
1

Design and Implementation of a Wireless OBD II Fleet Management 
System

Reza Malekian, Member, IEEE, Ntefeng Ruth Moloisane, Lakshmi Nair, Member, IEEE,
BT(Sunil) Maharaj, Member, IEEE, and Uche A.K. Chude-Okonkwo, Member, IEEE

Abstract—This paper describes the work that has been done
in the design and development of a wireless OBD II fleet
management system. The system aims to measure speed, distance
and fuel consumption of vehicles for tracking and analysis
purposes. An OBD II reader is designed to measure speed and
mass air flow, from which distance and fuel consumption are
also computed. This data is then transmitted via WiFi to a
remote server. The system also implements GPS tracking to
determine the location of the vehicle. A database management
system is implemented at the remote server for the storage and
management of transmitted data and a graphical user interface
(GUI) is developed for analysing the transmitted data . Various
qualification tests are conducted to verify the functionality of
the system. The results demonstrate that the system is capable
of reading the various parameters, and can successfully process,
transmit and display the readings.

Index Terms—OBD II, fleet management, intelligent trans-
portation, speed, mass air flow, distance, fuel consumption, GPS.

I. INTRODUCTION

THE on-board diagnostic system (OBD II) is a standard
which was developed in the United States of America

(USA) in 1996, by the Society of Automotive Engineers
(SAE) [1]. This specification was defined for all manufactured
vehicles to enable the regulation of vehicle emissions, so as
to ensure that the Environmental Protection Agency (EPA)
standards are met.

The standard requires that vehicles have a 16-pin OBD
II port. Sensor data and diagnostic information from the
electronic control unit (ECU) of a vehicle can be measured
from this port.

The development of OBD II also resulted in the develop-
ment of OBD II scanning tools, known as OBD II readers,
which can interface to any vehicle via the 16-pin port. A
scanning tool typically requests information from the ECU by
sending a message containing a hexadecimal code associated
with a specific parameter. These codes are defined by the SAE
J1979 standard [2]. The message would then get interpreted
according to one of five OBD II signalling protocols. The five
OBD II protocols include SAE J1850 (VPW and PWM), ISO
15765, ISO 1941-2 and IS0 142300-4 [3]. The ECU finally
sends back a hexadecimal code in response. Depending on
the specific parameter being measured, the actual measurement
can be obtained by simply converting the returned hexadecimal
value to decimal or by performing a calculation using a
standard formula as defined in [4] for that specific parameter.

OBD II uses two types of codes to request ECU data.
These are Diagnostic Trouble Codes (DTCs) and Parameter

TABLE I
OBD II PIN CONNECTION ADAPTED FROM [1]

Pin Number Description Pin Number Description
1 unconnected 9 unconnected
2 J1850 B+ 10 J1850 B-
3 unconnected 11 unconnected
4 Chassis ground 12 unconnected
5 Signal ground 13 unconnected
6 CAN-H 14 CAN-L
7 ISO K Line 15 ISO L
8 16 Battery

Identifiers (PIDs). DTCs are used to diagnose malfunctions
in various subsystems of the vehicle and PIDs are used to
measure real time parameters. The PID for speed, for instance,
is the hexadecimal value OD. Vehicle manufactures can define
their own PIDs thereby making the on-board system more
sophisticated.

Table I is a summary of the pin connections of an OBD II
reader to the 16- pin connector.

OBD II readers have mostly been utilised for diagnostic
purposes; identifying and reporting specific vehicle faults.
With the advent of various mobile technologies, wireless com-
munication and the global positioning system (GPS), the use
of OBD II readers for real-time tracking and monitoring has
gained popularity, especially in the area of fleet management.

Fleet management is the total management of a company’s
fleet of vehicles, covering every aspect of the life cycle of
a vehicle from procurement to disposal. It is thus important
for companies to employ efficient fleet management systems
to reduce risks, increase quality of service and improve the
operational efficiency of a fleet at minimal cost [5]. Fleet
management also encompasses the analysis of the impact
of transportation on the environment. It was reported in [6]
that approximately 27 % of the total carbon dioxide (CO2)
emissions were as a result of the combustion of fuels from
vehicles.

Vehicle emissions are influenced by driving style and vehi-
cle parameters such as acceleration, speed, distance travelled,
and fuel consumption. Speed and distance information in fleet
management can be utilised for assessing driver behaviour on
the road, prevention of accidents and improved road safety.
Fleet management systems can also avail us with a fuel con-
sumption monitoring capability, which can result in reducing
running costs and environmental pollution.

Existing works, which are detailed in the next section,
have addressed the implementation of OBD II in vehicular
systems. Although most of these works integrate OBD II with



2

capabilities for remote position vehicle tracking and system
diagnosis, few systems provide the capability for an automated
fleet management.

This paper exploits OBD II, GPS, and WiFi technologies
to present the design and development of an OBD II-based
system for fleet management. The developed OBD II reader
can connect to a vehicle’s OBD II port and read real-time
sensor data from a vehicle’s ECU [7], [8]. The OBD II reader
is designed such that it is portable, can be interfaced with any
vehicle model and does not interfere with the driving functions
while connected. The system provides measurements of speed,
distance travelled and fuel consumption. Fuel consumption is
computed from the sensor data, since it cannot be directly
measured by the OBD II reader. Position or location of
the vehicle is also determined by means of a GPS module.
Data from the OBD II reader is transmitted to a remote
server over a WiFi network. The use of the WiFi network is
considered in this work due to its dominance in the range of
technologies for building general purpose wireless networks.
A database management system is implemented for the storage
and management of transmitted data and a graphical user
interface (GUI) is developed for analysing the transmitted data.

The rest of this paper is organised as follows. Section II
reviews the related works that were investigated and consid-
ered important to this project. Section III provides a brief
overview of the modules of the system. Section IV describes
the design and implementation of the system. The observations
and results are discussed in Section V, and finally the paper
concludes with Section VI.

II. RELATED WORK

Various OBD II systems have thus been designed in recent
years to solve automotive related problems. Some of these
works are discussed below.

The integration of OBD II and wireless communication
technologies was observed in [3], where an OBD II system
that measured real time vehicle data was built. The system
interfaced with a car’s ECU through the OBD II connector.
The data received from the ECU was then transmitted to a
remote device via Bluetooth, WiFi, or WCDMA in hexadeci-
mal format. The study mainly focused on integrating various
wireless communication technologies to connect to various
mobile devices. The monitored parameters included vehicle
speed and engine revolution per minute (RPM). A flaw in this
system is that the received data is not meaningful to a casual
user as the hexadecimal data requires decoding.

A system for verification of engine information and diagno-
sis of engine malfunction using a Bluetooth OBD II scanner
was developed in [9]. An Android device was used to receive
the measured or diagnostic data. The system mainly focused
on defining a protocol that enabled transmitting and receiving
of OBD II data from multiple sensors simultaneously. This
study focused on real-time diagnosis of the engine condition,
and data was only made available to the driver of the vehicle.

In [10] an OBD system for obtaining engine diagnostic
data for air-pollution monitoring was integrated with general
packet radio service (GPRS) and GPS technology [11]. Three

ELM integrated chips (ICs) were used to interpret the different
OBD II communication protocols to allow for interfacing with
different car types. The system used an RS-232 interface
between the OBD reader and a mobile phone and sent data in
real-time via GPRS.

The study in [12] used an OBD II reader for acquiring
real time vehicle parameters from the controller area network
(CAN) bus of a hybrid electrical vehicle. The OBD II reader
used the ELM 327 IC to interpret the CAN protocol. The data
was received wirelessly by an Android device over a Bluetooth
network and from the android device, data was sent via GPRS
to a remote server.

The impact of driving behaviour on fuel consumption was
monitored in [13] by measuring various parameters such as
mass air flow using a Bluetooth OBD II reader. An Android
application was used to view the parameters measured for
analysis. The measured data was then sent to a web-based
remote server. This system exploits the advantage of vehicle
on-board systems by using accessible parameters to perform
fuel consumption calculations.

The study in [14] implemented an Android-based applica-
tion that monitored the vehicle via an OBD II interface by
measuring the air-bag trigger and G-force experienced by the
passenger during a collision, to detect accidents.

In most of the studies above, the OBD II reader acted as
an interface between a mobile device and the ECU of the
vehicle. When performing individual vehicle diagnostics or
monitoring, these designs would be suitable. However for fleet
management systems, solutions that are independent of the
type of vehicle and mobile devices in use, are required.

It was also observed from the studies above that real time
vehicle parameters can be measured, however there is a limita-
tion in the parameters measurable using standard PIDs defined
by OBD II. The distance travelled and fuel consumption, for
instance, do not have standard PIDs. These parameters will
have to computed from measurable parameters such as mass
air flow and speed. There are more traditional methods of
measuring speed , as explained in [15]. These include the
use of magnetic sensors, average speed cameras and infra-
red devices [16] which are normally placed on the road. A
disadvantage of using these sensors is that speed can only be
measured at specific points and not continuously.

III. SYSTEM OVERVIEW

A basic overview of the system is given in Figure 1. The
ECU of the vehicle is interfaced with various sensors (sub-
system 1), from which vehicle parameters can be measured.
The OBD II reader (subsystem 2) will be microcontroller
based and will thus also be responsible for the control of the
overall system. The processed data from subsystem 2 will be
transmitted wirelessly to a remote server (subsystem 3) for
data storage and display.

The detailed functions of the subsystems are shown in
Figure 2.

Data acquisition is performed by the vehicle ECU for
measurement of the speed, distance travelled and fuel con-
sumption (FU 1.1-1.2). The software to simulate the ECU



3

Fig. 1. The Three Main Subsystems.

Fig. 2. The Functional Units of the Subsystems.

is designed and implemented on off-the shelf hardware. The
data link connector (FU 1.3) is a standard connector in the
vehicle to which the OBD II reader is connected. The OBD II
protocol interface (FU 2.1) detects and interprets the ECU data
according to the implemented OBD II protocol. Conversion
of data in text format to voltage levels (FU 2.2) from the
processor to the on-board system and vice versa is performed.

PID data is requested and performs the processing of the
data received from the ECU via the OBD II protocol interface
(FU 2.3). It is also responsible for controlling the GPS (FU
2.6) and the wireless communication modules (FU 2.5). The
server is a PC from which a database management system
(FU 3.1) and a GUI (FU 3.2) is run. Discrete components and
regulators are used (FU 2.7) to scale the 12 V output from the
OBD II data link connector down to voltage levels suitable for
powering other system components.

IV. SYSTEM DESIGN

A. ELM327 Integrated Circuit

The ELM327 is an OBD II interpreter IC. It is a microcon-
troller designed to automatically interpret all OBD II signalling
protocols. It can thus be interfaced with the electronic circuitry
required to establish communication with the vehicle ECU via
the OBD II port. The protocols implemented in this study were
the ISO 15765 (CAN), ISO 9141-2 and ISO 14230-4.

An AT Command set predefined for the ELM327 was used
to communicate with the IC through RS232. The command
set allowed for setting up the IC to change its behaviour so as

Fig. 3. The OBD II Message Format.

Fig. 4. The OBD II Response Message Format.

to suit the requirements of the system. This included setting
up the Baud rate for RS232 communication, format of the
received data from the ECU and initialisation of the type of
OBD II protocol implemented on the vehicle.

A separate command set referred to as OBD commands,
was used to communicate with the ECU from the ELM327.
Commands from this set consist of only hexadecimal charac-
ters as defined in the SAE J1979 standard. Each command
from this set is a combination of either a PID or a DTC and
a value that indicates a mode of operation. The ELM327 has
ten diagnostic modes of operation which are defined in the
SAE J1979 standard. The operation of each mode depends
on the type of information required from the ECU. Mode
one was mainly used in the implementation of the OBD II
reader subsystem is for requesting and showing current real
time vehicle data and mode two for example is for diagnosing
engine malfunctions. The SAEJ1979 standard also defines
formulas to be used to decode messages received from the
ECU so as to obtain actual parameter measurements and the
structure of response message from the ECU.

OBD commands are typically two bytes long, however they
are sent to the vehicle ECU as part of a longer message. The
byte structure of this message is shown in Figure 3.

Messages are assigned priorities which are used to deter-
mine the order of sending messages in the event that more
than one message is sent simultaneously.The receiver and
transmitter bytes are the source and destination addresses. The
vehicle ECU is an addressable electrical bus, the source and
destination address are thus necessary for use in the address
line of the bus.

OBD II commands are encapsulated as part of the payload
section which can be as long as 7 bytes. The last field of
the message is a checksum which is responsible for detecting
errors in messages received from the vehicle ECU. The ISO
9141-2 and ISO 14230-4 standards both employ the same mes-
sage structure, CAN messages are however slightly different.

The structure of response messages from the ECU is shown
in Figure 4. The first byte indicates the mode of operation.
The hexadecimal value ’1’ in the ’41’ indicates mode 1. If a
DTC was sent under mode two then value of the first byte
would be ’42’. The second byte is the PID which was sent
with the request message. Position A to D is the data bytes
which contain the requested parameter value from the vehicle.

Figure 5 shows an example of a request and a response



4

Fig. 5. An Example of Request and Response Message Sent for Measuring
Speed.

Fig. 6. An Example of Request and Response Message Sent for Measuring
MAF.

message sent by the ELM327 and ECU respectively when
vehicle speed measurement is requested. The request message
is ”01 0D” which indicates that the PID ”0D” was sent
to the ECU under mode one which is indicated by ”01”.
The response message from the ECU is ”41 0D 32” which
corresponds to the format shown in Figure 4. The first two
bytes indicate the mode and the PID. The last byte which is
”32” in this case, is the data byte A in Figure 4. The actual
speed value is obtained by changing byte A, which is 3216 to
decimal. The speed value will thus be 50 Km/h.

Thus the equation are used for calculating Speed is:

Speed = ((ByteA)16)10 (1)

An example of the send and request message for MAF is
shown in Figure 6. The decoding of the data bits is different
from the previous example in that the formula used two data
bytes, namely A and B.

Computation of the MAF value is done by first converting
byte A which is 0116 to a decimal value which is 1. Similarly
byte B which is 7C16 works out to be 124. Thus the equation
for calculating MAF is:

MAF =
(ByteA16)10 × 256 + (ByteB16)10

100
(2)

The ELM327 requires a 5 V power source to function
correctly. Messages are sent and received using UART. The
ELM327 in essence acts as terminal interface. On power
up the IC returns a string with the characters ”ELM327
v1.4b” followed by a prompt character ’>’. The prompt
character signals that the IC is ready to send OBD II or AT
commands. A baud rate of 38400 bits per second (bps) was
used. Establishing communication with the ECU was done by
first sending the command ATZ followed by ATSP0 and then
finally 0100.The ATZ command resets the IC. It was sent to

TABLE II
THE OBDII AND AT COMMANDS SENT FROM THE ELM 327.

Command Description
1 ATZ Reset
2 ATSP0 Set protocol to auto
3 ATE0 Echo off
4 ATFE Forget events
5 ATS0 Print spaces off
6 0100 Search for set protocol
7 010D Speed PID
8 0110 MAF PID

verify that the IC functions correctly and to check if it was
ready to send messages.

Table II is a summary of the commands used and sent from
the ELM327. All commands sent from the ELM327 were
appended with a carriage return character.

The OBD II standard does not define standard PIDs for
some vehicle parameters such as fuel consumption. A method
proposed in [4] was used in this project to calculate the fuel
consumption of a vehicle from OBD II. Fuel consumption is
a measure of the fuel that a vehicle consumes in litres per
kilometre (L/Km). Fuel flow is a measure of the litres of fuel
burnt by a vehicle measured in litres per hour (L/h). It can be
used to calculate the instantaneous fuel consumption if divided
by the current driving speed in kilometres per hour (Km/h).
This is shown in equation below.

FuelConsumption =
FuelF low

Speed
(3)

Speed can be obtained from OBD II however even though
fuel flow has a defined OBD II PID of 5E, it is not available
on most cars. This problem can be bypassed by using the
MAF given in grams of air per second (g/s) to calculate fuel
consumption. This method takes into account the ratio of the
mass of air in grams to one gram of fuel in an engine which is
referred to as air to fuel ratio (AFR) and the density of the fuel
in grams per cubic decimetre (g/dm3) or equivalently grams
per litre (g/L). The AFR of is 14.7:1 and it’s density (D) is
820 g/dm3. If the speed of the vehicle (V), is given in (Km/h)
then the instantaneous fuel consumption can be calculated as
in equation below:

FuelConsumption =
MAF

AFR×D × V
× 3600 (4)

, where 3600 is a conversion factor from seconds to hours.
If the type of fuel used by a vehicle is diesel as opposed
to fuel consumption, air to fuel ratio will be 14.5:1 and the
density will be 750 g/dm3. Equation 4 was used in this study
to calculate the fuel consumption of a vehicle.

B. Interface Protocols

The CAN, ISO 9141-2 and ISO 14230-4 communication
protocols were implemented in this study. The output of
the interface circuits were connected to the OBD II 16-pin
connector shown in Figure 7. The pins which were utilised
were pin 6 and pin 14 for CAN, pin 7 and 15 for both ISO
9141-2 and ISO 14230-4. Pin 5 and pin 16 were connected to
the ground and voltage supply.



5

Fig. 7. The OBD II Port.

Fig. 8. The CAN Data Bus Lines.

1) CAN Protocol interface: The CAN standard was devel-
oped by a company called Bosch for automotive applications.
It was deemed mandatory for all vehicles manufactured from
2008 to implement CAN as the standard OBD II protocol.
There are two formats of the CAN protocol with 125 kbps
and 500 kbps data transmission rates. The 125 kbps format is
referred to as low speed and the 500 kbps as high speed.

The CAN bus standard defines different CAN bus architec-
tures which include a single line and two line bus architecture.
Automotive applications, including OBD II mostly employ the
double line CAN bus architecture. The double line architecture
has transmit and receive lines which connect to different
nodes on the bus line, as shown in Figure 8. Nodes are the
different subsystems which can be addressed. The two lines
of communication are also referred to as CAN high and CAN
low which are characterised by a differential voltage of 5 V
and a termination input impedance of 120 Ω.

The structure of CAN messages is different from other
OBD II messages. CAN messages also come in two formats
depending on the number of identifier bits as shown in
Figure 9. The identifier bits define the message priority and
identification of the message stream. A CAN message can
either have 11 identifier bits, which is for low speed CAN
that operates at a transmission rate of 250 kbps or 29 identifier
bits for high speed CAN operating at 500 kbps. The data field
which contains the actual data being transmitted on the bus is
8 bytes long and finally checksum bits are defined.

CAN defines states for signals transmitted on the bus line.
These signals are just sequences of logic high and logic low
voltages also referred to as ones and zeroes respectively. The
CAN protocol defines a logical high as a recessive state while

Fig. 9. The Structure of a CAN Message.

Fig. 10. OBD II Communication Protocol Circuitry.

a logical low is referred to as dominant state. The definition
of these states is based on the value of the differential voltage
between CAN high and CAN low data lines. A dominant state
is typically when the differential voltage is less that 0 V and a
recessive state is when the differential voltage is greater than
1.2 V.

2) OBD II ISO 9141-2 interface: The ISO 9141-2 protocol
works on a 10.4 kbps rate. A transmission to the ECU is
initialized by sending a 0x33 code at 5 bps. This is referred
to as slow initialisation as opposed to fast initialisation used
by ISO 14230-4. ISO 9141-2 works on a high 12 V active
voltage and a low 0 V passive voltage. It has a single line
of communication referred to as K line, where all vehicle
ECUs are connected in automotive applications. There may
optionally be an additional L line. The K line is accessed
through pin 7 of the OBD II connector. The maximum data
length is 12 bytes. ISO 14230-4 is similar but differs in
data length and initialisation as mentioned previously. The
maximum data length is 255 bytes [9].

The CAN protocol interface circuit is connected to pin
23 (CAN TX) and pin 24 (CAN RX) of the ELM327 via
the MCP2551 which is a CAN transceiver IC. The trans
receiver acts as an interface between the vehicle CAN bus and
the ELM327 which is responsible for controlling the CAN
bus. Controlling the CAN bus entails the transmission and
reception of data on the bus. The trans receiver has CAN
high and CAN low pins which are connected similarly to
the physical vehicle bus via pin 6 pin and pin 14 of the
OBD II connector as shown in Figure 10. Resistors R1 and
R2 both of value 100 Ω, are connected to CAN high and
CAN low because the ISO 15765-4 requires that a termination
impedance between 90 Ω and 110 Ω on both CAN high and
CAN low lines. Similarly a termination capacitance of 470 pF
to 640 pF is required. It is for this reason that the values of C2
and C3 were chosen as 560 pF. Resistor R3 is connected to
pin RS of the MCP2551 to control the transition CAN line. A
0.1 µF capacitor was connected between the positive supply
and ground for decoupling and filtering noise in the power
line.

The interface circuits for the ISO 9141-2 and ISO 14230-
4 protocols are controlled by two NPN transistors which are



6

configured as switches. This is because of the fact that vehicle
electronic buses or ECUs that adhere to either of these two
standards operate at logical high and logical low voltage levels
of 12 V and 0 V respectively. The collector terminals of both
transistors are thus connected to the vehicle battery voltage
of 12 V via pull up resistors, R4 and R7 of value 510 Ω.
The value of the pull up resistor is chosen as specified in
the standards of the concerned communication protocols. The
operation of the transistor switches when communicating with
the ECU is explained further.

When the voltage VB at the base of the transistor is 0 V, the
base current IB will also be zero. The relationship between
the base current and the collector current IC is given by:

IC = βIB (5)

where β is the transistor current gain. If IB is 0 A then the
equation implies that the collector current will also be zero
and the transistor will act as an open switch resulting in pin
7 and pin 14 of the OBD II connector being at 12 V. When
the transistor is however forward biased with a base voltage
of 5 V from the ISO pins of the ELM327, the base current
will be:

IB =
Vb − 0.7

R7
=

5 − 0.7

2200
= 1.95mA (6)

where 0.7 is the transistor breakout voltage.
If the supply voltage is VCC , the maximum collector current

is given by:

IC =
VCC

R4
=

12

510
= 23.5mA (7)

which would then result in transistor saturating and acting
as a closed switch.

The output voltage is given by:

Vout = VCC −R4IC = 12 − (510 × 0.0235) = 0.2V (8)

Calculations performed in Equations 5 to 8 were derived
with reference to Q2, however it must be noted that the same
reasoning also applies to transistor T1 as the configuration of
the two transistor circuits is the same.

Transistor T1 which was connected to the ISOL line is
not required for most vehicles as it is only required during
the initialisation process of the bus for some vehicles. Data
was transmitted and received on the K line of the vehicle bus
and was read through pin 12 (ISOIN) of the ELM327 from
the output of the transistor. A voltage divider circuit with a
resistance R8 of 33 KΩ and R9 of 47 KΩ was used to drop
down 12 V, the maximum voltage from the transistor output
to 5 V to be used by the ELM327.

The value of the voltage divider output can be justified in
the equation below where Vout and Vin are the voltage divider
output and the transistor output respectively.

Vout =
R8

R8 +R9
× Vin =

3300

3300 + 4700
× 12 = 4.95V ≈ 5V

(9)

Fig. 11. The MCU and WiFi Module Connection Circuit.

C. Wireless Communication Module

A WiFi network was established between a Carambola2
WiFi module connected to a PC and one integrated with
the OBD II subsystem. The Carambola2 module which was
interfaced with the OBD II subsystem was connected to the
MCU via RS232. The MCU transmitted the acquired OBD
II and GPS data to the module so that it could be sent
wirelessly to the remote WiFi module connected to a PC. The
Carambola2 operates at a baud rate of 115200 kbps. Figure
11 below illustrates the connectivity between the WiFi module
and the MCU.

The WiFi module was operated from a 3.3 V supply and
the maximum operation voltage of the module’s RS232 lines
was 2.6 V. Voltage division was hence used to drop the 5 V
from the MCU’s TX line to 2.5 V suitable for the RX line
of the WiFi module. Two equal resistors R12 and R13 of 10
KΩ were chosen to realise a voltage level of 2.5 V. A level
shifting IC such as ADuM1201 could have been used as an
alternative to voltage division however voltage division was
opted for since it was a cheaper solution and proved to be
efficient. The module uses a 2.4 GHz WiFi antenna for WiFi
connectivity and scanning of reachable WiFi networks.

An RJ45 MagJack breakout board shown in Figure 12 was
connected to the Ethernet interface pins of the Carambola2
to allow for sharing of source code files from the PC to the
module. The board had eight breakout tracks from the pin
contacts of the RJ45 to the solder side connections.

The MagJack RJ45 was equipped with a transformer whose
primary side was connected to the solder side of the eight pins
of the breakout board. The secondary side of the transformer
was connected to the pins of the RJ45 port.

Connections made between the RJ45 breakout board and the
LAN interface of the Carambola2 are shown in Figure 13. The
component SV4 was a PCB connector to which the breakout
board was connected. Capacitors C7 and C8 of value 100 nF
were connected between the supply and ground as suggested
in the data sheet for decoupling. A pull down resistor R14 was
connected to a switch for physically resetting or rebooting the
module.

1) (Connecting the Carambola2 Wireless Module): The
WiFi module was running on Chaos Calmer, a version of the
OpenWRT operating system. The Carambola2 is in essence



7

Fig. 12. The RJ45 MagJack Breakout Board Which was Interfaced with the
Carambola2.

Fig. 13. The Connection Between the RJ45 MagJack Breakout and the WiFi
Module.

a small computer with powerful features such as those of
wireless routers [17]. Configuring the module for communi-
cation over a WiFi network required connecting it first once
the module was powered on. This could be done in one of
two ways. The first method was through establishing a LAN
connection between a PC and the module, then using either
Telnet or Secure Shell (SSH) to login. The default IP address
of the module’s LAN interface was 192.168.1.1 which the PC
automatically detected once a successful LAN connection was
established.

The second method of accessing the module was through a
USB to serial port connection. A terminal program was such
as Putty in Windows was used. Connecting to the module via
SSH required setting a password which could be done when
connected via Telnet or SSH.

The module connected to the PC was configured as an
Access Point (AP). An AP acts as a master node or a server
which allows for other devices to connect to it via WiFi.
Station Point (STA) mode was configured on the module
connected to the OBD II subsystem. STA mode thus enables
a device to connect to an AP as a client.

2) AP mode configuration: Once the Carambola module
has been connected, the module had to configured for WiFi
connection and communication. This was done by setting up

Fig. 14. An Example of the GLL Message Transmitted by the GPS Module.

three files in the /etc/config/ directory of the module. The
names of these files were network, wireless and firewall.

The network file is where all the networking interfaces to
be used for communication are created. The home address of
the device was configured as a loopback interface with the
IP address 127.0.0.1. The LAN interface was named eth0 and
given the IP address 192.168.1.1. This was the IP address used
to identify the device when connected to a PC via Ethernet. An
interface for WiFi communication was also created and named
WiFi The IP address of the WiFi interface was 192.168.6.1.
All IP addresses were configured as static addresses with a
subnet mask of 255.255.255.0.

The wireless file is where the wireless interface and the
attributes of the WiFi network are configured. These included
the name of the WiFi network (SSID), the name of the
device, the mode of operation and the communication protocol
standard. The device was configured as an access point which
could be accessed via the WiFi interface which was initially
setup in the network file. The status of the wireless interface
was confirmed by issuing the command iwconfig.

The firewall file was setup to enable packets to be for-
warded from the LAN interface to the WiFi interface and vice
versa.

3) STA mode configuration: Configuring the WiFi module
in STA mode is done similarly to the AP mode configurations.
The difference was that an interface named wwan with a
static IP address of 192.168.6.2 was setup in the network
file. The mode of operation and the SSID name were also
configured in the wireless file. The same SSID was used,
else communication would not have been possible between
the modules. The module also allows for enhancing security
by setting up a password for the WiFi network.

D. GPS Tracking

The transmit pin of the GPS module was connected to the
receive pin of the microcontroller’s second UART module. The
module was set to transmit NMEA protocol message strings at
a baud rate of 115200 Kbps every second. This was because
the WiFi module was also interfaced with the microcontrollers
second UART module and operated at a baud rate of 115200
Kbps. All settings and configurations were done using the U-
centre, open source software developed by Ublox. The NMEA
protocol defines different messages with a predefined format.
One of the NMEA messages is the GLL message type which is
string containing information about the longitude and latitude
of a specific location.

The message string has different fields which are delimited
by commas. The fields of the GLL message are shown in
Figure 14.



8

Fig. 15. The Power Supply Circuit.

Fig. 16. Implementation of the GUI at the Remote Server.

E. Power Supply

As shown in Figure 15, the system was powered with
a 12 V battery from a vehicle which was regulated down
to 5 V the LM805 and 3.3 V using the LM1086 voltage
regulators. The 5 V supply was for the ELM327 IC, the
MCU and the GPS module. The 3.3 V was for powering the
wireless communication module. The two regulators each give
a maximum output current of 1.5 A which was sufficient to
supply all system components.

Input Capacitors C1, C3 and C5 were used for absorbing
power transients and ripples in the circuit. Output capacitors
C2 and C4 were also used for the same reason. The values
were chosen to be greater than the minimum input or output
capacitance as specified in the data sheet A Zener diode D1,
with a break down voltage of 12 V was used to protect the
system components against overvoltage. This was to limit the
voltage from the supply to 12 V as there may be variations
when a load is connected. Diodes D2 and D3 with a 0.7 V
drop were used to protect supply from any reverse voltage.

F. The Remote Server

Data from transmitted wireless from the OBD II reader was
stored in a database created in SQL. The data was then read
from the serial port into a graphical user interface implemented
in C#. The web based model view controller (MVC) platform
was used. This allowed for separation of concerns. Figure 16
shows the implementation of the GUI at the remote server.

Fig. 17. Test Setup of the OBD II Reader Connected to the Emulator.

Fig. 18. Communication Established Between the Emulator and the Reader.

V. RESULTS

A. Establishing Communication Between the OBD II Reader
and the ECU

Firstly communication between the OBD II reader subsys-
tem and the vehicle ECU needed to be verified.

A Freematics OBD II emulator, as shown in Figure 17,
was used for testing purposes. The emulator implements three
OBD II protocols (CAN, ISO 9141-2 and ISO 14230-4. It
has an OBD II 16 pin connector similar to an actual OBD II
compliant device and was powered from an AC to DC power
supply connected to the mains. A USB to serial convertor was
used for communication between the PC and the ELM327 IC
on the reader.

The speed and MAF parameter values were initially con-
figured on the emulator. AT and OBD II commands were
sent from the MCU on the reader to the emulator to initialise
communication. The data received from the emulator was then
displayed on the terminal program, Termite (which was set at
a baud rate of 38400 Kbps), as shown in Figure 18.

To further verify the designed reader, a Bluetooth OBD
II reader was connected to the emulator and an Android
application on a mobile phone was used to ensure that the
correct data was received.

Commands sent from the MCU were preceded by a prompt
character ’>’ and displayed in blue text. The emulator re-
sponded successfully to the requests by first echoing the sent



9

Fig. 19. The Vehicle Display.

command and then responding with the requested data (speed
and MAF) shown in green text.

B. Vehicle Parameter Measurement Over Short Distance,
The ability and performance of the OBD II reader to

measure vehicle parameters: speed, MAF and distance over
a short distance was determined.

The designed OBD II reader was connected to the OBD II
port of the vehicle. For this study a BMW 125i was used as
it implements the CAN communication protocol. A USB to
serial convertor cable was connected to a PC running Termite,
and the MCU.

The vehicle was driven on a straight path for 400 m.
The transmitted output was observed on Termite. The on-
board computer of the vehicle displayed the instantaneous
measurements for speed, distance and fuel consumption. The
instantaneous fuel consumption (L/100 km) and distance (km)
were shown on the digital display, as in Figure 19. The speed
was observed on a speedometer. A passenger sitting with he
driver made the observations in the vehicle.

Samples of all parameters were taken every second for a
total duration of 100 s. The instantaneous distance travelled
was obtained by multiplying the sampled speed with one
second. The resulting value was added to previously obtained
results to get the total distance travelled during the course of
the trip.

The initial and final data points indicate instances when
the car started and stopped respectively. The total distance
measured by the system was 380 m as shown by the graph in
Figure 20. The maximum speed reached was approximately
34 km/h and the maximum fuel consumed was 0.65 L/km as
observed in Figure 21. It was also noted that more fuel was
consumed at lower speeds.

C. Vehicle Parameter Measurement Over Long Distance
The ability and performance of the OBD II reader to

measure vehicle parameters: speed, MAF and distance over
longer distances was also determined.

Fig. 20. The Relationship Between Distance Covered by the Vehicle and
Time.

Fig. 21. The relationship Between Speed and Fuel Consumption.

The vehicle was driven over a distance of 9 km from the
city to a highway. A total of 419 samples were taken every
second for a duration of 450 s.

The total distance measured as shown in Figure 22 was 8.5
km. From Figure 23 the maximum speed measured was 120
km/h and the maximum fuel consumption was 0.38 L/km. As
noted above the slower the speed the more fuel was consumed.

D. Communication Between the Wireless Modules

Communication and the range of communication between
the two Carambola2 modules is verified.

A remote Carambola module was connected to a PC and the
module in the moving vehicle was powered from the vehicle’s
USB port. Ping commands were constantly issued from the
remote module. The success or failure of the ping command
was used to determine whether the module in the driving
vehicle was out of range or not.

A total communication range of 900 m was determined.

VI. CONCLUSION

The testing of the communication between the OBD II
reader and the emulator verified that the system could inter-



10

Fig. 22. The Relationship Between Distance Covered by the Vehicle and
Time.

Fig. 23. The Relationship Between Speed and Fuel Consumption.

face with an OBD II complaint vehicle and retrieve sensor
measurements. This was further confirmed when the system
was tested on a real car and measurements from speed and
MAF sensors were successful.

The design integrates different technologies which can
reduce the cost of buying multiple devices with different
capabilities. The design also incorporates the measurement of
parameters not readily available with most OBD II interfaces,
such as GPS tracking, speed and fuel consumption.

The measurements of the distance travelled by the car
showed an error of approximately 5% which was computed
by using the final sample on the distance plot and due to the
1 s sampling period.

It was also observed that when the vehicle’s engines were
turned off, the system power also shut down. This resulted in
the loss of wireless communication and GPS location tracking.

As was noted above the communication range for the
WiFi connection between the remote PC and OBD II reader
decreases as distance increases, for future work a GSM system
could be considered as part of the communication unit.

Further development can include a battery backup system
that supplies power to the rest of the system components
when the vehicle’s engines are turned off. Thus enabling

continued wireless communication and GPS location tracking.
The delay resulting from the initialisations of the system could
be reduced to improve efficiency of the system. The effect
of the delay introduced by initialisations means that the car
can only be driven once all initialisations are done, so as to
avoid loss of initial parameter measurements. New techniques
to reduce this delay need to be developed.

REFERENCES

[1] OBD II Scan Tool Equivalent to ISO/DIS 15031-4, SAE Std. J1978
199 203, 2001.

[2] E/E Diagnostic Test Modes Equivalent to ISO/DIS 15031-5, SAE Std.
J1979 200 204, 2002.

[3] S.-H. Baek and J.-W. Jang, “Implementation of integrated obd-ii con-
nector with external network,” Information Systems, vol. 50, pp. 69–75,
2015.

[4] Diagnostic Connector Equivalent to ISO/DIS 15031-3, SAE Std. J1962
201 207, 2001.

[5] H. Billhardt, A. Fernandez, L. Lemus, M. Lujak, N. Osman, S. Os-
sowski, and C. Sierra, “Dynamic coordination in fleet management
systems: Toward smart cyber fleets,” IEEE Intelligent Systems, vol. 29,
no. 3, pp. 70–76, 2014.

[6] G. S. Larue, H. Malik, A. Rakotonirainy, and S. Demmel, “Fuel
consumption and gas emissions of an automatic transmission vehicle
following simple eco-driving instructions on urban roads,” Intelligent
Transport Systems, vol. 8, no. 7, pp. 590–597, 2014.

[7] R. M. Jaco Prinsloo, “Accurate vehicle location system using rfid, an
internet of things approach,” AD Hoc Networks, vol. 16, pp. 1–24, 2016.

[8] R. M. F. X. R. W. Zhongqin Wang, Ning Ye, “Trackt: Accurate tracking
of rfid tags with mm-level accuracy using first-order taylor series
approximation,” AD Hoc Networks, vol. 53, pp. 132–144, 2016.

[9] H.-S. Kim, S.-J. Jang, and J.-W. Jang, “A study on development of
engine fault diagnostic system,” Mathematical Problems in Engineering,
vol. 2015, 2015.

[10] C. E. Lin, Y.-S. Shiao, C.-C. Li, S.-H. Yang, S.-H. Lin, and C.-Y. Lin,
“Vehicle speed measurement and law enforcement,” IEEE Transactions
on Vehicular Technology, vol. 56, no. 3, pp. 1108–1118, 2007.

[11] R. M. R. W. P. L. Zhongqin Wang, Ning Ye, “”tmicroscope: Behav-
ior perception based on the slightest rfid tag motion,” Elektronika ir
Elektrotechnika, vol. 22, no. 2, pp. 114–122, 2016.

[12] Y. Yang, B. Chen, L. Su, and D. Qin, “Research and development of
hybrid electric vehicles can-bus data monitor and diagnostic system
through obd-ii and android-based smartphones,” Advances in Mechani-
cal Engineering, vol. 5, pp. 74–89, 2015.

[13] J. E. Meseguer, C. T. Calafate, J. C. Cano, and P. Manzoni, “Assessing
the impact of driving behaviour on instantaneous fuel consumption,” in
12th Annual IEEE Consumer Communications and Networking Confer-
ence (CCNC), 2015, pp. 443–448.

[14] J. Zaldivar, C. Calafate, J. Cano, and P. Manzoni, “Providing accident
detection in vehicular networks through obd-ii devices and android-
based smartphones,” in IEEE 36th Conference on Local Computer
Networks (LCN), 2011, pp. 813–819.

[15] G. Geatrix, “Vehicle speed measurement and law enforcement,” Mea-
surement and Control, vol. 44, no. 8, pp. 249–251, 2011.

[16] X. Z. W. A. R. M. Xiangjun Jin, Jie Shao, “Modeling of nonlinear system
based on deep learning framework,” Nonlinear Dynamics, vol. 84, no. 3,
pp. 1327–1340, 2016.

[17] R. M. Y.-y. Z. R.-c. W. Ning Ye, Zhong-qin Wang, “A method of vehicle
route prediction based on social network analysis,” Journal of Sensorss,
vol. 15, pp. 1–10, 2015.



11

Dr. Reza Malekian Reza Malekian (M’10) is cur-
rently an Associate Professor with the Department
of Electrical, Electronic, and Computer Engineering,
University of Pretoria, Pretoria, South Africa. His
current research interests include Internet of Things,
Sensors and Systems, and mobile communications.
Prof. Malekian is also a Chartered Engineer and
a Professional Member of the British Computer
Society. He is an associate editor for the IEEE
Internet of Things Journal.

Ntefeng Ruth Moloisane received her B.Eng. de-
gree in Computer Engineering from the University
of Pretoria, Pretoria, South Africa in 2015. She is
currently pursuing her postgraduate studies in the
department of Electrical Electronic and Computer
Engineering at the University of Pretoria. Her re-
search interests include intelligent transport systems
and advanced sensor networks.

Lakshmi Nair received her B.Eng degree in Com-
puter Engineering in 2004 and a M.Eng degree in
Electronic Engineering in 2009. She is currently pur-
suing her Ph.D. degree in Computer Engineering at
the University of Pretoria, South Africa. Her areas of
interest include wireless sensor networks, intelligent
transport systems and smart sensor designs for real-
time monitoring applications.

Prof. BT (Sunil) Maharaj received his Ph.D. in the
area wireless communications from the University
of Pretoria, South Africa. Dr Maharaj is a Professor
and currently holds the position of Sentech Chair in
broadband wireless multimedia communications in
the Department of Electrical, Electronic and Com-
puter Engineering at the University of Pretoria. His
research interests are in MIMO channel modelling,
OFDM-MIMO systems and cognitive radio for rural
broadband.

Dr. Uche A.K. Chude-Okonkwo received his Ph.D.
in Electrical Engineering from Universiti Teknologi
Malaysia in 2010. From 2011 to 2014, he was a
Senior Lecturer at the Faculty of Electrical Engineer-
ing, Universiti Teknologi Malaysia. He is currently
a Senior Research Fellow at the Department of
Electrical, Electronics and Computer Engineering,
University of Pretoria, South Africa. His current re-
search interests include signal processing and wire-
less communication.


