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Figure 5: Plot of the exact AFM and AFM of the Unconditionally Positive Finite Difference scheme for
Eq.(1) with k = 0.001 and h = 0.1.
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Figure 6: Plot of relative phase error vs phase angle for Unconditionally Positive Finite Difference
Scheme discretising Eq.(1) with k = 0.001 and h = 0.1.

The plots of the modulus of amplification factor and relative phase error are shown in Figs. (5) and
(6). We note that the relative phase error for the scheme is not one when ω = 0. This could be due to
the presence of extra truncation error terms resulting from the approximation of first and second order

derivative terms
∂u

∂x
,
∂2u

∂x2
at different time levels. Also, we observe that the scheme is less dissipative

than the partial differential equation as the phase angle increases.

5 Numerical Results for Experiment 1

We tabulate the error rate with respect to L1 norm, dissipation, dispersion, and total errors in Tables
(1) to (3) for the three numerical schemes.
We observe that for the Upwind Forward Euler and NSFD schemes, the errors are dependent on the
temporal step size when h is chosen as 0.1. The errors decrease as k is increased, at a fixed h which
is 0.1. Also, the dissipation error is slightly greater than the dispersion error for the five values of k
chosen for both schemes.
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From Figs. (2) and (4), we observe that as k increases, the plots for numerical amplification factor
deviate more from the exact amplification factor. However when we tabulate the results we observe
that Enum, dissipation error, dispersion error, total error decreases as k increases. This is because of the
numerical effects of dispersion and dissipation prevalent in numerical methods. In Figs. (2) and (4), we
are comparing the dissipation only. However, using the notion of composite schemes [5], the dispersion
in a scheme is reduced by the inherent dissipation. A composite scheme made up of Lax-Wendroff
and Lax-Friedrichs has better dispersive and dissipative properties than either Lax-Wendroff or Lax-
Friedrichs. Hence to understand the efficiency of a scheme, it is better to look at both the dispersive
and dissipative properties.

The Unconditionally Positive Finite Difference Scheme at h = 0.1 is consistent only at k = 0.001. From
Tables (1) to (3), the Non-Standard Finite Difference scheme at k = 0.85

180 , h = 0.1 is the best scheme.
The Upwind Forward Euler and NSFD scheme are best when k = 0.85

180 . Fig. (7) shows the exact and
numerical solutions by Upwind Forward Euler and NSFD schemes with k = 0.85

180 and Unconditionally
Positive Finite Difference with k = 0.001. The Unconditionally Positive Definite scheme gives best
results when k = 0.005, h = 0.1 though it is not consistent for these values of k and h. The scheme is
still stable at k = 0.005 unlike the Upwind Forward Euler and Non-Standard Finite Difference Scheme.
Also the errors increase as k is increased at a fixed h (h = 0.1) in the case of the Unconditionally
Positive Finite Difference scheme.

k No of time steps L1 error Dissipation Error Dispersion Error Total Error

0.001 851 3.4013× 10−2 1.9150× 10−5 1.3679× 10−5 3.2829× 10−5

0.85
527 528 3.3810× 10−2 1.8923× 10−5 1.3519× 10−5 3.2442× 10−5

0.002 426 3.3782× 10−2 1.8780× 10−5 1.3418× 10−5 3.2198× 10−5

0.85
212 213 3.3017× 10−2 1.8047× 10−5 1.2900× 10−5 3.0947× 10−5

0.85
180 181 3.2881× 10−2 1.7791× 10−5 1.2118× 10−5 3.0210× 10−5

Table 1: Errors for Upwind Forward Euler Finite Difference Scheme for Problem 1.

k No of time steps L1 error Dissipation Error Dispersion Error Total Error

0.001 851 3.3340× 10−2 1.8402× 10−5 1.3146× 10−5 3.1549× 10−5

0.85
527 528 3.2724× 10−2 1.7732× 10−5 1.2670× 10−5 3.0401× 10−5

0.002 426 3.2336× 10−2 1.7315× 10−5 1.2373× 10−5 2.9688× 10−5

0.85
212 213 3.0323× 10−2 1.5230× 10−5 1.0891× 10−5 2.4910× 10−5

0.85
180 181 2.9609× 10−2 1.4523× 10−5 1.0387× 10−5 2.4910× 10−5

Table 2: Errors for Non-Standard Finite Difference Scheme for Problem 1.

k No of time Steps L1 error Dissipation Error Dispersion Error Total Error

0.0005 1701 3.2800× 10−2 1.8155× 10−5 1.2932× 10−5 3.1086× 10−5

0.001 851 9.2257× 10−2 1.4700× 10−4 1.0500× 10−4 2.5200× 10−4

0.002 426 1.9340× 10−1 6.7025× 10−4 4.7903× 10−4 1.1000× 10−3

0.005 171 4.0430× 10−1 3.2000× 10−3 2.2000× 10−3 5.4000× 10−3

Table 3: Errors for Unconditionally Positive Finite Difference scheme for Problem 1.
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Figure 7: Plots of numerical solution from Upwind Forward Euler, Non-Standard Finite Difference and
Unconditionally Positive Finite Difference schemes at time, T = 0.85.
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Figure 8: Plots of absolute errors from Upwind Forward Euler, Non-Standard Finite Difference and
Unconditionally Positive Finite Difference schemes at time, T = 0.85.
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(a) Upwind Forward Euler scheme with k = 0.85
180

. (b) NSFD scheme with k = 0.85
180

.

(c) UPFD scheme with k = 0.001.

Figure 9: Numerical solutions using Upwind Forward Euler, NSFD and UPFD schemes plotted vs
t ∈ [0, 0.85] vs x ∈ [0, 10].

6 Numerical Solution of ut − (Dux)x = ru(1− u)

In this section, we use the three methods discussed in section 5 in order to solve ut−(Dux)x = ru(1−u),
subject to specified initial and boundary conditions.

6.1 Upwind Forward Euler Finite Difference Scheme (UPFD)

The scheme when used to discretise Eq.(3) is given by [6]

un+1
m − unm

k
−D

(
unm+1 − 2unm + unm−1

h2

)
= runm(1− unm),

which simplifies to

un+1
m = (1− 2β)unm + kr(1− unm)unm + β(unm+1 + unm−1), (34)
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where β = Dk
h2 .

Stability

The Fourier series analysis can only be applied directly to linear problems with constant coefficients.
Since our problem is non-linear, the method will have a drawback. To overcome this drawback, we
linearise the problem and freeze the coefficients[8]. The Fourier series analysis can then be applied to
determine the region of stability thereafter.

Taha and Ablowitz [16] have obtained the stability of a scheme proposed by Zabusky and Kruskal [17]
for the KdV equation using the method of freezing coefficients. The scheme derived by Zabusky and
Kruskal for the KdV equation, ut + 6 u ux + uxxx = 0 is

un+1
m = un−1

m − 2k

h
(unm+1 + unm + unm−1) (u

n
m+1 − unm−1)−

k

h3
(unm+2 − 2unm+1 + 2unm−1 − unm−2).

Using the method of freezing coefficients and Fourier analysis, they write uux as umax ux and substitute
the ansatz unm = ξn exp(Imω) where ω is the phase angle.
The amplification polynomial is given by

ξ = ξ−1 − 2k

h
umax(2I sin(ω))−

k

h3

(
exp(2Iω)− 2 exp(Iω) + 2 exp(−Iω)− exp(−2Iω)

)
,

and the region of stability is obtained as

k

h
≤ 2

3
√
3(2 umax − 1

h2 )
.

We use the same approach used by Taha and Ablowitz to obtain the stability of schemes discretising
ut − (Dux)x = ru(1− u).

Using Eq.(34), we have

un+1
m = unm +

Dk

h2
(
unm+1 − 2unm + unm−1

)
+ krunm − (krunm)umax, (35)

where umax is the frozen coefficient.
Applying Fourier series analysis to Eq.(35), we obtain the amplification factor as

ξ = 1 +
2Dk

h2
(cosω − 1) + kr(1− umax). (36)

Using the trigonometric identity, 1− cosω ≡ 2 sin2(ω2 ), we obtain

ξ = 1− 4Dk

h2
sin2

(ω
2

)
+ kr(1− umax). (37)

When ω = 0, we must have ξ = 1. Hence we choose umax = 1.0. Also, we choose D = 0.0002, h = 0.01
and r = 0.05. We thus have

ξ = 1− 8k sin2
(ω
2

)
, (38)

where −π ≤ ω ≤ π.
and for stability, we have

0 < k ≤ 0.25. (39)
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Consistency

To obtain the truncation errors for the Upwind Forward Euler finite difference scheme, we need to first
determine the Taylor expansion of the terms in Eq.(34) about the grid point (m,n). Substituting Eqs.
(12)-(14) in (34) and simplifying, we have

∂u

∂t
−D

∂2u

∂x2
= ru(1− u)− k

2

∂2u

∂t2
− k2

6

∂3u

∂t3
+ · · · (40)

As k → 0 , Eq. (40) reduces to Eq.(3) and so the Upwind Forward Euler finite difference scheme is
consistent.
Fig. (10) shows the variation of the modulus of amplification factor for the Upwind Forward Euler
scheme vs phase angle at h = 0.01, with some different values of k. As k increases, for a given angle,
the numerical dissipation increases.
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Figure 10: Plot of modulus of amplification factor for Upwind forward Euler scheme for some values of
k, with h = 0.01, when umax = 1.0.

Spectral Analysis

To study the dispersion of numerical schemes discretising the partial differential equation,

∂u

∂t
= 2 α u

∂u

∂x
+ γ

∂u

∂x
+ ν

∂3u

∂x3
, (41)

Asher and McLachlan [4] considered the linearised version of Eq.(41) which is

∂u

∂t
= γ

∂u

∂x
+ ν

∂3u

∂x3
. (42)

We use the same approach that they used. The linearised form of Eq.(3) is given by

∂u

∂t
−D

∂2u

∂x2
= ru. (43)

We then consider the perturbation

u(x, t) = eαt eIθx. (44)
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Substituting Eq.(44) in (43) and solving for the dispersion relation, α, we obtain

α = r −Dθ2. (45)

Since the dispersion relation does not have an imaginary part, the relative phase error cannot be
computed using the formula in Eq.(21).

6.2 Non-Standard Finite Difference Scheme

Eq. (3) is approximated by [11]

un+1
m − unm

k
−D

(
unm+1 − 2unm + unm−1

h2

)
= runm − r

(
unm+1 + unm + unm−1

3

)
un+1
m ,

which simplifies to

un+1
m =

(1 + kr − 2β)unm + β(unm+1 + unm−1)

1 + kr
(
un
m+1+un

m+un
m−1

3

) , (46)

where β = Dk
h2 .

Stability

Applying the Fourier series analysis and the method of freezing coefficients to Eq.(46), we obtain the
amplification factor for the NSFD scheme as

ξ =
1 + kr + 2Dk

h2 (cosω − 1)

1 + krumax
. (47)

Using the trigonometric identity, 1− cosω ≡ 2 sin2(ω2 ) we have

ξ =
1 + kr − 4Dk

h2 sin2(ω2 )

1 + krumax
. (48)

When ω = 0, we must have ξ = 1, hence umax is chosen as 1.0.
Setting D = 0.0002, r = 0.05, h = 0.01 and umax = 1.0, the amplification factor is given as

ξ =
1 + 0.05k − 8k sin2(ω2 )

1 + 0.05k
.

For stability, we have

−1 ≤
1 + 0.05k − 8k sin2(ω2 )

1 + 0.05k
≤ 1.

Since this condition must hold for every phase angle, ω ∈ [−π, π] we have 8k ≤ 2 + 0.1k which gives
k ≤ 0.253. Hence the region of stability is given by

0 < k ≤ 0.253.

We note that in [6], they have used k = 0.26 when h is chosen as 0.01. However, from our stability
analysis, we observe that the Upwind Forward Euler and NSFD schemes are not stable for k > 0.25
and k > 0.253 respectively.
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Consistency

To obtain the truncation errors of the NSFD scheme, we need to first determine the Taylor expansion
of the terms in Eq. (46) about (m,n). Substituting Eqs.(12)-(14) in (46) and simplifying, we have

∂u

∂t
−D

∂2u

∂x2
= ru(1− u)− rh

3
u2 −

(
rku+

rkh

3
u

)
∂u

∂t
−
(
k

2
+

k2r

2
u+

rk2h

6
u

)
∂2u

∂t2

−
(
k2

6
+

rk3

6
u+

rhk3

18
u

)
∂3u

∂t3
+ · · · (49)

As k → 0 and h → 0, Eq.(49) reduces to Eq. (3) and hence the NSFD scheme is consistent.

Fig.(11) shows the modulus of amplification factor vs phase angle for the Non-Standard Finite Difference
scheme for some values of k, with h = 0.01. It is seen that the scheme is stable for 0 < k ≤ 0.253.
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Figure 11: Plot of modulus of amplification factor vs ω ∈ [0, π] for Non-Standard Finite Difference
scheme for some values of k, with h = 0.01, with umax = 1.0.

6.3 Unconditionally Positive Finite Difference Scheme

The UPFD scheme when used to approximate Eq.(3) is given by [6]

un+1
m − unm

k
−D

(
unm+1 − 2un+1

m + unm−1

h2

)
= runm − runmun+1

m ,

which simplifies to

un+1
m =

(1 + kr)unm + β(unm+1 + unm−1)

1 + 2β + krunm
, where β =

Dk

h2
. (50)

Stability

Applying the Fourier series analysis and method of freezing coefficients to Eq.(50), we obtain the
amplification factor for the Unconditionally Positive Finite Difference scheme given as

ξ =
1 + kr + 2β cosω

1 + 2β + krumax
.
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where β = Dk
h2 .

When ω = 0, we must have ξ = 1. Hence umax = 1.0
Setting D = 0.0002, r = 0.05, h = 0.01 and umax = 1.0, we have amplification factor given by

ξ =
1 + 4k cosω + 0.05k

1 + 4.05k
. (51)

The scheme is unconditionally stable.
We note that the UPFD scheme is unconditionally stable while the NSFD and Upwind Forward Euler
methods have almost the same region of stability.
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Figure 12: Plots of modulus of amplification factor for Unconditionally Positive Finite Difference scheme
for k = h3, with h = 0.01.

6.4 Consistency

To obtain the truncation errors for the Unconditionally Positive Finite difference scheme we need to
first determine the Taylor expansion of the terms in Eq.(50) about (m,n). Substituting Eqs.(12)-(14)
in (50) and simplifying we have

∂u

∂t
−D

∂2u

∂x2
= ru(1− u)−

(
kru+

2Dk

h2

)
∂u

∂t
−
(
k

2
+

Dk2

h2
+

k2r

2
u

)
∂2u

∂t2

−
(
k2

6
+

Dk3

3h2
− k3r

6
u

)
∂3u

∂t3
+ · · · (52)

To ensure that the UPFD scheme is consistent, we choose the time step that depends on the spatial
step such that the truncation error reduces to zero. For this reason we let k = h3. Hence, we have

∂u

∂t
−D

∂2u

∂x2
= ru(1− u)−

(
h3ru+ 2Dh

)
∂u

∂t
− h3

2

(
1 + 2Dh+ rh3u

)
∂2u

∂t2

− h6

6

(
1 + 2Dh+ rh3u

)
∂3u

∂t3
+ · · · (53)

As h → 0, Eq. (53) reduces to Eq.(3) and so the scheme is consistent.
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7 Numerical Results for Experiment 2

We tabulate the error rate with respect to L1 norm, dissipation, dispersion and total error in Tables (4)
to Table (6) for the three numerical schemes. Based on Tables (4) to (6), we observe that dispersion
error is greater than dissipation error at a given value of k for all the three schemes. As k increases,
dissipation, dispersion error and total errors are not very much affected.
In the case of Upwind Forward Euler finite difference scheme, Enum is smallest when k = 0.125 and the
total error is least when k = 0.050. In the case of Non-Standard Finite Difference scheme, errors either
increase or decrease as k is increased i.e there is no general behaviour. The NSFD scheme performs best
at k = 0.125 with Enum and total error being 5.5968 × 10−2 and 6.8480 × 10−3. The values for Enum

and Total error are 5.6085×10−2 and 6.8630×10−3 respectively for the Unconditionally Positive Finite
Difference scheme when it is consistent with k = 10−6 and h = 0.01 and consequently it took several
hours to obtain the results from the code in Matlab using this scheme.

k No of time steps L1 error Dissipation Error Dispersion Error Total Error

0.025 521 5.6103× 10−2 2.6710× 10−3 4.1980× 10−3 6.8700× 10−3

0.050 261 5.6146× 10−2 2.6800× 10−3 4.2040× 10−3 6.8440× 10−3

0.075 174 5.6072× 10−2 2.6750× 10−3 4.1970× 10−3 6.8720× 10−3

0.100 130 5.6116× 10−2 2.6750× 10−3 4.2070× 10−3 6.8820× 10−3

0.125 105 5.6042× 10−2 2.6620× 10−3 4.2030× 10−3 6.8650× 10−3

0.150 88 5.6554× 10−2 2.7430× 10−3 4.2550× 10−3 6.9980× 10−3

0.175 75 5.6070× 10−2 2.6860× 10−3 4.2030× 10−3 6.8880× 10−3

0.200 66 5.6289× 10−2 2.7110× 10−3 4.2310× 10−3 6.9410× 10−3

0.225 59 5.6509× 10−2 2.7360× 10−3 4.2590× 10−3 6.9940× 10−3

0.250 53 5.6509× 10−2 2.7360× 10−3 4.2590× 10−3 6.9940× 10−3

Table 4: Errors for Upwind Forward Euler Finite Difference scheme for Problem 2.

k No of time steps L1 error Dissipation Error Dispersion Error Total Error

0.025 521 5.6087× 10−2 2.7000× 10−3 4.1870× 10−3 6.8670× 10−3

0.050 261 5.6116× 10−2 2.6870× 10−3 4.1910× 10−3 6.8780× 10−3

0.075 174 5.6027× 10−2 2.6800× 10−3 4.1820× 10−3 6.8620× 10−3

0.100 130 5.6056× 10−2 2.6780× 10−3 4.1900× 10−3 6.8680× 10−3

0.125 105 5.5968× 10−2 2.6630× 10−3 4.1850× 10−3 6.8480× 10−3

0.150 88 5.6465× 10−2 2.7420× 10−3 4.2340× 10−3 6.9760× 10−3

0.175 75 5.5957× 10−2 2.6830× 10−3 4.1800× 10−3 6.8630× 10−3

0.200 66 5.6171× 10−2 2.7060× 10−3 4.2060× 10−3 6.9120× 10−3

0.225 59 5.6375× 10−2 2.7290× 10−3 4.2320× 10−3 6.9610× 10−3

0.250 53 5.6112× 10−2 2.6970× 10−3 4.2050× 10−3 6.9020× 10−3

Table 5: Errors for Non-Standard Finite Difference scheme for Problem 2.

k No of time Steps L1 error Dissipation Error Dispersion Error Total Error

1.0× 10−6 13× 106 5.6085× 10−2 2.6690× 10−3 4.1930× 10−3 6.8630× 10−3

Table 6: Errors for Unconditionally Positive Finite Difference scheme for Problem 2.
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Figure 13: Plots of numerical solution from Upwind Forward Euler (k = 0.125), NSFD (k = 0.125),
UPFD (k = 1.0× 10−6) and exact solution at time, T = 13.
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Figure 14: Plots of absolute error for the Upwind forward Euler (k = 0.125), NSFD(k = 0.125) and
UPFD (k = 1.0× 10−6) schemes with h = 0.01.

23



(a) Upwind Forward Euler scheme with k =
0.125

(b) NSFD scheme with k = 0.250

(c) UPFD scheme with k = 1.0× 10−6

Figure 15: Numerical solutions using Upwind Forward Euler, NSFD and UPFD schemes plotted vs
time, t ∈ [0, 13] vs space, x ∈ [0, 1].

8 Conclusion

In this paper, three finite difference schemes have been used to solve a linear and a non-linear advection-
diffusion-reaction equation, both with constant convective velocity and diffusion. The errors from the
Non-Standard Finite Difference scheme are less than that for the Upwind Forward Euler scheme and
Unconditionally Positive Finite Difference scheme for the first experiment. For the second experiment
which models a non-linear diffusion reaction, the errors for the three schemes are not very different at
a given value of h and k.
The Unconditionally Positive Finite Difference scheme suffers a drawback when it comes to consistency.
When spatial step becomes smaller, the computations requires more CPU time and power. This draw-
back was experienced in experiment 2 where the number of time steps required was 1.3× 107.
In the two cases considered, the velocity was constant, i.e we have a steady fluid flow. However we can
also have transient fluid flow where the velocity can be dependent on time. The analysis of dispersive
and dissipative properties of numerical methods in the case of transient fluid flow can be very compli-
cated as we have additional parameters involved. One way to handle transient fluid flow problems is to
consider higher order Nonstandard finite difference schemes such as those used in Anguelov et al. [1] as
first order methods cannot handle such problems.
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