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Abstract

The total generalised colourings considered in this paper are colourings of

the vertices and of the edges of graphs satisfying the following conditions:

• each set of vertices of the graph which receive the same colour induces an

m-degenerate graph,

• each set of edges of the graph which receive the same colour induces an

n-degenerate graph, and

• incident elements receive different colours.

Bounds for the least number of colours with which this can be done for all

k-degenerate graphs are obtained.
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1. Introduction

For graphs in general, we use the notation and terminology of [4]; for

concepts related to (hereditary) graph properties we use the notation and

terminology of [1]. Two particular graph properties to be used in the sequel

are O and O1, where O = {G ∈ I : G is edgeless, i.e., E(G) = ∅} and

Ok = {G ∈ I : each component of G has at most k + 1 vertices} and I is

the set of all graphs.

A graph G is called k-degenerate if the minimum degree δ(H) ≤ k for

each induced subgraph H of G. The set of all k-degenerate graphs will be

denoted by Dk; it is a well-known additive induced hereditary graph property.

k-degenerate graphs were introduced in [8] and they play an important role

in the structure of hereditary properties of graphs (see e.g. [9], [10]).

Let P and Q be graph properties and let C = {1, . . . , d}. If G = (V,E)

is a graph, then a function c : V ∪E → C is a total (P ,Q)-colouring of G in

d colours if

(1) G[{c−1(i)} ∩ V ] ∈ P , for all i ∈ C,

(2) G[{c−1(i)} ∩ E] ∈ Q, for all i ∈ C,

(3) if e = vu ∈ E (with v, u ∈ V ), then c(v) 6= c(e) and c(u) 6= c(e), i.e.,

no vertex receives the same colour as any edge incident to it.

The minimum number of colours needed in a total (P ,Q)-colouring of G is

called the total (P ,Q)-chromatic number and is denoted by χ
′′
P,Q(G) (see

[2]). Clearly, when P = O and Q = O1, a total (P ,Q)-colouring of a graph

G is nothing but a total colouring of G so that χ
′′
O,O1

(G) = χ
′′
(G). This
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parameter is studied in [7] where it is shown that an s-degenerate graph has

a total colouring with ∆ + 1 colours if the maximum degree ∆ is sufficiently

large.

2. Motivation

To know the minimum number, or at least a bound for the minimum number

of colours needed in a total (P ,Q)-colouring of a graph G, implies that we

know in how many parts we can partition the vertices and the edges of the

graph separately while imposing a restriction on the structure of each of

these parts. In fact, we impose restrictions on the subgraph induced by

each vertex part (by choosing a suitable P) which are independent of the

restrictions posed on the subgraph induced by each edge part (by choosing

a suitable Q). We shall now describe a possible application of this type of

partition problem for networks which can be represented as graphs.

The theory of wireless sensor networks has become important in our

modern day and age – see [3] for example. This is due to its many potential

applications in process management, health care, environmental sensing, etc.

Furthermore, this theory has interesting challenging theoretical problems.

A wireless sensor network (WSN) differs from a computer network in

that it has limited capabilities of the sensors which could be caused by low

energy sources or low computational capacity. Pairs of sensors typically com-

municate through designated channels. Because of potential collisions and

interferences and a limited capability of the sensor involved, the number of

communication channels linked to one sensor may be limited. In order to se-

cure the communication sent through this network one can assign certificates
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to sensors. Again, due to limited computational capacity, it is only possible

to use a fixed, but limited, number of certificates. On the other hand, the

communication will be safer, if the same certificate is not used repeatedly.

Such a network may therefore fail to function far away from maintenance

engineers, deep under the sea or in outer space for example, if the limitation

specifications imposed in its design are not strict enough for it to handle its

task. It is therefore a reasonable option to structure its design in such a way

that some parts of the WSN may still function optimally in such a situation.

This option calls for labellings of the sensors and the communication chan-

nels during the design phase of the WSN in such a way that the subnetworks

determined by sets of equally labelled sensors and equally labelled commu-

nication channels have suitable structural limitations to make parts of the

network still functional.

This situation corresponds to a great extent to the problem we study in

this paper: Think about the network as the graph G having as vertex set V

the set of sensors and as edge set E the set of its communication channels.

The limited number of communication channels linking one sensor to others

may then be translated into a degree restriction for the vertices of the graph

linking it to the graph G being k-degenerate for a suitable choice of k.

By determining for such a graph G its total (Dm,Dn)-chromatic number

χ
′′
Dm,Dn

(G), one obtains information on how many subnetworks of a similar

kind, which could ensure that such subnetworks remain functional in case

of a failure of the WSN, are needed. Condition (3) in the definition of a

total (P ,Q)-colouring of a graph is perhaps not applicable to this situation.

However, any upper bound on the number of colours needed can only be
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improved on by relaxing this condition.

Our particular choice of degree restrictions of the vertices of the subnet-

works ensure stricter restrictions on its structural design. It was shown in [6]

that WSN with degenerate topologies possesses specific properties that are

very important for communication protocol design.

In this paper we then study, for positive integers m,n and k, the total

(Dm,Dn)-chromatic number χ
′′
Dm,Dn

(G) of a graph G with G ∈ Dk.

3. The total colouring of degenerate graphs

In our first result we give an upper bound for χ
′′
Dm,Dn

(G) for a graph G ∈ Dk.

Theorem 1. For every three positive integers m,n and k and for every G ∈

Dk we have χ
′′
Dm,Dn

(G) ≤ max
{⌈

k+1
m+1

⌉
,
⌈
k
n

⌉
+ 2
}
.

Proof. Consider any three positive integers m,n and k. We denote, for

convenience, the number max
{⌈

k+1
m+1

⌉
,
⌈
k
n

⌉
+ 2
}

by x. The proof is by in-

duction over the number of vertices of G. If G has only one vertex, the result

holds since then χ
′′
Dm,Dn

(G) = 1 while x ≥ 3 for all positive integers m,n and

k.

Hence suppose the result holds for all k-degenerate graphs of order at

most p − 1 and let G be one of order p. Then G has a vertex of degree

at most k; suppose v is such a vertex. Since G − v is also k-degenerate,

the induction hypothesis assures us that χ
′′
Dm,Dn

(G − v) ≤ x. Consider a

total (Dm,Dn) colouring of G − v using x colours, which we will denote

by 1, 2, . . . , x, and let, W1,W2, . . . ,Wx be the colour classes into which the
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subset of V (G − v) consisting of those vertices which are adjacent to v is

partitioned by this colouring of the vertices of G− v.

We claim that at least one set Wi then contains at most m vertices.

This is so since x ≥
⌈

k+1
m+1

⌉
and hence x ≥ k+1

m+1
, i.e., x(m + 1) ≥ k + 1.

Hence, if each Wi contains at least m + 1 vertices, then the degree of v is

|
⋃

j Wj |≥ x(m+ 1) ≥ k + 1 which contradicts the fact that the degree of v

is at most k.

Therefore at least one of the Wi’s, say Wx, contains at most m vertices:

we can therefore colour v with x to complete the colouring of the vertices of G

with x colours such that each colour class of vertices induces an m-degenerate

graph as required.

In order to colour the edges incident to v without violating the incidence

condition, each of the k edges incident to v must be coloured by a colour

different from the colours of its endvertices; we shall call such a colour ad-

missible at the edge. This means that we have x − 2 possibilities for each

edge incident to a vertex with colour different from x and x− 1 possibilities

for each edge of which both endvertices are coloured by x.

We shall show that we can assign colours to the edges incident to v is

such a way that:

• the incidence condition for vertices and edges will not be violated;

• any colour will be used for at most n edges incident to v.

Clearly, once this is done the induction step is completed and we have a total

colouring of G with the desired properties.

In order to show it, let us construct a network N corresponding to G in
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the following way:

s

t

c1 c2 cx−1 cx

w1 wk′ wk′+1
wk

W
W

n n
n n

1 1 1 1

1 1 1 1 1 1 1 1

Figure 1: The Network N with the s− t-cut (W,W )

• Let V (N) = {s, t, c1, . . . , cx, w1, . . . , wk} where s and t are the source

and the target of N respectively, {c1, . . . , cx} is the set of colours

{1, 2, . . . , x} and {w1, . . . , wk} is the set of k edges incident to the ver-

tex v. (If v is of degree less than k, we can first add edges, even multiple

edges, and work with v as if it is of degree k.)

• Add x arcs, [s, ci], i = 1, 2, . . . , x, each with capacity n.

• Add an arc [ci, wj] with capacity 1 for each i = 1, 2, . . . , x and each

j = 1, 2, . . . , k for which the colour ci is admissible at wj.
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• Add k arcs, [wj, t], j = 1, 2, . . . , k, each with capacity 1.

One can easily see that such a network has non-zero integer flow (since

the capacities of all the arcs are integers). According to the Ford-Fulkerson

theorem ([5]) the maximum s− t-flow in the network is equal to the capacity

of a minimum s − t-cut. We shall now prove that a minimum s − t-cut has

capacity k.

The arcs between {w1, . . . , wk} and t form the s− t-cut (T, T ) with T =

{s, c1, . . . , cx, w1, . . . , wk} and has capacity is k; hence a minimum s − t-cut

has capacity at most k. On the other hand

• the cut (S, S) with S = {s} formed by all the arcs from s to {c1, . . . , cx}

has capacity x · n = max
{⌈

k+1
m+1

⌉
,
⌈
k
n

⌉
+ 2
}
· n ≥ k + 2n > k.

• the s− t-cut (U,U) formed by all arcs from {c1, . . . , cx} to {w1, . . . , wk}

has total capacity at least k · (x− 2) ≥ k since x ≥ 3.

• any s−t-cut (W,W ), as depicted in Figure 1, which does not contain all

the arcs of either of the above three has to miss some arcs of each of the

forms [s, ci], [ci, wj] and [wj, t]; suppose it contains only k′ < k of the

third kind; suppose (without loss of generality) they are w1, . . . , wk′ .

If there is for each wj, j = k′, . . . , k an admissible colour in W , then

the arcs from these admissible colours to these wj’s contribute at least

k−k′ to the capacity of this cut. Hence, in this case, the total capacity

of this cut is at least k′ + k − k′ = k. If, on the other hand, there is

a wj for some j = k′, . . . , k for which there is no admissible colour in

W , then all the (at least) x − 2 admissible colours for this wj are in

W . But then each arc of the form [s, ci], for each such colour ci, is
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then in (W,W ) and therefore contributes n to the capacity of the cut.

The total capacity of this cut is therefore at least (x− 2) · n ≥ k since

x ≥
⌈
k
n

⌉
+ 2.

Now we assign the arc corresponding to wj, i = 1, 2, . . . , k the colour i

such that [ci, wj] has flow of size 1. Since the flow is integral and the capacity

of each arc [wj, t] is 1, the assignment is unique. The structure of the arc

between ci and wj guarantees that the incidence condition is not violated and

the structure and capacities of arcs originating in s ensures that no colour is

assigned more than n times.

This completes the induction step and the proof of the theorem. �

In Theorem 1, we have an upper bound for χ
′′
Dm,Dn

(G) if G ∈ Dk. Next

we focus on the complete graph Kk+1, which is in Dk too, and find a lower

bound for χ
′′
Dm,Dn

(G). As it turns out, we only need to change the part of

the maximum in the formula for x which is closely related to the number of

edges involved.

Theorem 2. For every three positive integers m,n and k we have the fol-

lowing χ
′′
Dm,Dn

(Kk+1) > max
{⌈

k+1
m+1

⌉
,
⌈

k(k+1)
n+2kn−n2

⌉}
− 1.

Proof. In this proof, we denote, for every three positive integers m,n and

k, the value max
{⌈

k+1
m+1

⌉
,
⌈

k(k+1)
n+2kn−n2

⌉}
by y. Suppose, for a proof by contra-

diction, that χ
′′
Dm,Dn

(Kk+1) ≤ y−1 and consider any total (Dm,Dn)-colouring

of Kk+1 using only y−1 colours. Then, since y = max
{⌈

k+1
m+1

⌉
,
⌈

k(k+1)
n+2kn−n2

⌉}
,

we have that y−1 <
⌈

k+1
m+1

⌉
or y−1 <

⌈
k(k+1)

n+2kn−n2

⌉
and hence that y−1 < k+1

m+1

or y − 1 < k(k+1)
n+2kn−n2 .
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In order to show that such a total (Dm,Dn)-colouring of Kk+1 does not

exist, we consider two cases:

Case 1: y − 1 < k+1
m+1

In this case we have that (y − 1)(m+ 1) < k + 1. Hence, no matter how we

colour the vertices of Kk+1 using y − 1 colours with at most m + 1 vertices

receiving the same colour (which is the best we can do since any monochro-

matic set with more than m+ 1 vertices induces a complete subgraph which

is regular of degree more than m+ 1 and hence is not in Dm), not all of the

k + 1 vertices of Kk+1 will be coloured.

Case 2: y − 1 < k(k+1)
n+2kn−n2

In this case we have (y− 1)(n+ 2kn−n2) < k(k+ 1) and we shall show that

it is impossible to colour the edges of Kk+1 in y − 1 colours of which each

monochromatic set of edges induces a subgraph of Kk+1 which is in Dn.

Suppose, to the contrary, that there is such a colouring of the edges of

Kk+1. Consider a labelling v1, . . . , vk+1 of the vertices of Kk+1 and a labelling

c1, . . . , cy−1 of the colours used. One can clearly change the colours of (some)

edges of colour ci with i > 1 to have colour c1 (if needed) and choose another

labelling of the vertices (if needed) until the subgraph induced by the set of

edges of colour c1 consists of:

• a complete graph on the vertices v1, . . . , vn+1, while

• each of the k − n vertices vi with i > n + 1 is adjacent to exactly n

vertices with smaller labels.

The subgraph induced by the set of edges of Kk+1 of colour c1 then has

exactly n(n+1)
2

+ (k − n)n edges while the subgraph induced by the set of
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edges of Kk+1 of every other colour ci then has at most this number of edges.

But then the total number of edges which are coloured is at most

(y − 1)

(
n(n+ 1)

2
+ (k − n)n

)
=

(y − 1)(n+ 2kn− n2)

2
<
k(k + 1)

2
,

by the assumption of this case. This, however, is a contradiction since Kk+1

has k(k+1)
2

edges.

This completes the proof of the theorem. �

It is not very difficult to see that the expression k
n

+ 2 majorizes the

expression k(k+1)
n+2kn−n2 + 1 if k ≥ n − 1. Furthermore, k+1

m+1
majorizes k

n
+ 2 if

k(n−m− 1) ≥ n(2m+ 1). Hence the value of the invariant is often equal to⌈
k+1
m+1

⌉
.
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